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ON FREDHOLM TYPE INTEGRAL EQUATION IN TWO VARIABLES

B. G. PACHPATTE

(communicated by M. Kirane)

Abstract. The aim of this paper is to study some basic properties of solutions of a certain Fred-
holm type integral equation in two variables. The tools employed in the analysis are based on
the applications of the Banach fixed point theorem and the new integral inequality with explicit
estimate.

1. Introduction

In [1], Bica, Cǎuş and Mureşan iniciated the study of Fredholm integral equation
of the form

x(t) = f (t)+
a∫

0

g(t,s,x(s),x′(s))ds, (1.1)

in Banach space setting. Motivated by the results in [1], recently in [7,8], Pachpatte
studied the qualitative behavior of solutions of equation (1.1) and its further general-
ization. Inspired by the results in [1,7,8], in this paper we consider the Fredholm type
integral equation of the form

u(x,y) = f (x,y)+
a∫

0

b∫
0

g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))dtds, (1.2)

where f ,g are given functions and u is the unknown function to be found.
Let R+ = [0,∞) , Ia = [0,a] , Ib = [0,b] (a > 0,b > 0) be the given subsets of R ,

the set of real numbers, Δ = Ia × Ib and C(A,B) denote the class of continuous func-
tions from the set A to the set B . The partial derivatives of a function z(x,y) (x,y ∈ R)
with respect to x and y are denoted by D1z(x,y) = ∂

∂x z(x,y),D2z(x,y) = ∂
∂y z(x,y).

Throughout, we assume that f ∈C(Δ,R) , g∈C(Δ2 ×R3,R) and Di f ∈C(Δ,R) , Dig∈
C(Δ2×R3,R) for i = 1,2. In fact, the study of qualitative properties of solutions of
equation (1.2) is challenging and requires new ideas in handling the equations of the
form (1.2). The main objective of the present paper is to study some fundamental qual-
itative properties of solutions of equation (1.2) under some suitable conditions on the
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functions involved therein. The tools employed in the analysis are based on the appli-
cations of the Banach fixed point theorem (see [4, p. 37]) coupled with Bielecki type
norm (see [2]) and a suitable version of the integral inequality established by Pachpatte
(see [5, p.111]). Here, our approach is elementary and provide some useful basic results
which may be considered as a foundation for future advanced studies in the field.

2. Existence and uniqueness

By a solution of equation (1.2) we mean a continuous function u : Δ→ R which
is continuously differentiable with respect to x and y for (x,y) ∈ Δ and satisfies the
equation (1.2). Differentiating both sides of (1.2) partially with respect to x and y , it
is easy to observe that the solution u(x,y) of equation (1.2) for i = 1,2 satisfies the
following integral equations

Diu(x,y) = Di f (x,y)+
a∫

0

b∫
0

Dig(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))dtds, (2.1)

for (x,y) ∈ Δ (see [3, p. 318]). For z , D1z , D2z ∈ C(Δ,R) we denote by |z(x,y)|1 =
|z(x,y)|+ |D1z(x,y)|+ |D2z(x,y)|. Let E be the space of functions z , D1z , D2z ∈
C(Δ,R) which fulfill the condition

|z(x,y)|1 = O(exp(λ (x+ y))), (2.2)

for (x,y) ∈ Δ , where λ is a positive constant. In the space E we define the norm (see
[2,6])

|z|E = sup
(x,y)∈Δ

{|z(x,y)|1 exp(−λ (x+ y))}. (2.3)

It is easy to see that E with the norm defined in (2.3) is a Banach space. We note
that the condition (2.2) implies that there is a constant M � 0 such that |z(x,y)|1 �
M exp(λ (x+ y)). Using this fact in (2.3) we observe that

|z|E � M. (2.4)

We need the following special version of the integral inequality established by
Pachpatte (see [5, p. 111]). We shall state it in the following lemma for completeness.

LEMMA. Let z, p , q , r ∈C(Δ,R+) . Suppose that

z(x,y) � p(x,y)+q(x,y)
a∫

0

b∫
0

r(s,t)z(s,t)dtds, (2.5)

for (x,y) ∈ Δ. If

d =
a∫

0

b∫
0

r(s,t)q(s,t)dtds < 1, (2.6)
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then

z(x,y) � p(x,y)+q(x,y)

⎧⎨
⎩

1
1−d

a∫
0

b∫
0

r(s,t)p(s,t)dtds

⎫⎬
⎭ , (2.7)

for (x,y) ∈ Δ.

Our main result in this section is given in the following theorem.

THEOREM 1. Suppose that
(i) the function g in equation (1.2) and its derivatives Dig for i = 1,2 satisfy the

conditions
|g(x,y,s,t,u,v,w)−g(x,y,s,t, u, v ,w)|

� r(x,y,s,t)[|u− u|+ |v− v|+ |w−w|], (2.8)

and
|Dig(x,y,s,t,u,v,w)−Dig(x,y,s,t, u, v ,w)|

� ri(x,y,s,t)[|u− u|+ |v− v|+ |w−w|], (2.9)

(ii) for λ as in (2.2),
(a1) there exists a nonnegative constant α such that α < 1 and

a∫
0

b∫
0

[r(x,y,s,t)+ r1(x,y,s,t)+ r2(x,y,s,t)]exp(λ (s+ t))dtds

� α exp(λ (x+ y)), (2.10)

for (x,y) ∈ Δ ,
(a2) there exists a nonnegative constant β such that

| f (x,y)|1 +
a∫

0

b∫
0

|g(x,y,s,t,0,0,0)|1dtds � β exp(λ (x+ y)), (2.11)

for (x,y) ∈ Δ.
Then the equation (1.2) has a unique solution u(x,y) on Δ in E .

Proof. Let u(x,y) ∈ E and define the operator T by

(Tu)(x,y) = f (x,y)+
a∫

0

b∫
0

g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))dtds. (2.12)

Differentiating both sides of (2.12) partially with respect to x and y we have

Di(Tu)(x,y) = Di f (x,y)+
a∫

0

b∫
0

Dig(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))dtds, (2.13)
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for i = 1,2. Now, we show that Tu maps E into itself. Evidently, for i = 1,2 Tu,Di(Tu)
are continuous on Δ and Tu,Di(Tu) ∈ R. We verify that (2.2) is fulfilled. From (2.12),
(2.13), (2.4) and using the hypotheses, we have

|(Tu)(x,y)|1 � | f (x,y)|1 +
a∫

0

b∫
0

|g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))

−g(x,y,s, t,0,0,0)|dtds

+
a∫

0

b∫
0

|g(x,y,s,t,0,0,0)|dtds

+
a∫

0

b∫
0

|D1g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))

−D1g(x,y,s,t,0,0,0)|dtds

+
a∫

0

b∫
0

|D1g(x,y,s,t,0,0,0)|dtds

+
a∫

0

b∫
0

|D2g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))

−D2g(x,y,s,t,0,0,0)|dtds

+
a∫

0

b∫
0

|D2g(x,y,s,t,0,0,0)|dtds

� | f (x,y)|1 +
a∫

0

b∫
0

|g(x,y,s,t,0,0,0)|1dtds+
a∫

0

b∫
0

r(x,y,s,t)|u(s,t)|1dtds

+
a∫

0

b∫
0

r1(x,y,s,t)|u(s,t)|1dtds+
a∫

0

b∫
0

r2(x,y,s,t)|u(s,t)|1dtds

� β exp(λ (x+ y))+ |u|E
a∫

0

b∫
0

[r(x,y,s,t)

+r1(x,y,s,t)+ r2(x,y,s,t)]exp(λ (s+ t))dtds

� [β +Mα]exp(λ (x+ y)). (2.14)

From (2.14), it follows that Tu∈ E. This proves that the operator T maps E into itself.
Next, we verify that the operator T is a contraction map. Let u(x,y),v(x,y) ∈ E .

From (2.12), (2.13) and using the hypotheses, we have
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|(Tu)(x,y)− (Tv)(x,y)|1

�
a∫

0

b∫
0

|g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))

−g(x,y,s,t,v(s,t),D1v(s,t),D2v(s,t))|dtds

+
a∫

0

b∫
0

|D1g(x,y,s,t,u(s,t),D1u(s,t),D2u(s, t))

−D1g(x,y,s,t,v(s,t),D1v(s, t),D2v(s,t))|dtds

+
a∫

0

b∫
0

|D2g(x,y,s,t,u(s,t),D1u(s,t),D2u(s, t))

−D2g(x,y,s,t,v(s,t),D1v(s, t),D2v(s,t))|dtds

�
a∫

0

b∫
0

r(x,y,s,t)|u(s,t)− v(s,t)|1dtds+
a∫

0

b∫
0

r1(x,y,s,t)|u(s,t)− v(s, t)|1dtds

+
a∫

0

b∫
0

r2(x,y,s,t)|u(s,t)− v(s,t)|1dtds

� |u− v|E
a∫

0

b∫
0

[r(x,y,s,t)

+r1(x,y,s,t)+ r2(x,y,s,t)]exp(λ (s+ t))dtds

� |u− v|Eα exp(λ (x+ y)). (2.15)

From (2.15), we obtain
|Tu−Tv|E � α|u− v|E .

Since α < 1, it follows from Banach fixed point theorem (see [4, p.37]) that T has a
unique fixed point in E . The fixed point of T is however a solution of equation (1.2).
The proof is complete.

REMARK 1. We note that the norm |.|E defined by (2.3) is a variant of Bielecki’s
norm [2], first used in 1956 for proving global existence and uniqueness of solutions of
ordinary differential equations.

The next result deals with the uniqueness of solutions of equation (1.2) in R with-
out existence part.

THEOREM 2. Suppose that the function g in equation (1.2) and its derivatives
Dig for i = 1,2 satisfy the conditions (2.8) and (2.9) with r(x,y,s,t) = c(x,y)h(s,t),
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ri(x,y,s, t) = c(x,y)hi(s,t) for i = 1,2 , where c,h,hi ∈C(Δ,R+) and

d1 =
a∫

0

b∫
0

[h(s,t)+h1(s,t)+h2(s,t)]c(s, t)dtds < 1. (2.16)

Then the equation (1.2) has at most one solution in R on Δ .

Proof. Let u(x,y) and v(x,y) be two solutions of equation (1.2). Then from the
hypotheses, we have

|u(x,y)− v(x,y)|1 �
a∫

0

b∫
0

|g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))

−g(x,y,s,t,v(s,t),D1v(s,t),D2v(s,t))|dtds

+
a∫

0

b∫
0

|D1g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))

−D1g(x,y,s,t,v(s,t),D1v(s,t),D2v(s,t))|dtds

+
a∫

0

b∫
0

|D2g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))

−D2g(x,y,s,t,v(s,t),D1v(s,t),D2v(s,t))|dtds

�
a∫

0

b∫
0

c(x,y)h(s,t)|u(s,t)− v(s,t)|1dtds+
a∫

0

b∫
0

c(x,y)h1(s,t)|u(s,t)− v(s,t)|1dtds

+
a∫

0

b∫
0

c(x,y)h2(s,t)|u(s,t)− v(s,t)|1dtds

= c(x,y)
a∫

0

b∫
0

[h(s,t)+h1(s,t)+h2(s,t)]|u(s,t)− v(s,t)|1dtds. (2.17)

Now, an application of Lemma (when p(x,y) = 0) to (2.17) yields |u(x,y)− v(x,y)|1 �
0, and hence u(x,y) = v(x,y) , which proves the uniqueness of solutions of equation
(1.2) on Δ .

3. Estimates on the solutions

In this section, we obtain estimates on the solutions of equation (1.2) under some
suitable conditions on the functions involved therein.

The following theorem concerning the estimate on the solution of equation (1.2)
holds.
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THEOREM 3. Suppose that the function g in equation (1.2) and its derivatives
Dig for i = 1,2 satisfy the conditions

|g(x,y,s,t,u,v,w)| � k(x,y)e(s,t)[|u|+ |v|+ |w|], (3.1)

and
|Dig(x,y,s,t,u,v,w)| � k(x,y)ei(s,t)[|u|+ |v|+ |w|], (3.2)

where k,e,ei ∈C(Δ,R+) and

d2 =
a∫

0

b∫
0

[e(s,t)+ e1(s,t)+ e2(s,t)]k(s,t)dtds < 1. (3.3)

Then for every solution u ∈C(Δ,R) of equation (1.2), we have the estimate

|u(x,y)|1 � | f (x,y)|1 + k(x,y)

×
⎧⎨
⎩

1
1−d2

a∫
0

b∫
0

[e(s,t)+ e1(s,t)+ e2(s,t)]| f (s,t)|1dtds

⎫⎬
⎭ , (3.4)

for (x,y) ∈ Δ.

Proof. Let u ∈C(Δ,R) be a solution of equation (1.2). Then from the hypotheses,
we have

|u(x,y)|1 � | f (x,y)|+
a∫

0

b∫
0

|g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))|dtds

+ |D1 f (x,y)|+
a∫

0

b∫
0

|D1g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))|dtds

+ |D2 f (x,y)|+
a∫

0

b∫
0

|D2g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))|dtds

� | f (x,y)|1 +
a∫

0

b∫
0

k(x,y)e(s,t)|u(s,t)|1dtds

+
a∫

0

b∫
0

k(x,y)e1(s,t)|u(s,t)|1dtds+
a∫

0

b∫
0

k(x,y)e2(s, t)|u(s, t)|1dtds

= | f (x,y)|1 + k(x,y)
a∫

0

b∫
0

[e(s,t)+ e1(s,t)+ e2(s,t)]|u(s,t)|1dtds. (3.5)

Now, an application of Lemma to (3.5) gives the desired estimate in (3.4).
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REMARK 2. We note that the estimate obtained in (3.4) yields not only the bound
on the solution u of equation (1.2), but also the bound on their derivatives Diu for
i = 1,2.

Next, we shall obtain the estimate on the solution of equation (1.2) assuming that
the function g and its derivatives Dig for i = 1,2 satisfy Lipschitz type conditions.

THEOREM 4. Suppose that the function g in equation (1.2) and its derivatives
Dig for i = 1,2 satisfy the conditions in Theorem 2 and the condition (2.16) holds. If
u ∈C(Δ,R) is any solution of equation (1.2) on Δ , then

|u(x,y)− f (x,y)|1 � Q(x,y)+ c(x,y)

×
⎧⎨
⎩

1
1−d1

a∫
0

b∫
0

[h(s,t)+h1(s,t)+h2(s,t)]Q(s,t)dtds

⎫⎬
⎭ , (3.6)

for (x,y) ∈ Δ , where

Q(x,y) =
a∫

0

b∫
0

|g(x,y,σ ,τ, f (σ ,τ),D1 f (σ ,τ),D2 f (σ ,τ))|1dτdσ , (3.7)

for (x,y) ∈ Δ.

Proof. Since u(x,y) is a solution of equation (1.2), by using the hypotheses, we
have

|u(x,y)− f (x,y)|1 �
a∫

0

b∫
0

|g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))

−g(x,y,s,t, f (s,t),D1 f (s,t),D2 f (s,t))|dtds

+
a∫

0

b∫
0

|g(x,y,s,t, f (s,t),D1 f (s,t),D2 f (s,t))|dtds

+
a∫

0

b∫
0

|D1g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))

−D1g(x,y,s,t, f (s,t),D1 f (s,t),D2 f (s,t))|dtds

+
a∫

0

b∫
0

|D1g(x,y,s,t, f (s,t),D1 f (s,t),D2 f (s,t))|dtds

+
a∫

0

b∫
0

|D2g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))

−D2g(x,y,s,t, f (s,t),D1 f (s,t),D2 f (s,t))|dtds



FREDHOLM TYPE INTEGRAL EQUATION 35

+
a∫

0

b∫
0

|D2g(x,y,s,t, f (s,t),D1 f (s,t),D2 f (s,t))|dtds

� Q(x,y)+
a∫

0

b∫
0

c(x,y)h(s,t)|u(s,t)− f (s,t)|1dtds

+
a∫

0

b∫
0

c(x,y)h1(s,t)|u(s,t)− f (s,t)|1dtds

+
a∫

0

b∫
0

c(x,y)h2(s,t)|u(s,t)− f (s,t)|1dtds

= Q(x,y)+ c(x,y)
a∫

0

b∫
0

[h(s,t)+h1(s,t)+h2(s,t)]|u(s,t)− f (s, t)|1dtds.

(3.8)

Now, an application of Lemma to (3.8) yields (3.6).

We next consider the equation (1.2) and the following Fredholm type integral equa-
tion

z(x,y) = F(x,y)+
a∫

0

b∫
0

G(x,y,s,t,z(s,t),D1z(s,t),D2z(s,t))dtds, (3.9)

for (x,y) ∈ Δ , where F ∈ C(Δ,R) , G ∈ C(Δ2×R3,R) and DiF ∈ C(Δ,R) , DiG ∈
C(Δ2×R3,R) for i = 1,2.

The following theorem holds.

THEOREM 5. Suppose that the function g in equation (1.2) and its derivatives
Dig for i = 1,2 satisfy the conditions as in Theorem 4 and the condition (2.16) holds.
Then for every given solution z∈C(Δ,R) of equation (3.9) and any solution u∈C(Δ,R)
of equation (1.2), we have the estimate

|u(x,y)− z(x,y)|1 � [| f (x,y)−F(x,y)|1 +M(x,y)]+ c(x,y)

×
⎧⎨
⎩

1
1−d1

a∫
0

b∫
0

[h(s,t)+h1(s,t)+h2(s,t)][| f (s,t)−F(s,t)|1 +M(s,t)]dtds

⎫⎬
⎭ ,

(3.10)
for (x,y) ∈ Δ, where

M(x,y) =
a∫

0

b∫
0

|g(x,y,σ ,τ,z(σ ,τ),D1z(σ ,τ),D2z(σ ,τ))

−G(x,y,σ ,τ,z(σ ,τ),D1z(σ ,τ),D2z(σ ,τ))|1dτdσ , (3.11)

for (x,y) ∈ Δ .
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Proof. Using the facts that u(x,y) and z(x,y) are respectively the solutions of
equations (1.2) and (3.9) and hypotheses, we have

|u(x,y)−z(x,y)|1 � | f (x,y)−F(x,y)|1 +
a∫

0

b∫
0

|g(x,y,s,t,u(s,t),D1u(s, t),D2u(s,t))

−g(x,y,s,t,z(s,t),D1z(s,t),D2z(s,t))|dtds

+
a∫

0

b∫
0

|g(x,y,s,t,z(s,t),D1z(s,t),D2z(s,t))

−G(x,y,s,t,z(s,t),D1z(s, t),D2z(s,t))|dtds

+
a∫

0

b∫
0

|D1g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))

−D1g(x,y,s,t,z(s,t),D1z(s, t),D2z(s,t))|dtds

+
a∫

0

b∫
0

|D1g(x,y,s,t,z(s,t),D1z(s,t),D2z(s,t))

−D1G(x,y,s,t,z(s,t),D1z(s,t),D2z(s,t))|dtds

+
a∫

0

b∫
0

|D2g(x,y,s,t,u(s,t),D1u(s,t),D2u(s,t))

−D2g(x,y,s,t,z(s,t),D1z(s, t),D2z(s,t))|dtds

+
a∫

0

b∫
0

|D2g(x,y,s,t,z(s,t),D1z(s,t),D2z(s,t))

−D2G(x,y,s,t,z(s,t),D1z(s,t),D2z(s,t))|dtds

� [| f (x,y)−F(x,y)|1 +M(x,y)]+ c(x,y)

×
a∫

0

b∫
0

[h(s,t)+h1(s,t)+h2(s,t)]|u(s, t)− z(s,t)|1dtds. (3.12)

Now, an application of Lemma to (3.12) yields (3.10).

REMARK 3. We note that, one can formulate results on the continuous depen-
dence of solutions of equation (1.2) by closely looking at the corresponding results
recently given in [6,7]. Furthermore, the idea used in this paper can be very easily
extended to study the version of equation (1.2) involving functions of more than two
variables. Moreover, the results established in Theorems 1-5 can be extended for equa-
tions of the form (1.2) when the function g is of the form

g

(
x,y,s,t,u(s,t),

∂ nu(s,t)
∂ sn ,

∂mu(s,t)
∂ tm

)

or

g

(
x,y,s,t,u(s,t),

∂ nu(s,t)
∂ sn ,

∂mu(s,t)
∂ tm

,
∂ n+mu(s,t)
∂ sn∂ tm

)
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or

g

(
x,y,s, t,u(s,t),

∂u(s,t)
∂ s

, ...,
∂ nu(s,t)
∂ sn ,

∂u(s,t)
∂ t

, ...,
∂mu(s, t)
∂ tm

)

or

g

(
x,y,s, t,u(s,t),

∂u(s,t)
∂ s

, ...,
∂ nu(s,t)
∂ sn ,

∂u(s,t)
∂ t

, ...,
∂mu(s, t)
∂ tm

,

∂ n+1u(s, t)
∂ sn∂ t

, ...,
∂ n+m−1u(s,t)
∂ sn∂ tm−1 ,

∂ 1+mu(s,t)
∂ s∂ tm

, ...,
∂ n−1+mu(s,t)
∂ sn−1∂ tm

,
∂ n+mu(s,t)
∂ sn∂ tm

)
,

under some suitable conditions. Naturally, these considerations will make the analysis
more complicated and we leave it to the reader to fill in where needed.

4. Applications

The generality of the integral equation (1.2) allow us to obtain results similar to
the ones given above, concerning the following integral equation

u(x,y) = f (x,y)+
a∫

0

b∫
0

K(x,y,s,t)h(s,t,u(s,t),D1u(s,t),D2u(s,t))dtds, (4.1)

where f ∈C(Δ,R),K ∈C(Δ2,R),h∈C(Δ×R3,R) and assume that Di f ∈C(Δ,R),DiK ∈
C(Δ2,R) . In this section we present a result on the existence of a unique solution of
equation (4.1), relaxing the assumptions posed on the derivatives of a general function
g in (1.2) by using the Banach fixed point theorem coupled with supremum norm. One
can formulate other results given above for the equation (4.1) by applying the ideas
used in Theorems 2-5 with relaxed assumptions.

THEOREM 6. Suppose that
(i) f , Di f ∈C(Δ,R) for i = 1,2 ,
(ii) h ∈C(Δ×R3,R) , h(s,t,0,0,0) = 0 and there is a constant L > 0 such that

|h(s, t,u,v,w)−h(s,t, u, v,w)| � L[|u− u|+ |v− v |+ |w−w|], (4.2)

(iii) K , DiK ∈C(Δ2,R) for i = 1,2 and

L

a∫
0

b∫
0

|K(x,y,s,t)|1dtds � α < 1. (4.3)

Then the equation (4.1) has a unique solution u(x,y) on Δ .

Proof. Let B be a Banach space of bounded continuous functions u :Δ→R which
are continuously differentiable with respect to x and y on Δ with supremum norm ‖.‖ ,
where ‖u‖ = sup

(x,y)∈Δ
|u(x,y)|1. Let u(x,y) ∈ B and define the operator F by

(Fu)(x,y) = f (x,y)+
a∫

0

b∫
0

K(x,y,s,t)h(s,t,u(s,t),D1u(s,t),D2u(s,t))dtds. (4.4)



38 B. G. PACHPATTE

Differentiating both sides of (4.4) partially with respect to x and y , we have

Di(Fu)(x,y) = Di f (x,y)+
a∫

0

b∫
0

DiK(x,y,s,t)h(s,t,u(s,t),D1u(s,t),D2u(s,t))dtds,

(4.5)
for i = 1,2. We shall show that F is a contraction map. Therefore, a fixed point of
F is a solution of equation (4.1). From the assumptions, it follows that Fu,Di(Fu)
(i = 1,2) are continuous on Δ and

|(Fu)(x,y)|1 � | f (x,y)|1 +
a∫

0

b∫
0

|K(x,y,s,t)|1|h(s,t,u(s, t),D1u(s,t),D2u(s,t))

−h(s,t,0,0,0)|dtds

� | f (x,y)|1 +L

a∫
0

b∫
0

|K(x,y,s,t)|1|u(s,t)|1dtds

� | f (x,y)|1 +L‖u‖
a∫

0

b∫
0

|K(x,y,s,t)|1dtds < ∞. (4.6)

Here, we have used the fact that | f (x,y)|1 is bounded, since f ,Di f ∈C(Δ,R) and the
condition (4.3). This proves that the operator F maps B into itself.

Let u(x,y),v(x,y) ∈ B . From (4.4), (4.5) and the hypotheses, we have

|(Fu)(x,y)− (Fv)(x,y)|1 �
a∫

0

b∫
0

|K(x,y,s,t)|1|h(s,t,u(s,t),D1u(s,t),D2u(s,t))

−h(s,t,v(s,t),D1v(s,t),D2v(s, t))|dtds

� L

a∫
0

b∫
0

|K(x,y,s,t)|1|u(s,t)− v(s,t)|1dtds

� L‖u− v‖
a∫

0

b∫
0

|K(x,y,s,t)|1dtds

� α‖u− v‖. (4.7)

From (4.7) and since α < 1, it follows that F is a contraction mapping, which proves
that the equation (4.1) has a unique solution on Δ .

REMARK 4. We note that the equation (4.1) includes as a special case, the study
of the following important integral equation

u(x,y) = f (x,y)+
a∫

0

b∫
0

K(x,y,s,t)h(s,t,u(s,t))dtds, (4.8)
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which may be considered as a two independent variable generalization of the well
known Hammerstein type integral equation studied by many authors in the literature,
see [6, section 1.5] and the references cited therein.
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