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Abstract. A version of the Dynamical Systems Method for solving ill-posed nonlinear monotone
operator equations is studied in this paper. A discrepancy principle is proposed and justified. A
numerical experiment was carried out with the new stopping rule. Numerical experiments show
that the proposed stopping rule is efficient.

1. Introduction

In this paper we study a version of the Dynamical Systems Method (DSM) for
solving the equation

F(u) = f , (1)

where F is a nonlinear, Fréchet differentiable,monotone operator in a real Hilbert space
H , and equation (1) is assumed solvable, possibly nonuniquely. Monotonicity means
that

〈F(u) − F(v), u − v〉 � 0, ∀u, v ∈ H. (2)

It is known (see, e.g., [7]), that the set N := {u : F(u) = f } is closed and convex if
F is monotone and continuous. A closed and convex set in a Hilbert space has a unique
minimal-norm element. This element in N we denote by y , F(y) = f , and call it the
minimal-norm solution to equation (1). We assume that

sup
‖u−u0‖�R

‖F′(u)‖ � M1(R), (3)

where u0 ∈ H is an element of H , R > 0 is arbitrary, and f = F(y) is not known
but f δ , the noisy data, are known, and ‖f δ − f ‖ � δ . If F′(u) is not boundedly
invertible then solving equation (1) for u given noisy data f δ is often (but not always)
an ill-posed problem. When F is a linear bounded operator many methods for stable
solution of (1) were proposed (see [5]–[7] and references therein). However, when F
is nonlinear then the theory is less complete.
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DSM consists of finding a nonlinear map Φ(t, u) such that the Cauchy problem

u̇ = Φ(t, u), u(0) = u0,

has a unique solution for all t � 0 , there exists limt→∞ u(t) := u(∞) , and F(u(∞)) =
f ,

∃! u(t) ∀t � 0; ∃u(∞); F(u(∞)) = f . (4)

Various choices of Φ were proposed in [7] for (4) to hold. Each such choice yields a
version of the DSM.

The DSM for solving equation (1) was extensively studied in [7]–[15]. In [7], the
following version of the DSM was investigated for monotone operators F :

u̇δ = −(
F′(uδ ) + a(t)I

)−1(
F(uδ ) + a(t)uδ − f δ

)
, uδ (0) = u0. (5)

The convergence of this method was justified with some a apriori choice of stopping
rule. A DSM gradient method was formulated and justified in [4].

In this paper we consider a version of the DSM for solving equation (1):

u̇δ = −(
F(uδ ) + a(t)uδ − f δ

)
, uδ (0) = u0, (6)

where F is a monotone operator.
The advantage of this version compared with (5) is the absence of the inverse

operator in the algorithm, which makes the algorithm (6) less expensive than (5). On
the other hand, algorithm (5) converges faster than (6) in many cases. The algorithm
(6) is cheaper than the DSM gradient algorithm proposed in [4].

The convergence of the method (6) for any initial value u0 is proved for a stopping
rule based on a discrepancy principle. This a posteriori choice of stopping time tδ is
justified provided that a(t) is suitably chosen.

The advantage of method (6), a modified version of the simple iteration method,
over the Gauss-Newton method and the version (5) of the DSM is the following:
neither inversion of matrices nor evaluation of F′ is needed in a discretized version of
(6). Although the convergence rate of the DSM (6) maybe slower than that of the DSM
(5), the DSM (6) might be faster than the DSM (5) for large-scale systems due to its
lower computation cost.

In this paper we investigate a stopping rule based on a discrepancy principle (DP)
for theDSM (6). Themain results of this paper are Theorem17 andTheorem19 inwhich
a DP is formulated, the existence of a stopping time tδ is proved, and the convergence
of the DSM with the proposed DP is justified under some natural assumptions.

2. Auxiliary results

The inner product in H is denoted 〈 u, v〉 . Let us consider the following equation

F(Vδ ) + aVδ − f δ = 0, a > 0, (7)

where a = const . It is known (see, e.g., [7], [16]) that equation (7) with monotone
continuous operator F has a unique solution for any f δ ∈ H .
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Let us recall the following result from [7]:

LEMMA 1. Assume that equation (1) is solvable, y is its minimal-norm solution,
assumption (2) holds, and F is continuous. Then

lim
a→0

‖Va − y‖ = 0,

where Va solves (7) with δ = 0 .

Clearly, under our assumption (3), F is continuous.

LEMMA 2. If (2) holds and F is continuous, then ‖Vδ‖ = O( 1
a ) as a → ∞ , and

lim
a→∞ ‖F(Vδ) − f δ‖ = ‖F(0)− f δ‖. (8)

Proof. Rewrite (7) as

F(Vδ) − F(0) + aVδ + F(0) − f δ = 0.

Multiply this equation by Vδ , use inequality 〈F(Vδ) − F(0), Vδ − 0〉 � 0 and get:

a‖Vδ‖2 � ‖f δ − F(0)‖‖Vδ‖.
Therefore,

‖Vδ‖ = O(
1
a
).

This and the continuity of F imply (8). �
Let a = a(t) be a strictly monotonically decaying continuous positive function on

[0,∞) , 0 < a(t) ↘ 0 , and assume a ∈ C1[0,∞) . These assumptions hold throughout
the paper and often are not repeated. Then the solution Vδ of (7) is a function of t ,
Vδ = Vδ (t) . From the triangle inequality one gets:

‖F(Vδ (0)) − f δ‖ � ‖F(0) − f δ‖ − ‖F(Vδ (0)) − F(0)‖.
From Lemma 2 it follows that for large a(0) one has:

‖F(Vδ(0)) − F(0)‖ � M1‖Vδ (0)‖ = O

(
1

a(0)

)
.

Therefore, if ‖F(0) − f δ‖ > Cδ , then ‖F(Vδ (0)) − f δ‖ � (C − ε)δ , where ε > 0 is
sufficiently small and a(0) > 0 is sufficiently large.

Below the words decreasing and increasing mean strictly decreasing and strictly
increasing.

LEMMA 3. Assume ‖F(0) − f δ‖ > 0 . Let 0 < a(t) ↘ 0 , and F be monotone.
Denote

ψ(t) := ‖Vδ (t)‖, φ(t) := a(t)ψ(t) = ‖F(Vδ(t)) − f δ‖,
where Vδ (t) solves (7) with a = a(t) . Then φ(t) is decreasing, and ψ(t) is increasing.
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Proof. Since ‖F(0) − f δ‖ > 0 , one has ψ(t) �= 0, ∀t � 0 . Indeed, if
ψ(t)

∣∣
t=τ = 0 , then Vδ (τ) = 0 , and equation (7) implies ‖F(0) − f δ‖ = 0 , which is a

contradiction. Note that φ(t) = a(t)‖Vδ (t)‖ . One has

0 � 〈F(Vδ (t1)) − F(Vδ (t2)), Vδ (t1) − Vδ (t2)〉
= 〈−a(t1)Vδ (t1) + a(t2)Vδ (t2), Vδ (t1) − Vδ (t2)〉
= (a(t1) + a(t2))〈Vδ (t1), Vδ (t2)〉 − a(t1)‖Vδ (t1)‖2 − a(t2)‖Vδ (t2)‖2.

(9)

Thus,

0 � (a(t1) + a(t2))〈Vδ (t1), Vδ (t2)〉 − a(t1)‖Vδ (t1)‖2 − a(t2)‖Vδ (t2)‖2

� (a(t1) + a(t2))‖Vδ (t1)‖‖Vδ(t2)‖ − a(t1)‖Vδ (t1)‖2 − a(t2)‖Vδ (t2)‖2

= (a(t1)‖Vδ (t1)‖ − a(t2)‖Vδ (t2)‖)(‖Vδ (t2)‖ − ‖Vδ (t1)‖)
= (φ(t1) − φ(t2))(ψ(t2) − ψ(t1)).

(10)

If ψ(t2) > ψ(t1) then (10) implies φ(t1) � φ(t2) , so

a(t1)ψ(t1) � a(t2)ψ(t2) > a(t2)ψ(t1).

Thus, if ψ(t2) > ψ(t1) then a(t2) < a(t1) and, therefore, t2 > t1 , because a(t) is
strictly decreasing.

Similarly, if ψ(t2) < ψ(t1) then φ(t1) � φ(t2) . This implies a(t2) > a(t1) , so
t2 < t1 .

Suppose ψ(t1) = ψ(t2) , i.e., ‖Vδ (t1)‖ = ‖Vδ (t2)‖ . From (9), one has

‖Vδ (t1)‖2 � 〈Vδ (t1), Vδ (t2)〉 � ‖Vδ(t1)‖‖Vδ(t2)‖ = ‖Vδ (t1)‖2.

This implies Vδ (t1) = Vδ (t2) , and then equation (7) implies a(t1) = a(t2) . Hence,
t1 = t2 , because a(t) is strictly decreasing.

Therefore φ(t) is decreasing and ψ(t) is increasing. �

LEMMA 4. Suppose that ‖F(0) − f δ‖ > Cδ , C > 1 , and a(0) is sufficiently
large. Then, there exists a unique t1 > 0 such that ‖F(Vδ (t1)) − f δ‖ = Cδ .

Proof. The uniqueness of t1 follows from Lemma 3 because ‖F(Vδ(t)) − f δ‖ =
φ(t) , and φ is decreasing. We have F(y) = f , and

0 = 〈F(Vδ ) + aVδ − f δ , F(Vδ ) − f δ 〉
= ‖F(Vδ) − f δ‖2 + a〈Vδ − y, F(Vδ) − f δ 〉 + a〈 y, F(Vδ) − f δ 〉
= ‖F(Vδ) − f δ‖2 + a〈Vδ − y, F(Vδ) − F(y)〉 + a〈Vδ−y, f −f δ 〉 + a〈 y, F(Vδ)−f δ 〉
� ‖F(Vδ) − f δ‖2 + a〈Vδ − y, f − f δ 〉 + a〈 y, F(Vδ) − f δ 〉 .
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Here the inequality 〈Vδ − y, F(Vδ) − F(y)〉 � 0 was used. Therefore

‖F(Vδ) − f δ‖2 � −a〈Vδ − y, f − f δ 〉 − a〈 y, F(Vδ) − f δ 〉
� a‖Vδ − y‖‖f − f δ‖ + a‖y‖‖F(Vδ) − f δ‖
� aδ‖Vδ − y‖ + a‖y‖‖F(Vδ) − f δ‖.

(11)

On the other hand, we have

0 = 〈F(Vδ) − F(y) + aVδ + f − f δ , Vδ − y〉
= 〈F(Vδ) − F(y), Vδ − y〉 + a‖Vδ − y‖2 + a〈 y, Vδ − y〉 + 〈 f − f δ , Vδ − y〉
� a‖Vδ − y‖2 + a〈 y, Vδ − y〉 + 〈 f − f δ , Vδ − y〉 ,

where the inequality 〈Vδ − y, F(Vδ ) − F(y)〉 � 0 was used. Therefore,

a‖Vδ − y‖2 � a‖y‖‖Vδ − y‖ + δ‖Vδ − y‖.
This implies

a‖Vδ − y‖ � a‖y‖ + δ. (12)

From (11) and (12), and an elementary inequality ab � εa2 + b2

4ε , ∀ε > 0 , one gets:

‖F(Vδ ) − f δ‖2 � δ 2 + a‖y‖δ + a‖y‖‖F(Vδ) − f δ‖
� δ 2 + a‖y‖δ + ε‖F(Vδ) − f δ‖2 +

1
4ε

a2‖y‖2,
(13)

where ε > 0 is fixed, independent of t , and can be chosen arbitrary small. Let t → ∞
and a = a(t) ↘ 0 . Then (13) implies

limt→∞(1 − ε)‖F(Vδ) − f δ‖2 � δ 2.

This, the continuity of F , the continuity of Vδ (t) on [0,∞) , and the assumption
‖F(0) − f δ‖ > Cδ imply that equation ‖F(Vδ(t)) − f δ‖ = Cδ must have a solution
t1 > 0 . The uniqueness of this solution was already established. �

REMARK 5. From the proof of Lemma 4 one obtains the following result:
If tn ↗ ∞ then there exists a unique n1 > 0 such that

‖F(Vn1+1) − f δ‖ � Cδ < ‖F(Vn1) − f δ‖, Vn := Vδ (tn).

REMARK 6. From Lemma 2 and Lemma 3 one concludes that

an‖Vn‖ = ‖F(Vn) − f δ‖ � ‖F(0) − f δ‖, an := a(tn), ∀n � 0.

REMARK 7. Let V := Vδ (t)|δ=0 , so

F(V) + a(t)V − f = 0.

Let y be the minimal-norm solution to equation (1). We claim that

‖Vδ − V‖ � δ
a

. (14)
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Indeed, from (7) one gets

F(Vδ ) − F(V) + a(Vδ − V) = f − f δ .

Multiply this equality with (Vδ − V) and use the monotonicity of F to get

a‖Vδ − V‖2 � δ‖Vδ − V‖.
This implies (14).

Similarly, multiplying the equation

F(V) + aV − F(y) = 0,

by V − y one derives the inequality:

‖V‖ � ‖y‖. (15)

Similar arguments one can find in [7].
From (14) and (15), one gets the following estimate:

‖Vδ‖ � ‖V‖ +
δ
a

� ‖y‖ +
δ
a

. (16)

LEMMA 8. Suppose a(t) = d
(c+t)b , ϕ(t) =

∫ t
0

a(s)
2 ds where b ∈ (0, 1

2 ] , d and c
are positive constants. Then

d
2

(
1 − 2b

cθd

) ∫ t

0

eϕ(s)

(s + c)2b
ds <

eϕ(t)

(c + t)b
, ∀t > 0, θ = 1 − b > 0. (17)

Proof. We have

ϕ(t) =
∫ t

0

d
2(c + s)b

ds =
d

2(1 − b)

(
(c + t)1−b − c1−b

)
= p(c + t)θ − C3, (18)

where θ := 1 − b, p := d
2θ , C3 := pcθ . One has

d
dt

ep(c+t)θ

(c + t)b
=

pθep(c+t)θ

(c + t)b+1−θ − bep(c+t)θ

(c + t)b+1

=
ep(c+t)θ

(c + t)b

(
d

2(c + t)b
− b

c + t

)

� ep(c+t)θ

(c + t)b

d
2(c + t)b

(
1 − 2b

cθd

)
.

Therefore,

d
2

(
1 − 2b

cθd

) ∫ t

0

ep(c+s)θ

(s + c)2b
ds �

∫ t

0

d
ds

ep(c+s)θ

(c + s)b
ds

� ep(c+t)θ

(c + t)b
− epcθ

cb
� ep(c+t)θ

(c + t)b
.

Multiplying this inequality by e−C3 and using (18), one obtains (17). Lemma 8 is
proved. �
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LEMMA 9. Let a(t) = d
(c+t)b and ϕ(t) :=

∫ t
0

a(s)
2 ds where d, c > 0 , b ∈ (0, 1

2 ]

and c1−bd � 6b . One has

e−ϕ(t)
∫ t

0
eϕ(s)|ȧ(s)|‖Vδ (s)‖ds � 1

2
a(t)‖Vδ (t)‖, t � 0. (19)

Proof. From Lemma 8, one has

1
2

(
1 − 2b

cθd

) ∫ t

0
eϕ(s) d2

(s + c)2b
ds < eϕ(t) d

(c + t)b
, ∀c, b � 0, θ = 1 − b > 0.

(20)
Since c1−bd � 6b or 6b

cθd
� 1 , one has

1 − 2b
cθd

� 4b
cθd

� 4b
(c + s)1−bd

, s � 0.

This implies

a2(s)
2

(
1 − 2b

cθd

)
=

d2

2(c + s)2b

(
1 − 2b

cθd2

)
� 4db

2(c + s)b+1
= 2|ȧ(s)|, s � 0.

(21)
Multiplying (20) by ‖Vδ(t)‖ , using inequality (21) and the fact that ‖Vδ(t)‖ is in-
creasing, one gets, for all t � 0 , the following inequalities:

eϕ(t)a(t)‖Vδ (t)‖ >

∫ t

0
eϕ(s)‖Vδ(t)‖a2(s)

2

(
1 − 2b

cθd

)
ds � 2

∫ t

0
eϕ(s)|ȧ(s)|‖Vδ (s)‖ds.

This implies inequality (19). Lemma 9 is proved. �
Let us recall the following lemma, which is basic in our proofs.
LEMMA 10. ([7], p. 97) Let α(t) , β(t) , γ (t) be continuous nonnegative functions

on [t0,∞) , t0 � 0 is a fixed number. If there exists a function

μ ∈ C1[t0,∞), μ > 0, lim
t→∞μ(t) = ∞,

such that

0 � α(t) � μ
2

[
γ − μ̇(t)

μ(t)

]
, μ̇ :=

dμ
dt

, (22)

β(t) � 1
2μ

[
γ − μ̇(t)

μ(t)

]
, (23)

μ(0)g(0) < 1, (24)
and g(t) � 0 satisfies the inequality

ġ(t) � −γ (t)g(t) + α(t)g2(t) + β(t), t � t0, (25)

then g(t) exists on [t0,∞) and

0 � g(t) <
1

μ(t)
→ 0, as t → ∞. (26)

If inequalities (22)–(24) hold on an interval [t0, T) , then g(t) exists on this interval
and inequality (26) holds on [t0, T) .
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LEMMA 11. Suppose M1 and c1 are positive constants and 0 �= y ∈ H . Then
there exist a number λ > 0 and a function a(t) ∈ C1[0,∞) , 0 < a(t) ↘ 0 , such that

|ȧ(t)| � a2(t)
2

,

and the following conditions hold

M1

‖y‖ � λ , (27)

0 � λ
2a(t)

[
a(t) − |ȧ(t)|

a(t)

]
, (28)

c1
|ȧ(t)|
a(t)

� a(t)
2λ

[
a(t) − |ȧ(t)|

a(t)

]
, (29)

λ
a(0)

g(0) < 1. (30)

Proof. Take

a(t) =
d

(c + t)b
, 0 < b � 1

2
, 2b � c1−bd, c � 1. (31)

Note that |ȧ| = −ȧ . We have

|ȧ|
a2

=
b

d(c + t)1−b
� b

dc1−b
� 1

2
.

Hence,
a(t)
2

� a(t) − |ȧ(t)|
a(t)

. (32)

Thus, inequality (28) is satisfied. Take

λ � M1

‖y‖ , (33)

then (27) is satisfied. For any given g(0) , choose a(0) sufficiently large so that

λ
a(0)

g(0) < 1.

Therefore, inequality (30) is satisfied.
Choose κ � 1 such that

κ > max

(
4λc1b

d2
, 1

)
. (34)

Define
ν(t) := κa(t), λκ := κλ . (35)
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Note that (28) holds for a(t) = ν(t), λ = λκ since (32) holds as well under this
transformation, i.e.,

ν(t)
2

� ν(t) − |ν̇(t)|
ν(t)

. (36)

Using the inequalities (34) and c � 1 and the definition (35), one obtains

4λκc1
|ν̇(t)|
ν3(t)

= 4λc1
b

κd2(c + t)1−2b
� 4λc1

b
κd2

� 1.

This implies

c1
|ν̇|
ν(t)

� ν2(t)
4λκ

� ν(t)
2λκ

[
ν − 2|ν̇|

ν

]
.

Thus, one can replace the function a(t) by ν(t) = κa(t) and λ by λκ = κλ in the
inequalities (27)–(30). �

LEMMA 12. Suppose M1 , c1 and α̃ are positive constants and 0 �= y ∈ H .
Then there exist a number λ > 0 and a sequence 0 < (an)∞n=0 ↘ 0 such that the
following conditions hold

an

an+1
� 2, (37)

‖f δ − F(0)‖ � a2
0

λ
, (38)

M1

λ
� ‖y‖, (39)

an

λ
− α̃a2

n

λ
+

an − an+1

an+1
c1 � an+1

λ
. (40)

Proof. Let us show that if a0 > 0 is sufficiently large, then the following sequence

an =
a0

(1 + n)b
, b =

1
2
, (41)

satisfies conditions (38)–(40) if

λ � M1

‖y‖ . (42)

Condition (37) is satisfied by the sequence (41). Inequality (39) is satisfied since (42)
holds. Choose a(0) so that

a0 �
√
‖f δ − F(0)‖λ , (43)

then (38) is satisfied.
Assume that (an)∞n=0 and λ satisfy (37), (38) and (39). Choose κ � 1 such that

κ � max

(
1

α̃a0

√
2
,
λc1

α̃a2
0

)
. (44)

It follows from (44) that

1

κa0

√
2

� α̃,
λc1

κa2
0

� α̃. (45)
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Define
(bn)∞n=0 := (κan)∞n=0, λκ := κλ . (46)

For all n � 0 one has

an − an+1

a2
n

=
a2

n − a2
n+1

a2
n(an + an+1)

� a2
n − a2

n+1

2an+1a2
n

=
a2

0
n+1 − a2

0
n+2

2 a0√
n+2

a2
0

n+1

=
1

a02
√

n + 2
� 1

a02
√

2
.

(47)
Since an is decreasing, one has

an − an+1

a2
nan+1

=
a2

n − a2
n+1

a2
nan+1(an + an+1)

� a2
n − a2

n+1

2a2
na

2
n+1

=
a2

0
n+1 − a2

0
n+2

2
a2

0
n+2

a2
0

n+1

� 1
2a2

0

, ∀n � 0.

(48)

Using inequalities (47) and (45), one gets

2(an − an+1)
κa2

n
� 1

κa0

√
2

� α̃. (49)

Similarly, using inequalities (48) and (45), one gets

2λ (an − an+1)c1

κa2
nan+1

� λc1

κa2
0

� α̃. (50)

Inequalities (49) and (50) imply

bn − bn+1

λκ
+

bn − bn+1

bn+1
c1 =

an − an+1

λ
+

an − an+1

an+1
c1

=
κa2

n

2λ
2(an − an+1)

κa2
n

+
κa2

n

2λ
2λ (an − an+1)c1

κa2
nan+1

� κa2
n

2λ
α̃ +

κa2
n

2λ
α̃ =

κa2
nα̃
λ

=
α̃b2

n

λκ
.

Thus, inequality (40) holds for an replaced by bn = κan and λ replaced by λκ = κλ ,
where κ satisfies (44). Inequalities (37)–(39) hold as well under this transformation.
Thus, the choices an = bn and λ := κ M1

‖y‖ , where κ satisfies (44), satisfy all the
conditions of Lemma 12. �

REMARK 13. The constant c1 , used in Lemmas 11 and 12,will be used in Theorems
17 and 19. This constant is defined in equation (62). The constant α̃ , used in Lemma12,
is the one from Theorem 19. This constant is defined in (89).

REMARK 14. Using similar arguments one can show that the sequence an =
d

(c+n)b , where c � 1 , 0 < b � 1
2 , satisfy all conditions of Lemma 4 provided that d is

sufficiently large and λ is chosen so that inequality (42) holds.
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REMARK 15. In the proof of Lemmas 11 and 12 the numbers a0 and λ can
be chosen so that a0

λ is uniformly bounded as δ → 0 regardless of the rate of growth
of the constant M1 = M1(R) from formula (3) when R → ∞ , i.e., regardless of the
strength of the nonlinearity F(u) .

To satisfy (42) one can choose λ = M1
1

‖y‖ . To satisfy (43) one can choose

a0 =
√
λ (‖f − F(0)‖ + ‖f ‖) �

√
λ‖f δ − F(0)‖,

where we have assumed without loss of generality that 0 < ‖f δ − f ‖ < ‖f ‖ . With
this choice of a0 and λ , the ratio a0

λ is bounded uniformly with respect to δ ∈ (0, 1)
and does not depend on R . The dependence of a0 on δ is seen from (43) since f δ
depends on δ . In practice one has ‖f δ − f ‖ < ‖f ‖ . Consequently,√

‖f δ − F(0)‖λ �
√

(‖f − F(0)‖ + ‖f ‖)λ .

Thus, we can practically choose a(0) independent of δ from the following inequality

a0 �
√
λ (‖f − F(0)‖ + ‖f ‖).

Indeed, with the above choice one has a0
λ � c(1 +

√
λ−1) � c , where c > 0 is a

constant independent of δ , and one can assume that λ � 1 without loss of generality.
This Remark is used in the proof of the main result in Section 3. Specifically, it

is used to prove that an iterative process (88) generates a sequence which stays in the
ball B(u0, R) for all n � n0 + 1 , where the number n0 is defined by formula (99) (see
below), and R > 0 is sufficiently large. An upper bound on R is given in the proof of
Theorem 19, below formula (112).

REMARK 16. One can choose u0 ∈ H such that

g0 := ‖u0 − V0‖ � ‖F(0) − f δ‖
a0

. (51)

Indeed, if, for example, u0 = 0 , then by Remark 6 one gets

g0 = ‖V0‖ =
a0‖V0‖

a0
� ‖F(0)− f δ‖

a0
.

If (38) and (51) hold then g0 � a0
λ .

3. Main results

3.1. Dynamical systems method

Assume:

0 < a(t) ↘ 0, lim
t→∞

ȧ(t)
a(t)

= 0,
|ȧ(t)|
a2(t)

� 1
2
. (52)

Let uδ(t) solve the following Cauchy problem:

u̇δ = −[F(uδ) + a(t)uδ − f δ ], uδ (0) = u0. (53)
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THEOREM 17. Assume that F : H → H is a monotone operator, condition
(3) holds, and u0 is an element of H , satisfying inequality (83) (see below). Let
a(t) satisfy conditions of Lemma 11. For example, one can choose a(t) = d

(c+t)b ,

where b ∈ (0, 1
2 ] , c � 1 and d > 0 are constants, and d is sufficiently large.

Assume that equation F(u) = f has a solution y ∈ B(u0, R) , possibly nonunique,
and y is the minimal-norm solution to this equation. Let f be unknown but f δ be
given, ‖f δ − f ‖ � δ . Then the solution uδ (t) to problem (53) exists on an interval
[0, Tδ ] , limδ→0 Tδ = ∞ , and there exists tδ , tδ ∈ (0, Tδ ) , not necessarily unique,
such that

‖F(uδ(tδ )) − f δ‖ = C1δζ , lim
δ→0

tδ = ∞, (54)

where C1 > 1 and 0 < ζ � 1 are constants. If ζ ∈ (0, 1) and tδ satisfies (54), then

lim
δ→0

‖uδ(tδ ) − y‖ = 0. (55)

REMARK 18. One can easily choose u0 satisfying inequality (83). Note that
inequality (83) is a sufficient condition for (86) to hold. In our proof inequality (86)
is used at t = tδ . The stopping time tδ is often sufficiently large for the quantity
e−ϕ(tδ )h0 to be small. In this case inequality (86) with t = tδ is satisfied for a wide
range of u0 .

Proof. [Proof of Theorem 17] Denote

C :=
C1 + 1

2
. (56)

Let
w := uδ − Vδ , g(t) := ‖w‖.

One has
ẇ = −V̇δ −

[
F(uδ ) − F(Vδ ) + a(t)w

]
. (57)

Multiplying (57) by w and using (2) one gets

gġ � −ag2 + ‖V̇δ‖g. (58)

Let t0 > 0 be such that

δ
a(t0)

=
1

C − 1
‖y‖, C > 1. (59)

This t0 exists and is unique since a(t) > 0 monotonically decays to 0 as t → ∞ . By
Lemma 4, there exists t1 such that

‖F(Vδ(t1)) − f δ‖ = Cδ, F(Vδ (t1)) + a(t1)Vδ (t1) − f δ = 0. (60)

We claim that t1 ∈ [0, t0] .
Indeed, from (7) and (16) one gets

Cδ = a(t1)‖Vδ (t1)‖ � a(t1)
(
‖y‖ +

δ
a(t1)

)
= a(t1)‖y‖ + δ, C > 1,
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so

δ � a(t1)‖y‖
C − 1

.

Thus,
δ

a(t1)
� ‖y‖

C − 1
=

δ
a(t0)

.

Since a(t) ↘ 0 , the above inequality implies t1 � t0 . Differentiating both sides of (7)
with respect to t , one obtains

Aa(t)V̇δ = −ȧVδ , A := F′(Vδ ), Aa := A + aI.

This implies

‖V̇δ‖ � |ȧ|‖A−1
a(t)Vδ‖ � |ȧ|

a
‖Vδ‖ � |ȧ|

a

(
‖y‖+

δ
a

)
� |ȧ|

a
‖y‖

(
1+

1
C − 1

)
, ∀t � t0.

(61)
Since g � 0 , inequalities (58) and (61) imply

ġ � −a(t)g(t) +
|ȧ(t)|
a(t)

c1, c1 = ‖y‖
(

1 +
1

C − 1

)
. (62)

Inequality (62) is of the type (25) with

γ (t) = a(t), α(t) = 0, β(t) = c1
|ȧ(t)|
a(t)

.

Let us check assumptions (22)–(24). Take

μ(t) =
λ

a(t)
, λ = const.

By Lemma 11 there exist λ and a(t) such that conditions (22)–(24) hold. Thus,
Lemma 10 yields

g(t) <
a(t)
λ

, ∀t � t0. (63)

Therefore,

‖F(uδ(t)) − f δ‖ �‖F(uδ (t)) − F(Vδ (t))‖ + ‖F(Vδ(t)) − f δ‖
�M1g(t) + ‖F(Vδ(t)) − f δ‖
�M1a(t)

λ
+ ‖F(Vδ(t)) − f δ‖, ∀t � t0.

(64)

It follows from Lemma 3 that ‖F(Vδ(t)) − f δ‖ is decreasing. Since t1 � t0 , one gets

‖F(Vδ (t0)) − f δ‖ � ‖F(Vδ(t1)) − f δ‖ = Cδ. (65)

This, inequality (64), the inequality M1
λ � ‖y‖ (see (33)), the relation (59), and the

definition C1 = 2C − 1 (see (56)) imply

‖F(uδ(t0)) − f δ‖ �M1a(t0)
λ

+ Cδ

�M1δ(C − 1)
λ‖y‖ + Cδ � (2C − 1)δ = C1δ.

(66)
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Thus, if
‖F(uδ(0)) − f δ‖ � C1δζ , 0 < ζ � 1,

then there exists tδ ∈ (0, t0) such that

‖F(uδ (tδ )) − f δ‖ = C1δζ (67)

for any given ζ ∈ (0, 1] , and any fixed C1 > 1 .
Let us prove (55). If this is done, then Theorem 17 is proved.
First, we prove that limδ→0

δ
a(tδ ) = 0.

From (64) with t = tδ , and from (16), one gets

C1δζ � M1
a(tδ )
λ

+ a(tδ )‖Vδ (tδ )‖

� M1
a(tδ )
λ

+ ‖y‖a(tδ) + δ.

Thus, for sufficiently small δ , one gets

C̃δζ � a(tδ )
(

M1

λ
+ ‖y‖

)
, C̃ > 0,

where C̃ < C1 is a constant. Therefore,

lim
δ→0

δ
a(tδ )

� lim
δ→0

δ 1−ζ

C̃

(
M1

λ
+ ‖y‖

)
= 0, 0 < ζ < 1. (68)

Secondly, we prove that
lim
δ→0

tδ = ∞. (69)

Using (53), one obtains:

d
dt

(
F(uδ) + auδ − f δ

)
= Aau̇δ + ȧuδ = −Aa

(
F(uδ ) + auδ − f δ

)
+ ȧuδ ,

where Aa := F′(uδ ) + a . This and (7) imply:

d
dt

[
F(uδ )−F(Vδ )+ a(uδ −Vδ )

]
= −Aa

[
F(uδ )−F(Vδ )+ a(uδ −Vδ )

]
+ ȧuδ . (70)

Denote
v := F(uδ ) − F(Vδ ) + a(uδ − Vδ ), h = ‖v‖.

Multiplying (70) by v and using monotonicity of F , one obtains

hḣ = −〈Aav, v〉 + 〈 v, ȧ(uδ − Vδ )〉 + ȧ〈 v, Vδ〉
� −h2a + h|ȧ|‖uδ − Vδ‖ + |ȧ|h‖Vδ‖, h � 0.

(71)

Again, we have used the inequality 〈F′(uδ )v, v〉 � 0 which follows from the mono-
tonicity of F . Thus,

ḣ � −ha + |ȧ|‖uδ − Vδ‖ + |ȧ|‖Vδ‖. (72)



A NEW VERSION OF THE DYNAMICAL SYSTEMS METHOD 15

Since 〈F(uδ ) − F(Vδ), uδ − Vδ 〉 � 0 , one obtains two inequalities

a‖uδ − Vδ‖2 � 〈 v, uδ − Vδ 〉 � ‖uδ − Vδ‖h, (73)

and
‖F(uδ) − F(Vδ )‖2 � 〈 v, F(uδ) − F(Vδ )〉 � h‖F(uδ) − F(Vδ )‖. (74)

Inequalities (73) and (74) imply:

a‖uδ − Vδ‖ � h, ‖F(uδ) − F(Vδ )‖ � h. (75)

Inequalities (72) and (75) imply

ḣ � −h

(
a − |ȧ|

a

)
+ |ȧ|‖Vδ‖. (76)

Since a − |ȧ|
a � a

2 by the last inequality in (52), it follows from inequality (76) that

ḣ � −a
2
h + |ȧ|‖Vδ‖. (77)

Inequality (77) implies:

h(t) � h(0)e−
∫ t

0

a(s)
2 ds + e−

∫ t

0

a(s)
2 ds

∫ t

0
e
∫ s

0

a(ξ )
2 dξ |ȧ(s)|‖Vδ (s)‖ds. (78)

Denote

ϕ(t) :=
∫ t

0

a(s)
2

ds.

From (78) and (75), one gets

‖F(uδ (t)) − F(Vδ(t))‖ � h(0)e−ϕ(t) + e−ϕ(t)
∫ t

0
eϕ(s)|ȧ(s)|‖Vδ (s)‖ds. (79)

Therefore,

‖F(uδ (t)) − f δ‖ � ‖F(Vδ (t)) − f δ‖ − ‖F(Vδ(t)) − F(uδ (t))‖

� a(t)‖Vδ (t)‖ − h(0)e−ϕ(t) − e−ϕ(t)
∫ t

0
eϕ(s)|ȧ|‖Vδ‖ds.

(80)

From Lemma 9 it follows that there exists an a(t) such that

1
2
a(t)‖Vδ (t)‖ � e−ϕ(t)

∫ t

0
eϕ(s)|ȧ|‖Vδ(s)‖ds. (81)

For example, one can choose

a(t) =
d

(c + t)b
, b ∈ (0,

1
2
], dc1−b � 6b, (82)

where d, c > 0 . Moreover, one can always choose u0 such that

h(0) = ‖F(u0) + a(0)u0 − f δ‖ � 1
4
a(0)‖Vδ(0)‖, (83)
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because the equation
F(u0) + a(0)u0 − f δ = 0

is solvable.
If (83) holds, then

h(0)e−ϕ(t) � 1
4
a(0)‖Vδ(0)‖e−ϕ(t), t � 0. (84)

If (82) holds, c � 1 and 2b � d , then it follows that

e−ϕ(t)a(0) � a(t). (85)

Indeed, inequality a(0) � a(t)eϕ(t) is obviously true for t = 0 , and
(
a(t)eϕ(t)

)′
t
� 0 ,

provided that c � 1 and 2b � d .
Inequalities (84) and (46) imply

e−ϕ(t)h(0) � 1
4
a(t)‖Vδ (0)‖ � 1

4
a(t)‖Vδ (t)‖, t � 0. (86)

where we have used the inequality ‖Vδ(t)‖ � ‖Vδ(t′)‖ for t � t′ , established in
Lemma 3. From (67) and (80)–(86), one gets

Cδζ = ‖F(uδ(tδ )) − f δ‖ � 1
4
a(tδ )‖Vδ (tδ )‖.

Thus,
lim
δ→0

a(tδ )‖Vδ (tδ )‖ � lim
δ→0

4Cδζ = 0.

Since ‖Vδ (t)‖ is increasing, this implies limδ→0 a(tδ ) = 0 . Since 0 < a(t) ↘ 0 , it
follows that (69) holds.

From the triangle inequality, inequalities (63) and (14), one obtains

‖uδ(tδ ) − y‖ � ‖uδ(tδ ) − Vδ‖ + ‖V(tδ ) − Vδ (tδ )‖ + ‖V(tδ ) − y‖
� a(tδ )

λ
+

δ
a(tδ )

+ ‖V(tδ ) − y‖. (87)

From (68), (69), inequality (87) and Lemma 1, one obtains (55). Theorem17 is proved.
�

3.2. An iterative scheme

Let Vn,δ solve the equation:

F(Vn,δ ) + anVn,δ − f δ = 0.

Denote Vn := Vn,δ .
Consider the following iterative scheme:

un+1 = un − αn[F(un) + anun − f δ ], u0 = u0, (88)
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where u0 is chosen so that inequality (51) holds, and {αn}∞n=1 is a positive sequence
such that

0 < α̃ � αn � 2
an + (M1 + an)

, M1 = sup
u∈B(u0,R)

‖F′(u)‖. (89)

It follows from this condition that

‖1 − αn(Jn + an)‖ = sup
an�λ�M1+an

|1 − αnλ | � 1 − αnan. (90)

Here, Jn is an operator in H such that Jn � 0 and ‖Jn‖ � M1, ∀u ∈ B(u0, R) . A
specific choice of Jn is made in formula (96) below.

Let an and λ satisfy conditions (37)–(40). Assume that equation F(u) = f has
a solution y ∈ B(u0, R) , possibly nonunique, and y is the minimal-norm solution to
this equation. Let f be unknown but f δ be given, and ‖f δ − f ‖ � δ . We prove the
following result:

THEOREM 19. Assume an = d
(c+n)b where c � 1, 0 < b � 1

2 , and d is

sufficiently large so that conditions (37)–(40) hold. Let un be defined by (88). Assume
that u0 is chosen so that (51) holds. Then there exists a unique nδ such that

‖F(unδ ) − f δ‖ � C1δζ , C1δζ < ‖F(un) − f δ‖, ∀n < nδ , (91)

where C1 > 1, 0 < ζ � 1 .
Let 0 < (δm)∞m=1 be a sequence such that δm → 0 . If the sequence {nm :=

nδm}∞m=1 is bounded, and {nmj}∞j=1 is a convergent subsequence, then

lim
j→∞

unmj
= ũ, (92)

where ũ is a solution to the equation F(u) = f . If

lim
m→∞ nm = ∞, (93)

where ζ ∈ (0, 1) , then
lim

m→∞ ‖unm − y‖ = 0. (94)

Proof. Denote

C :=
C1 + 1

2
. (95)

Let
zn := un − Vn, gn := ‖zn‖.

One has

F(un) − F(Vn) = Jnzn, Jn =
∫ 1

0
F′(u0 + ξzn)dξ . (96)

Since F′(u) � 0, ∀u ∈ H and ‖F′(u)‖ � M1, ∀u ∈ B(u0, R) , it follows that Jn � 0
and ‖Jn‖ � M1 . From (88) and (96) one obtains

zn+1 = zn − αn[F(un) − F(Vn) + anzn] − (Vn+1 − Vn)
= (1 − αn(Jn + an))zn − (Vn+1 − Vn).

(97)
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From (97) and (90), one gets

gn+1 � gn‖1 − αn(Jn + an)‖ + ‖Vn+1 − Vn‖
� gn(1 − αnan) + ‖Vn+1 − Vn‖.

(98)

Since 0 < an ↘ 0 , for any fixed δ > 0 there exists n0 such that

δ
an0+1

>
1

C − 1
‖y‖ � δ

an0

, C > 1. (99)

By (37), one has an
an+1

� 2, ∀ n � 0 . This and (99) imply

2
C − 1

‖y‖ � 2δ
an0

>
δ

an0+1
>

1
C − 1

‖y‖ � δ
an0

, C > 1. (100)

Thus,
2

C − 1
‖y‖ >

δ
an

, ∀n � n0 + 1. (101)

The number n0 , satisfying (101), exists and is unique since an > 0 monotonically
decays to 0 as n → ∞ . By Remark 5, there exists a number n1 such that

‖F(Vn1+1) − f δ‖ � Cδ < ‖F(Vn1) − f δ‖, (102)

where Vn solves the equation F(Vn) + anVn − f δ = 0 .
We claim that n1 ∈ [0, n0] .
Indeed, one has ‖F(Vn1)− f δ‖ = an1‖Vn1‖ , and ‖Vn1‖ � ‖y‖+ δ

an1
(cf. (16)), so

Cδ < an1‖Vn1‖ � an1

(
‖y‖ +

δ
an1

)
= an1‖y‖ + δ, C > 1. (103)

Therefore,

δ <
an1‖y‖
C − 1

. (104)

Thus, by (100),
δ
an1

<
‖y‖

C − 1
<

δ
an0+1

. (105)

Here the last inequality is a consequence of (100). Since an decreases monotonically,
inequality (105) implies n1 � n0 . One has

an+1‖Vn − Vn+1‖2 = 〈 (an+1 − an)Vn − F(Vn) + F(Vn+1), Vn − Vn+1〉
� 〈 (an+1 − an)Vn, Vn − Vn+1〉
� (an − an+1)‖Vn‖‖Vn − Vn+1‖.

(106)

By (16), ‖Vn‖ � ‖y‖ + δ
an

, and, by (101), δ
an

� 2‖y‖
C−1 for all n � n0 + 1 . Therefore,

‖Vn‖ � ‖y‖
(

1 +
2

C − 1

)
, ∀n � n0 + 1, (107)
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and, by (106),

‖Vn−Vn+1‖ � an − an+1

an+1
‖Vn‖ � an − an+1

an+1
‖y‖

(
1+

2
C − 1

)
, ∀n � n0+1. (108)

Inequalities (98) and (108) imply

gn+1 � (1 − αnan)gn +
an − an+1

an+1
c1, ∀ n � n0 + 1, (109)

where the constant c1 is defined in (62).
By Lemma4 andRemark 14, the sequence (an)∞n=1 , satisfies conditions (37)–(40),

provided that a0 is sufficiently large and λ > 0 is chosen so that (42) holds. Let us
show by induction that

gn <
an

λ
, 0 � n � n0 + 1. (110)

Inequality (110) holds for n = 0 by Remark 16. Suppose (110) holds for some n � 0 .
From (109), (110) and (40), one gets

gn+1 � (1 − αnan)
an

λ
+

an − an+1

an+1
c1

= −αna2
n

λ
+

an

λ
+

an − an+1

an+1
c1

� an+1

λ
.

(111)

Thus, by induction, inequality (110) holds for all n in the region 0 � n � n0 + 1 .
From (16) one has ‖Vn‖ � ‖y‖ + δ

an
. This and the triangle inequality imply

‖u0 − un‖ � ‖u0‖ + ‖zn‖ + ‖Vn‖ � ‖u0‖ + ‖zn‖ + ‖y‖ +
δ
an

. (112)

Inequalities (107), (110), and (112) guarantee that the sequence un , generated by
the iterative process (88), remains in the ball B(u0, R) for all n � n0 + 1 , where
R � a0

λ + ‖u0‖ + ‖y‖ + δ
an

. This inequality and the estimate (101) imply that the
sequence un , n � n0 + 1, stays in the ball B(u0, R) , where

R � a0

λ
+ ‖u0‖ + ‖y‖ + ‖y‖C + 1

C − 1
. (113)

By Remark 15, one can choose a0 and λ so that a0
λ is uniformly bounded as δ → 0

even if M1(R) → ∞ as R → ∞ at an arbitrary fast rate. Thus, the sequence un stays
in the ball B(u0, R) for n � n0 + 1 when δ → 0 . An upper bound on R is given
above. It does not depend on δ as δ → 0 .

One has:

‖F(un) − f δ‖ �‖F(un) − F(Vn)‖ + ‖F(Vn) − f δ‖
�M1gn + ‖F(Vn) − f δ‖
�M1an

λ
+ ‖F(Vn) − f δ‖, ∀n � n0 + 1,

(114)
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where (110) was used and M1 is the constant from (3). Since ‖F(Vn) − f δ‖ is
decreasing, by Lemma 3, and n1 � n0 , one gets

‖F(Vn0+1) − f δ‖ � ‖F(Vn1+1) − f δ‖ � Cδ. (115)

From (39), (114), (115), the relation (99), and the definition C1 = 2C − 1 (see (95)),
one concludes that

‖F(un0+1) − f δ‖ �M1an0+1

λ
+ Cδ

�M1δ(C − 1)
λ‖y‖ + Cδ � (2C − 1)δ = C1δ.

(116)

Thus, if
‖F(u0) − f δ‖ > C1δζ , 0 < ζ � 1,

then one concludes from (116) that there exists nδ , 0 < nδ � n0 + 1, such that

‖F(unδ ) − f δ‖ � C1δζ < ‖F(un) − f δ‖, 0 � n < nδ , (117)

for any given ζ ∈ (0, 1] , and any fixed C1 > 1 .
Let us prove (92).
If n > 0 is fixed, then uδ,n is a continuous function of f δ . Denote

ũ := ũN = lim
δ→0

uδ,nmj
, (118)

where
lim

j→∞
nmj = N.

From (118) and the continuity of F , one obtains:

‖F(ũ) − f δ‖ = lim
j→∞

‖F(unmj
) − f δ‖ � lim

δ→0
C1δζ = 0.

Thus, ũ is a solution to the equation F(u) = f , and (92) is proved.
Let us prove (94) assuming that (93) holds.
From (91) and (114) with n = nδ − 1 , and from (117), one gets

C1δζ � M1
anδ−1

λ
+ anδ−1‖Vnδ−1‖ � M1

anδ−1

λ
+ ‖y‖anδ−1 + δ.

If δ > 0 is sufficiently small, then the above equation implies

C̃δζ � anδ−1

(
M1

λ
+ ‖y‖

)
, C̃ > 0,

where C̃ < C1 is a constant. Therefore, by (37),

lim
δ→0

δ
2anδ

� lim
δ→0

δ
anδ−1

� lim
δ→0

δ 1−ζ

C̃

(
M1

λ
+ ‖y‖

)
= 0, 0 < ζ < 1. (119)
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In particular, for δ = δm , one gets

lim
δm→0

δm

anm

= 0. (120)

From the triangle inequality and inequalities (14) and (110) one obtains

‖unm − y‖ � ‖unm − Vnm‖ + ‖Vn − Vnm,0‖ + ‖Vnm,0 − y‖
� anm

λ
+

δm

anm

+ ‖Vnm,0 − y‖. (121)

From (93), (120), inequality (121) and Lemma 1, one obtains (94). Theorem 19 is
proved. �

4. Numerical experiments

Let us do a numerical experiment solving nonlinear equation (1) with

F(u) := B(u) +
u3

6
:=

∫ 1

0
e−|x−y|u(y)dy +

u3

6
, f (x) :=

13
6

− e−x − ex

e
. (122)

One can check that u(x) ≡ 1 solves the equation F(u) = f . The operator B is compact
in H = L2[0, 1] . The operator u �−→ u3 is defined on a dense subset D of of L2[0, 1] ,
for example, on D := C[0, 1] . If u, v ∈ D , then

〈 u3 − v3, u − v〉 =
∫ 1

0
(u3 − v3)(u − v)dx � 0.

Moreover,

e−|x| =
1
π

∫ ∞

−∞

eiλx

1 + λ 2
dλ .

Therefore, 〈B(u − v), u − v〉 � 0 , so

〈F(u − v), u − v〉 � 0, ∀u, v ∈ D.

Note that D does not contain subsets, open in H = L2[0, 1] , i.e., it does not
contain interior points of H . This is a reflection of the fact that the operator G(u) = u3

6
is unbounded on any open subset of H . For example, in any ball ‖u‖ � C , C =
const > 0 , where ‖u‖ := ‖u‖L2[0,1] , there is an element u such that ‖u3‖ = ∞ . As
such an element one can take, for example, u(x) = c1x−b , 1

3 < b < 1
2 . here c1 > 0

is a constant chosen so that ‖u‖ � C . The operator u �−→ F(u) = G(u) + B(u) is
maximal monotone on DF := {u : u ∈ H, F(u) ∈ H} (see [2, p.102]), so that equation
(7) is uniquely solvable for any f δ ∈ H .

The Fréchet derivative of F is:

F′(u)h =
u2h
2

+
∫ 1

0
e−|x−y|h(y)dy. (123)



22 N. S. HOANG AND A. G. RAMM

If u(x) vanishes on a set of positive Lebesgue’s measure, then F′(u) is obviously not
boundedly invertible. If u ∈ C[0, 1] vanishes even at one point x0 , then F′(u) is not
boundedly invertible in H .

Let us use the iterative process (88):

un+1 = un − αn(F(un) + anun − f δ ),
u0 = 0.

(124)

We stop iterations at n := nδ such that the following inequality holds

‖F(unδ ) − f δ‖ < Cδζ , ‖F(un) − f δ‖ � Cδζ , n < nδ , C > 1, ζ ∈ (0, 1).
(125)

Integrals of the form
∫ 1

0 e−|x−y|h(y)dy in (122) and (123) are computed by using the
trapezoidal rule. The noisy function used in the test is

f δ (x) = f (x) + κ f noise(x), κ > 0.

The noise level δ and the relative noise level are determined by

δ = κ‖f noise‖, δrel :=
δ
‖f ‖ .

In the test, κ is computed in such a way that the relative noise level δrel equals to some
desired value, i.e.,

κ =
δ

‖f noise‖ =
δrel‖f ‖
‖f noise‖ .

We have used the relative noise level as an input parameter in the test.
The version of DSM, developed in this paper and denoted by DSMS, is compared

with the version of DSM in [3], denoted by DSMN. Indeed, the DSMN is the following
iterative scheme

un+1 = un − A−1
n (F′(un) + anun − f δ ), u0 = u0, n � 0, (126)

where an = a0
1+n . This iterative scheme is used with a stopping time nδ defined by

(91). The existence of this stopping time and the convergence of the method is proved
in [3].

As we have proved, the DSMS converges when an = a0

(1+n)b , b ∈ (0, 1
2 ], and a0

is sufficiently large. However, in practice, if we choose a0 too large then the method
will use too many iterations before reaching the stopping time nδ in (125). This means
that the computation time is large. Since

‖F(Vδ) − f δ‖ = a(t)‖Vδ‖,
and ‖Vδ(tδ ) − uδ (tδ )‖ = O(a(tδ )) , we have

Cδζ = ‖F(uδ(tδ )) − f δ‖ ∼ a(tδ ).

Thus, we choose
a0 = C0δζ , C0 > 0.
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The parameter a0 used in the DSMN is also chosen by this formula.
In all figures, the x -axis represents the variable x . In all figures, by DSMS we

denote the numerical solutions obtained by the DSMS, by DSMN we denote solutions
by the DSMN and by exact we denote the exact solution.

In experiments, we found that the DSMS works well with a0 = C0δζ , C0 ∈
[0.5, 2] . Indeed, in the test the DSMS is implemented with an := C0

δ 0.99

(n+1)0.5 , C0 = 1

while the DSMN is implemented with an := C0
δ 0.99

(n+1) , C0 = 1 . For C0 > 3 the
convergence rate of DSMS is much slower while the DSMN still works well if C0 ∈
[1, 4] . In all experiments, the noise function f noise is a vector with random entries
normally distributed of mean 0 and variant 1.

Figure 1 plots the solutions using relative noise levels δ = 0.01 and δ = 0.001 .
The exact solution used in these experiments is u = 1 . In the test the DSMS is
implemented with αn = 1 , C = 1.01 , ζ = 0.99 and αn = 1, ∀n � 0 . The number
of iterations of the DSMS for δ = 0.01 and δ = 0.001 were 98 and 99 while the
number of iteration for the DSMN are 10 and 10, respectively. The CPU time for the
DSMS are 0.0139 and 0.0147 second while the CPU time for the DSMN are 0.0153 and
0.0169 corresponding to δrel = 0.01 and δrel = 0.001 . The number of node points
used in computing integrals in (122) and (123) was N = 100 . Figure 1 shows that the
solutions by the DSMN and DSMS are nearly the same in this figure.
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Figure 1. Plots of solutions obtained by the DSMN and DSMS
when N = 100 , u = 1 , x ∈ [0, 1] , δrel = 0.01 (left)

and N = 100 , u = 1 , x ∈ [0, 1] , δrel = 0.001 (right).

Figure 2 presents the numerical results when N = 100 with δ = 0.01 u(x) =
sin(2πx) , x ∈ [0, 1] (left) and with δ = 0.001 , u(x) = sin(πx) , x ∈ [0, 1] (right).
In these cases, the DSMN took 10 and 12 iterations to give the numerical solutions
while the DSMS took 56 and 67 iterations for δ = 0.01 and δ = 0.001 , respectively.
The computation time for the DSMS are 0.0102 and 0.0132 second while those for the
DSMN are 0.0169 and 0.0186 second for δ = 0.01 and δ = 0.001 , respectively. For
larger number of node points experiments show that the DSMS is much faster than the
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DSMN. Figure 2 show that the numerical results of the DSMS are better than those of
the DSMN.
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Figure 2. Plots of solutions obtained by the DSMN and DSMS
when N = 100 , u(x) = sin(2πx) , x ∈ [0, 1] , δrel = 0.01 (left)
and N = 100 , u(x) = sin(πx) , x ∈ [0, 1] , δrel = 0.001 (right).

In our experiments, the DSMS requires about the same or less time of computation
than the DSMN. For larger number of node points, we found out that the DSMS runs
faster than the DSMN. Moreover, the DSMS yields numerical results with the same
accuracy as the DSMN does.

All the computations were carried out using MATLAB in double-precision arith-
metic on a PC computer with an Intel Centrino Duo CPU of 1.62 GHz and 3 GB
RAM.

5. Concluding remarks

Numerical experiments agree with the theory that the convergence rate of the
DSMS is slower than that of the DSMN. It is because the rate of decay of the sequence
{ 1

(1+n)
1
2
}∞n=1 is much slower than that of the sequence { 1

1+n}∞n=1 . However, since the

cost for one iteration of the DSMS is O(N2) , which is much smaller than that of DSMN
(the cost of one iteration of the DSMN is O(N3) ), the DSMS required less time to yield
a numerical result than the DSMN. Here N is the number of the nodal points. Thus,
for large scale problems, the DSMS is an alternative to the DSMN. Also, as is shown in
Figure 2, the DSMS may yield more accurate solutions.

Experiments show that theDSMN still workswith an = a0

(1+n)b for 1
2 � b � 1 . So,

in practice one may use faster decaying sequence an to reduce the time of computation.
From the numerical results we conclude that the proposed DSM with the dis-

crepancy type stopping rule could be a good alternative for the DSMN for large scale
problems.
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REMARK. After the completion of this work, we saw the paper [1] in which an
iterative process for solving equation (1) with monotone operator is proposed. In [1]
some unnatural assumptions are made. For example, assumption (2.4) in [1] implies
that the growth of the nonlinearity is not faster than linear, assumption (2.5) is not
verifiable practically, in Theorem 2.1 the existence of N(δ) is not proved, so the result
is actually not proved. A “generalized discrepancy principle” (2.8) in [1] is therefore
not justified.
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