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SEVERAL PROPERTIES OF THE SPECTRUM AND

LOCAL SPECTRUM OF CLASS An OPERATORS

M. H. M. RASHID AND ATSUSHI UCHIYAMA

Abstract. In this article, we establish some conditions which imply the normality of class An .
Also, we prove that if T is a class An and M is an invariant subspace of T such that T |M
is a normal operator with 0 �∈ p(T |M) , then M reduces T . Moreover, we show that Weyl’s
theorem holds for every class An operator and some results related to the Riesz idempotent of
class An operators. By using the spectral properties of class An operators, we prove that a class
An contraction is the direct sum of a unitary and a C.0 completely non-unitary contraction. In
addition, the existence of a nontrivial hyperinvariant subspace of a class An operator will be
shown.
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