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Abstract. In this paper we prove existence results for first and second order semilinear neutral
functional differential inclusions with finite or infinite delay in Banach spaces and nonlocal con-
ditions, via a Nonlinear Alternative for condensing maps. Our theory makes use of analytic
semigroups and fractional powers of closed operators, integrated semigroups and cosine fami-
lies.

1. Introduction

Recently in [17] we proved existence results for first and second order semilinear
neutral functional differential inclusions in a real Banach space, with nonlocal condi-
tions. More precisely, we studied first order initial value problems for semilinear neutral
functional differential inclusions with nonlocal conditions of the form,

(d/dt)[y(t)− f (t,yt)] ∈ Ay(t)+F(t,yt), a.e. t ∈ J = [0,T ] (1.1)

y(t)+ht(y) = φ(t), t ∈ [−r,0] (1.2)

where f : J×D → E, F : J ×D −→ P(E) is a multivalued map, ht ∈ D , φ ∈ D ,
D = {ψ : [−r,0] → E|ψ is continuous} , A is the infinitesimal generator of a strongly
continuous semigroup S (t) , t � 0 and E a separable real Banach space with the norm
‖ · ‖.

The method used in [17] consists in applying the Leray-Schauder Nonlinear Alter-
native for compact maps. Among other assumptions in [17] we suppose the following
conditions hold:

(i) the map H : C([−r,T ],E) → C([0,T ],E), given by H(y)(t) = f (t,yt) for t ∈
[0,T ], is continuous and completely continuous;

(ii) for each t ∈ [−r,0] , ht : C([−r,T ],E) →C([−r,0],E) is completely continuous;

(iii) given ε > 0, then for any bounded subset D of C([−r,T ],E) there exists a δ > 0
with ‖(S (θ )− I)h0(y)‖< ε for all y∈D and θ ∈ [0,δ ] and ‖ht(y)−hs(y)‖< ε
for all y ∈ D and t,s ∈ [−r,0] with |t− s| < δ .
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It is worth noting here that (ii) implies {h0(y) : y ∈ D} is relatively compact so given
ε > 0 there exists δ > 0 with ‖(S (θ )− I)h0(y)‖ < ε for all y ∈ D and θ ∈ [0,δ ] .

We emphasize that (i) and (ii) are very strong conditions when E is infinite di-
mensional so sublinear or linear f cannot be discussed (these automatically fit within
the results of this paper).

In this paper we consider the following semilinear neutral functional differential
inclusions with nonlocal conditions

(d/dt)[y(t)− f (t,yt)] ∈ Ay(t)+F(t,yt), a.e. t ∈ J = [0,T ] (1.3)

y0(t) = φ(t)+q(yt1 , . . . ,ytn)(t), for t ∈ [−r,0] (1.4)

where f ,F,A,φ are as in problem (1.1)–(1.2), 0 < t1 < t2 < .. . < tn � T and q : Dn →
D .

For any continuous function y defined on the interval [−r,T ] and any t ∈ J, we
denote by yt the element of D defined by yt(θ ) = y(t + θ ), θ ∈ [−r,0]. For ψ ∈ D
the norm of ψ is defined by

‖ψ‖D = sup{‖ψ(θ )‖ : θ ∈ [−r,0]}.
We also let

‖u‖ = sup{‖u(t)‖ : t ∈ [−r,T ]} for u ∈C([−r,T ],E).

In this paper we present some new existence results by applying the Nonlinear
Alternative for contractive maps, deleting the conditions (i)–(iii) above and replacing
with Lipschitz conditions on f and q.

Thus in Section 2, we study the problem (1.3)–(1.4) and in Section 3 we consider
a general form for the problem (1.3)–(1.4) where A : D(A) ⊂ E → E is a nondensely
defined closed linear operator. In Section 4 we consider first order semilinear neutral
functional differential inclusions with infinite delay. Finally, in Section 5 we study sec-
ond order initial value problems for semilinear neutral functional differential inclusions
with nonlocal conditions of the form

(d/dt)[y′(t)− f (t,yt)] ∈ Ay(t)+F(t,yt), t ∈ J := [0,T ], (1.5)

y0(t) = φ(t)+q(yt1 , . . . ,ytn)(t), for t ∈ [−r,0], y′(0+)+h(y) = η , (1.6)

where A is the infinitesimal generator of a family of cosine operators {C(t) : t � 0},
η ∈ E, f ,F,φ ,q are as in problem (1.3)–(1.4) and h :C([−r,T ],E)→ E is continuous.

Nonlocal conditions for evolution equations were initiated by Byszewski. We refer
the reader to [5] and the references cited therein for a motivation regarding nonlocal
initial conditions. The nonlocal conditions can be applied in physics and is more natural
than the classical initial condition y(0) = y0.

IVPs (1.3)–(1.4) and (1.5)-(1.6) were studied in the literature under growth condi-
tions on F, or by assuming the existence of a maximal solution to appropriate problems;
see [3, 17] and the references cited therein. A special case of the IVP (1.3)–(1.4) when
F is single-valued was studied in [13] by using Banach contraction principle.

We will use in the sequel the following form of the Nonlinear Alternative for con-
tractive maps [19, Corollary 3.8].
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THEOREM 1.1. Let X be a Banach space, and D a bounded neighborhood of
0 ∈ X . Let Z1 : X → Pcp,c(X) (here Pcp,c(X) denotes the family of all nonempty,
compact and convex subsets of X ) and Z2 : D → Pcp,c(X) two multi-valued operators
satisfying

(a) Z1 is contraction, and

(b) Z2 is u.s.c and compact.

Then, if G = Z1 +Z2, either

(i) G has a fixed point in D or

(ii) there is a point u ∈ ∂D and λ ∈ (0,1) with u ∈ λG(u) .

2. First order semilinear neutral functional differential inclusions
with nonlocal conditions

Let E be a separable Banach space with norm ‖ · ‖, B(E) be the Banach space
of linear bounded operators and A : D(A) → E will be the infinitesimal generator of an
analytic semigroup, S (t), t � 0, of bounded linear operators on E. For the theory of
strongly continuous semigroups, we refer the reader to Pazy [18]. If S (t), t � 0, is
a uniformly bounded and analytic semigroup such that 0 ∈ ρ(A), then it is possible to
define the fractional power (−A)α , for 0 < α � 1, as a closed linear operator on its do-
main D(−A)α . Furthermore, the subspace D(−A)α is dense in E, and the expression
‖x‖α = ‖(−A)αx‖, x ∈ D(−A)α defines a norm on D(−A)α . Hereafter we denote
by Eα the Banach space D(−A)α normed with ‖ · ‖α . Then for each 0 < α � 1, Eα
is a Banach space, and Eα ↪→ Eβ for 0 < β � α � 1 and the imbedding is compact
whenever the resolvent operator of A is compact. Also for every 0 < α � 1 there exists

Cα > 0 such that ‖(−A)αS (t)‖ � Cα
tα

, 0 < t � T.

Let us start by introducing the concept of mild solution for the problem (1.3)–(1.4).

DEFINITION 2.1. A function y ∈ C([−r,T ],E) is said to be a mild solution of
(1.3)–(1.4) if y0(t) = φ(t)+q(yt1 , . . . ,ytn)(t) for t ∈ [−r,0] and there exists v∈ L1(J,E)
such that v(t) ∈ F(t,yt) a.e on J and

y(t) = S (t)[φ(0)+q(yt1 , . . . ,ytn)(0)− f (0,y0)]+ f (t,yt)

+
∫ t

0
AS (t− s) f (s,ys)ds+

∫ t

0
S (t− s)v(s)ds, t ∈ J.

For the multivalued map F and for each y ∈C([−r,T ],E), we define SF,y by

SF,y = {v ∈ L1(J,E) : v(t) ∈ F(t,yt) for a.e. t ∈ J}.

Our first existence result for the IVP (1.3)–(1.4) is the following.
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THEOREM 2.1. Assume that:

(2.1.1) A : D(A) ⊂ E → E is the infinitesimal generator of an analytic semigroup
S (t), t � 0, of bounded linear operators on E. Assume that 0 ∈ ρ(A), S (t)
is compact for t > 0, and there exist constants M � 1 and C, depending on
β , 0 < β < 1 , which we denote as C1−β such that

‖S (t)‖B(E) � M and ‖(−A)1−βS (t)‖ �
C1−β
t1−β

, for all t > 0;

(2.1.2) (i) function q : Dn → D is continuous and there exists Q > 0 such that

‖q(φ1, . . . ,φn)‖D � Q,

for all φi ∈ D , i = 1, . . . ,n;
(ii) there exist constants Li(q) , i = 1, . . . ,n such that

‖q(ψ1, . . . ,ψn)−q(φ1, . . . ,φn)‖ �
n

∑
i=1

Li(q)‖ψi−φi‖D , for all ψi,φi ∈ D ;

(2.1.3) there exist constants 0 < β < 1 , c1 , c2 , L f such that f is Eβ -valued, (−A)β f
is continuous, and

(i) ‖(−A)β f (t,x)‖ � c1‖x‖D + c2 , (t,x) ∈ J×D ,

(ii) ‖(−A)β f (t,x1)− (−A)β f (t,x2)‖ � Lf ‖x1 − x2‖D , (t,xi) ∈ J×D , i =
1,2 , with c1‖(−A)−β‖ < 1 and

L0 := M
n

∑
i=1

Li(q)+Lf (M +1)‖(−A)−β‖+Lf
C1−βTβ

β
< 1;

(2.1.4) F : J×D → Pcp,c(E) is a L1 -Carathéodory multivalued map; (that is,

(i) t �→ F(t,x) is measurable for each x ∈ D ,

(ii) x �→ F(t,x) is upper semi-continuous for almost all t ∈ J, and

(iii) for each real number ρ > 0, there exists a function ϕρ ∈ L1(J,R+) such
that ‖F(t,u)‖ := sup{‖v‖ : v ∈ F(t,u)} � ϕρ(t), a.e. t ∈ J for all u ∈
D with ‖u‖D � ρ .)

(2.1.5) there exist a L1 -Carathéodory function g : J× [0,∞) → [0,∞) such that

‖F(t,u)‖ � g(t,‖u‖D) for almost all t ∈ J and all u ∈ D ;

(2.1.6) g(t,ϕ) is nondecreasing in ϕ for a.e. t ∈ J;

(2.1.7) the problem

u′(t) = bK2g(t,u(t)), a.e. t ∈ J,

u(0) = bK0,

where
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K0 = Λ(1− c1‖(−A)−β‖)−1, K1 = C1−β c1(1− c1‖(−A)−β‖)−1,

K1T ββ−1 < 1, K2 = M(1− c1‖(−A)−β‖)−1,

Λ= M‖φ‖D

{
1+ c1‖(−A)−β‖}+MQ+M‖(−A)−β‖(Q+ c2)

+c2‖(−A)−β‖+
C1−β c2T β

β
,

b = eKm
1 (Γ(β ))mTmβ /Γ(mβ )

m−1

∑
j=0

(
K1Tβ

β

) j

, Γ is the Gamma function,

and m is the first integer such that mβ > 1, has a maximal solution ρ(t).

Then the IVP (1.3)–(1.4) has at least one mild solution on [−r,T ].

REMARK 2.1. Of course (2.1.3) (i) follows from (2.1.3) (ii) with c1 = Lf and
c2 = maxt∈J ‖(−A)β f (t,0)‖. However there might be a better c1 and c2 and the best
choice is needed in (2.1.7).

Proof. Consider the operator N :C([−r,T ],E)−→P(C([−r,T ],E)) defined by:

N (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

h ∈C([−r,T ],E) :

h(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ(t)+q(yt1 , . . . ,ytn)(t), t ∈ [−r,0],

S (t)[φ(0)+q(yt1 , . . . ,ytn)(0)
− f (0,y0)]+ f (t,yt)

+
∫ t

0
AS (t− s) f (s,ys)ds+

∫ t

0
S (t− s)v(s)ds, t ∈ J,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

where v ∈ SF,y. Now, we define two operators as follows. A : C([−r,T ],E) −→
C([−r,T ],E) by

A (y)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(yt1 , . . . ,ytn)(t), t ∈ [−r,0],

S (t)[− f (0,y0)+q(yt1 , . . . ,ytn)(0)]+ f (t,yt)

+
∫ t

0
AS (t− s) f (s,ys)ds, t ∈ J,

(2.1)

and the multi-valued operator B : C([−r,T ],E) −→ P(C([−r,T ],E)) by

B(y) =

⎧⎪⎪⎨
⎪⎪⎩

h ∈C([−r,T ],E) :

h(t) =

⎧⎨
⎩
φ(t), t ∈ [−r,0],

S (t)φ(0)+
∫ t

0
S (t− s)v(s)ds, t ∈ J

⎫⎪⎪⎬
⎪⎪⎭ . (2.2)

Then N := A +B . We shall show that the operators A and B satisfy all the
conditions of Theorem 1.1 on C([−r,T ],E) . For better readability, we break the proof
into a sequence of steps.
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Step 1. We show that A is a contraction on C([−r,T ],E) . Let x,y∈C([−r,T ],E) .
Then

‖A (x)(t)−A (y)(t)‖ � ‖(−A)−β‖Lf max
0�s�t

‖xs− ys‖D +M
n

∑
i=1

Li(q)‖xti − yti‖D

+MLf ‖(−A)−β‖‖x− y‖+
∫ t

0

C1−β
(t − s)1−β dsL f max

0�s�t
‖xs− ys‖D

�
[
M

n

∑
i=1

Li(q)+Lf (M +1)‖(−A)−β‖+Lf
C1−βT β

β

]
‖x− y‖.

Taking the supremum over t gives,

‖A (x)−A (y)‖ � L0‖x− y‖.

This shows that A is a contraction, since L0 < 1.

Step 2. B has a closed graph (and therefore has closed values); see [17, The-
orem 3.2, Step 4]. Also the multi-valued operator B is completely continuous on
C([−r,T ],E) . This was proved in [17, Theorem 3.2, Steps 2,3]. As a result B is
compact valued.

Therefore the operators A and B satisfy all the conditions of Theorem 1.1 and
hence an application of it yields that either condition (i) or condition (ii) holds. We
show that the conclusion (ii) is not possible.

If y ∈ λA (y)+λB(y) for λ ∈ (0,1), then there exists v ∈ SF,y such that

y(t) = λS (t)[φ(0)+q(yt1 , . . . ,ytn)(0)− f (0,y0)]+λ f (t,yt)

+λ
∫ t

0
AS (t − s) f (s,ys)ds+λ

∫ t

0
S (t− s)v(s)ds, t ∈ J.

(2.3)

Then

‖y(t)‖ � M(‖φ‖D +Q)+M‖(−A)−β‖[c1(‖φ‖D +Q)+ c2]+‖(−A)−β‖[c1‖yt‖D + c2]

+
∫ t

0

C1−β c1‖ys‖D

(t − s)1−β ds+
C1−β c2T β

β
+M

∫ t

0
g(s,‖ys‖D)ds

� Λ+ c1‖(−A)−β‖‖yt‖D +
∫ t

0

C1−β c1‖ys‖D

(t − s)1−β ds+M
∫ t

0
g(s,‖ys‖D)ds, t ∈ J.

Put w(t) = max{‖y(s)‖ :−r � s � t}, t ∈ J. Then ‖yt‖D � w(t) for all t ∈ J. Fix
t ∈ J and note there is a point t∗ ∈ [−r,t] such that w(t) = ‖y(t∗)‖. If t∗ ∈ [−r,0] then
w(t) � ‖φ‖D +Q. If t ∈ [0,T ] then by the previous inequality we have

w(t) = ‖y(t∗)‖
� Λ+ c1‖(−A)−β‖w(t)+C1−βc1

∫ t

0

w(s)
(t − s)1−β ds+M

∫ t

0
g(s,w(s))ds,
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or

w(t) � 1

1− c1‖(−A)−β‖
{
Λ+C1−βc1

∫ t

0

w(s)
(t − s)1−β ds+M

∫ t

0
g(s,w(s))ds

}

� K0 +K1

∫ t

0

w(s)
(t− s)1−β ds+K2

∫ t

0
g(s,w(s))ds, t ∈ J.

From [17, Lemma 2.3] we have

w(t) � b

(
K0 +K2

∫ t

0
g(s,w(s))ds

)
:= ζ (t), t ∈ J.

Then we have w(t) � ζ (t) for all t ∈ J, ζ (0) = bK0 and

ζ ′(t) = bK2g(t,w(t)), a.e. t ∈ J.

Using the nondecreasing character of g we get

ζ ′(t) � bK2g(t,ζ (t)), t ∈ J.

This implies that ([16] Theorem 1.10.2) ζ (t) � ρ(t) for t ∈ J, and hence w(t) � b0 =
supt∈J ρ(t). Thus sup{‖y(t)‖ : −r � t � T} � b′0 := max{‖φ‖D + Q,b0}, where b0

depends only on T and on the function ρ . So now we can take a large enough ball
so that (ii) does not occur. Hence the conclusion (i) holds and consequently the initial
value problem (1.3)–(1.4) has a solution y on [−r,T ] . This completes the proof.

REMARK 2.2. We would like point out that the condition L0 < 1 can be deleted
if we use the well-known Bielecki’s renorming method. Of course assumption (2.1.3)
has to be adjusted slightly for the new norm.

EXAMPLE 2.1. As an example of a function F satisfying the conditions (2.1.5)–
(2.1.7) of Theorem 2.1 we assume that:

(h) there exist a continuous non-decreasing function ψ : [0,∞)−→ (0,∞), p∈L1(J,R+)
such that ‖F(t,u)‖ � p(t)ψ(‖u‖D) for each (t,u) ∈ J×D with

bK2

∫ T

0
p(s)ds <

∫ ∞

bK0

ds
ψ(s)

,

where b,K0,K2 are defined in Theorem 2.1.

Notice (2.1.5)– (2.1.7) follow if we take g(t,u) = p(t)ψ(u) and the fact that the maxi-
mal solution in (2.1.7) is

ρ(t) = I−1
(

bK2

∫ t

0
p(s)ds

)
where I(z) =

∫ z

bK0

du
ψ(u)

.

Next we present another existence result which is natural from an application point
of view.
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THEOREM 2.2. Assume that the conditions (2.1.1)–(2.1.4) hold. In addition we
suppose that the following condition is satisfied:

(2.2.1) there exist a continuous non-decreasing function ψ : [0,∞) −→ (0,∞), p ∈
L1(J,R+) such that

‖F(t,u)‖ := sup{‖v‖ : v ∈ F(t,u)} � p(t)ψ(‖u‖D) for each (t,u) ∈ J×D

and there exists a constant M∗ > 0 with(
1−K1

T β

β

)
M∗
/(

K0 +K2ψ(M∗)
∫ T

0
p(s)ds

)
> 1,

where K0,K1,K2 are as in Theorem 2.1.

Then the initial value problem (1.3)–(1.4) has at least one mild solution on [−r,T ].

Proof. As in Theorem 2.1 consider the operators N , A and B. As in Theorem
2.1 we can prove that A and B satisfy all the conditions of Theorem 1.1. To show
that the conclusion (ii) is not possible we procced as follows:

From equation (2.3) as in Theorem 2.1 we get

w(t) � K0 +K1

∫ t

0

w(s)
(t− s)1−β ds+K2

∫ t

0
p(s)ψ(w(s))ds, t ∈ J.

Consequently (
1−K1

T β

β

)
‖w‖

/(
K0 +K2ψ(‖w‖)

∫ T

0
p(s)ds

)
� 1. (2.4)

If condition (ii) of Theorem 1.1 holds, then there exists λ ∈ (0,1) and y ∈ ∂D
with y = λN(y). Then, y is a solution of (2.3) with ‖y‖ = M∗. Now, (2.4) implies(

1−K1
Tβ

β

)
M∗
/(

K0 +K2ψ(M∗)
∫ T

0
p(s)ds

)
� 1,

which contradicts (2.2.1). Hence, N has a fixed point in [−r,T ] by Theorem 1.1, and
consequently the initial value problem (1.3)–(1.4) has a solution. This completes the
proof.

REMARK 2.3. If ψ satisfies a sublinear condition or more generally

lim
ξ→∞

ξ
K0 +ψ(ξ )K2

∫ T
0 p(s)ds

> 1−K1
T β

β

then the existence of M∗ in (2.2.1) is guaranteed.
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Next, we study the case where F is not necessarily convex valued. Our approach
here is based on the Leray-Schauder Alternative for single valued maps combined with
a selection theorem due to Bressan and Colombo [4] for lower semicontinuous multi-
valued operators with decomposable values.

THEOREM 2.3. Suppose that:

(2.3.1) F : J ×D −→ P(E) is a nonempty, compact-valued, multivalued map such
that:
a) (t,u) �→ F(t,u) is L ⊗B measurable;
b) u �→ F(t,u) is lower semi-continuous for a.e. t ∈ J;

(2.3.2) for each ρ > 0, there exists a function ϕρ ∈ L1(J,R+) such that

‖F(t,u)‖ � ϕρ(t) for a.e. t ∈ J and for u ∈ D with ‖u‖D � ρ .

In addition suppose (2.1.1)–(2.1.3), (2.1.5)–(2.1.7) are satisfied. Then the initial value
problem (1.3)–(1.4) has at least one solution on [−r,T ].

Proof. Assumptions (2.3.1) and (2.3.2) imply that F is of lower semicontinuous
type. Then there exists ([4]) a continuous function p : C([−r,T ],E) → L1(J,E) such
that p(y) ∈ Φ(y) for all y ∈C([−r,T ],E), where Φ is the Nemitsky operator defined
by

Φ(y) = {w ∈ L1(J,E) : w(t) ∈ F(t,yt) for a.e. t ∈ J}.
Consider the problem

(d/dt)[y(t)− f (t,yt)]−Ay(t) = p(y)(t), t ∈ J, (2.5)

y0(t) = φ(t)+q(yt1 , . . . ,ytn)(t), for t ∈ [−r,0]. (2.6)

It is obvious that if y ∈C([−r,T ],E) is a solution of the problem (2.5)–(2.6), then y is
a solution to the problem (1.3)–(1.4).

Consider the operator N′ : C([−r,T ],E) →C([−r,T ],E) defined by:

N′(y)(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
φ(t)+q(yt1 , . . . ,ytn)(t), if t ∈ [−r,0]

S (t)[φ(0)+q(yt1 , . . . ,ytn)(0)− f (0,y0)]+ f (t,yt)

+
∫ t

0
AS (t− s) f (s,ys)ds+

∫ t

0
S (t − s)p(y)(s)ds, t ∈ J.

Now, we define two operators A′,B′ : C([−r,T ],E) −→C([−r,T ],E) as follows:

A′(y)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(yt1 , . . . ,ytn)(t), t ∈ [−r,0],

S (t)[− f (0,y0)+q(yt1 , . . . ,ytn)(0)]+ f (t,yt)

+
∫ t

0
AS (t− s) f (s,ys)ds, t ∈ J,
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and

B′(y)(t) =

⎧⎨
⎩
φ(t), t ∈ [−r,0],

S (t)φ(0)+
∫ t

0
S (t − s)p(y)ds, t ∈ J,

Now A′,B′ : C(J,E) −→ C(J,E) are continuous. Also the argument in Theorem
2.1 guarantees that A′ and B′ satisfy all the conditions of the Nonlinear Alternative for
contractive maps in the single valued setting [10] and hence the problem (1.3)–(1.4) has
a mild solution.

3. Semilinear neutral functional differential inclusions with nondense domain
and nonlocal conditions

Recently in [1] the authors consider the following general class of nonlinear neu-
tral functional differential equations with infinite delay

(d/dt)[x(t)− f (t,xt)] = A[x(t)− f (t,xt)]+F(t,xt), t � 0 (3.1)

x0 = φ ∈ F (3.2)

where the operator A is nondensely defined, f ,F : [0,∞)×F → E and F is the phase
space of functions mapping (−∞,0] into E. There are many examples where evolution
equations are nondensely defined. For example, when we look at a one-dimensional

heat equation with Dirichlet conditions on [0,1] and consider A =
∂ 2

∂x2 in C([0,1],R)
in order to measure the solutions in the sup-norm, then the domain,

D(A) = {φ ∈C2([0,1],R) : φ(0) = φ(1) = 0},
is not dense in C([0,1],R) with the sup-norm. See [6] for more examples and remarks
concerning nondensely defined operators.

In this section we consider the following first order semilinear neutral functional
differential inclusion with nonlocal conditions and finite delay r > 0,

(d/dt)[y(t)− f (t,yt)] ∈ A[y(t)− f (t,yt)]+F(t,yt), a.e. t ∈ J, (3.3)

y0(t) = φ(t)+q(yt1 , . . . ,ytn)(t), for t ∈ [−r,0], (3.4)

where f ,F,φ are as in problem (1.3)–(1.4) and A is nondensely defined. We give an
existence result by assuming Lipschitz and growth conditions. The basic tool for this
study is the theory of integrated semigroups. For details on integrated semigroups we
refer to [2, 15].

Let (S (t))t�0, be the integrated semigroup generated by A. We note that, since
A satisfies the Hille-Yosida condition, ‖S ′(t)‖B(E) � Meωt , t � 0, where M and ω
are from the Hille-Yosida condition (see [15]).

In the sequel, we give some results for the existence of solutions of the following
problem:

y′(t) = Ay(t)+g(t), t � 0, (3.5)
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y(0) = y0 ∈ E, (3.6)

where A satisfies the Hille-Yosida condition, without being densely defined.

THEOREM 3.1. [15]. Let g : [0,b] → E be a continuous function. Then for y0 ∈
D(A), there exists a unique continuous function y : [0,b] → E such that

(i)
∫ t

0
y(s)ds ∈ D(A) for t ∈ [0,b],

(ii) y(t) = y0 +A
∫ t

0
y(s)ds+

∫ t

0
g(s)ds, t ∈ [0,b],

(iii) ‖y(t)‖ � Meωt

(
‖y0‖+

∫ t

0
e−ωs‖g(s)‖ds

)
, t ∈ [0,b].

Moreover, y satisfies the following variation of constant formula:

y(t) = S ′(t)y0 +
d
dt

∫ t

0
S (t − s)g(s)ds, t � 0. (3.7)

THEOREM 3.2. [20]. Let A : D(A) ⊂ X → X be a linear operator satisfying the
Hille-Yosida condition, {S (t)}t�0 be the integrated semigroup generated by A and
f : [0,T ] → X ,T > 0 be a Bohner-integrable function. Then the function K : [0,T ] →
X defined by K(t) =

∫ t
0 S (t − s) f (s)ds is continuously differentiable on [0,T ] and

satisfies that, for λ > ω and t ∈ [0,T ],

R(λ ,A)K′(t) =
∫ t

0
S ′(t− s)R(λ ,A) f (s)ds.

Let Bλ = λR(λ ,A) := λ (λ I−A)−1. Then ([15]) for all x ∈ D(A),Bλ x → x as λ → ∞.
Also from the Hille-Yosida condition (with n = 1) it easy to see that lim

λ→∞
‖Bλx‖ �

M‖x‖, since

‖Bλ‖ = ‖λ (λ I−A)−1‖ � Mλ
λ −ω

.

Thus lim
λ→∞

‖Bλ‖ � M. Also if y satisfies (3.7), then

y(t) = S ′(t)y0 + lim
λ→∞

∫ t

0
S ′(t− s)Bλg(s)ds, t � 0. (3.8)

We define what we mean by an integral solution of the IVP (3.3)–(3.4).

DEFINITION 3.1. We say that y : [−r,T ]→ E is an integral solution of (3.3)–(3.4)
if

(i) y ∈C([−r,T ],E),

(ii)
∫ t

0
[y(s)− f (s,ys)]ds ∈ D(A) for t ∈ J,
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(iii) there exists a function v ∈ L1(J,E), such that v(t) ∈ F(t,yt) a.e. in J and

y(t)= S ′(t)[φ(0)+q(yt1 , . . . ,ytn)(0)− f (0,y0)]+ f (t,yt)+
d
dt

∫ t

0
S (t−s)v(s)ds

and y0(t) = φ(t)+q(yt1 , . . . ,ytn)(t) for t ∈ [−r,0].

THEOREM 3.3. Assume that (2.1.2), (2.1.4)– (2.1.6) hold and in addition suppose
that the following conditions are satisfied:

(3.3.1) A satisfies the Hille-Yosida condition (then there exist M � 0 and ω ∈ R such
that ‖S ′(t)‖ � Meωt ,t � 0);

(3.3.2) the operator S ′(t) is compact in D(A) whenever t > 0.

(3.3.3) φ(0)+q(ψt1 , . . . ,ψtn)(0)− f (0,ψ0)∈D(A) for all ψ0,ψ1, . . . ,ψn ∈C([−r,0],E);

(3.3.4) there exist constants 0 < c1 < 1,c2 � 0, � � 0 such that

(i) ‖ f (t,x)‖ � c1‖x‖D + c2, (t,x) ∈ J×D ;

(ii) ‖ f (t,x1)− f (t,x2)‖ � �‖x1− x2‖D , (t,xi) ∈ J×D , i = 1,2, with

M∗
n

∑
i=1

Li(q)+ �(M∗ +1) < 1, M∗ = Mmax{eωT ,1};

(3.3.5) the problem

u′(t) =
MM∗

1− c1
e−ωtg(t,u(t)), a.e. t ∈ J,

u(0) =
M∗

1− c1

[
(1+ c1)(‖φ‖D +Q)+ c2 +

c2

M∗
]
,

has a maximal solution ρ(t). (Here ω is the constant from (3.3.1)).

Then the IVP (3.3)–(3.4) has at least one integral solution on [−r,T ].

Proof. Consider the operator N1 : C([−r,T ],E) → P(C([−r,T ],E)) defined by

N1(y) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h ∈C([−r,T ],E) :

h(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
φ(t)+q(yt1 , . . . ,ytn)(t), if t ∈ [−r,0],

S ′(t)[φ(0)+q(yt1 , . . . ,ytn)(0)− f (0,y0)]

+ f (t,yt)+
d
dt

∫ t

0
S (t − s)v(s)ds, if t ∈ J,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

where v ∈ SF,y. Now, we define two operators as follows. A1 : C([−r,T ],E) −→
C([−r,T ],E) by

A1(y)(t) =

{
q(yt1 , . . . ,ytn)(t), if t ∈ [−r,0],

S ′(t)[− f (0,y0)+q(yt1 , . . . ,ytn)(0)]+ f (t,yt), if t ∈ J,
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and the multi-valued operator B1 : C([−r,T ],E) −→ P(C([−r,T ],E)) by

B1(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h ∈C([−r,T ],E) :

h(t) =

⎧⎪⎨
⎪⎩
φ(t), t ∈ [−r,0],

S ′(t)φ(0)+
d
dt

∫ t

0
S (t− s)v(s)ds, t ∈ J,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

We shall show that N1 := A1 +B1 has a fixed point. The proof is given in several
steps.

Step 1: We show that A1 is a contraction on C([−r,T ],E) . Let x,y∈C([−r,T ],E) .
Then

‖A1(x)(t)−A1(y)(t)‖ � � max
0�s�t

‖xs− ys‖D +M∗
n

∑
i=1

Li(q)‖xti − yti‖D +M∗�‖x− y‖

�
[
M∗

n

∑
i=1

Li(q)+ �(M∗ +1)

]
‖x− y‖.

Taking the supremum over t gives,

‖A1(x)−A1(y)‖ �
[
M∗

n

∑
i=1

Li(q)+ �(M∗+1)

]
‖x− y‖.

This shows that A1 is a contraction, since M∗∑n
i=1 Li(q)+ �(M∗+1) < 1.

Step 2: B1 has a closed graph (and therefore has closed values); see [17, Theorem
4.6, Step 4]. Also [17, Theorem 4.6] guarantees that the operator B1 is completely
continuous on C([−r,T ],E). As a result B is compact valued.

Therefore the operators A1 and B1 satisfy all the conditions of Theorem 1.1 and
hence an application of it yields that either condition (i) or condition (ii) holds. We
show that the conclusion (ii) is not possible.

If y ∈ σA1(y)+σB1(y) for σ ∈ (0,1), then

y(t) = σS ′(t)[φ(0)+q(yt1 , . . . ,ytn)(0)− f (0,y0)]+σ f (t,yt)

+σ
d
dt

∫ t

0
S (t − s)v(s)ds, t ∈ J.

(3.9)

From Theorem 3.2 we get∥∥∥∥Bλ
d
dt

∫ t

0
S (t − s)v(s)ds

∥∥∥∥ =
∥∥∥∥
∫ t

0
S ′(t− s)Bλ v(s)ds

∥∥∥∥
� MeωT

∫ t

0
e−ωs‖Bλ‖‖v(s)‖ds

� M∗
∫ t

0
e−ωs‖Bλ‖‖v(s)‖ds.
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Letting λ → +∞, we obtain that

lim
λ→+∞

∥∥∥∥
∫ t

0
S ′(t− s)Bλ v(s)ds

∥∥∥∥� MM∗
∫ t

0
e−ωs‖v(s)‖ds.

Thus

‖y(t)‖ � M∗[(1+ c1)(‖φ‖D +Q)+ c2]+ c1‖yt‖D + c2

+MM∗
∫ t

0
e−ωsg(s,‖ys‖D)ds, t ∈ J.

We consider the function μ defined by μ(t) := sup{‖y(s)‖ : −r � s � t}, t ∈
[0,T ]. Let t∗ ∈ [−r, t] be such that μ(t) = ‖y(t∗)‖ . If t∗ ∈ [0,T ] , then by the previous
inequality, we have for t ∈ [0,T ] ,

(1− c1)μ(t) � M∗[(1+ c1)(‖φ‖D +Q)+ c2]+ c2 +MM∗
∫ t

0
e−ωsg(s,μ(s))ds,

or

μ(t) � M∗

1− c1

[
(1+ c1)(‖φ‖D +Q)+ c2 +

c2

M∗ +M
∫ t

0
e−ωsg(s,μ(s))ds

]
, t ∈ J.

If t∗ ∈ [−r,0] then μ(t) � ‖φ‖D +Q and the inequality holds.
Let us take the right-hand side of the above inequality as ν(t) . Then we have

ν(0) =
M∗

1− c1

[
(1+ c1)(‖φ‖D +Q)+ c2 +

c2

M∗
]
, μ(t) � ν(t), t ∈ J

and

ν ′(t) =
MM∗

1− c1
e−ωtg(t,μ(t))

� MM∗

1− c1
e−ωtg(t,ν(t)), t ∈ [0,T ].

This implies that ([16] Theorem 1.10.2) ν(t) � ρ(t) for t ∈ J, and hence ‖y(t)‖�
b′2 = supt∈[−r,T ]ρ(t), t ∈ [−r,0] where b′2 depends only on T and on the function ρ . So
now we can take a large enough ball so that (ii) does not occur. Hence the conclusion (i)
holds and consequently the initial value problem (3.3)-(3.4) has a solution y on [−r,T ] .
This completes the proof.

EXAMPLE 3.1. As an example of a function F satisfying the conditions (2.1.5),
(2.1.6) of Theorem 2.1 and (3.3.5) of Theorem 3.3 we assume that:

(h1) there exist a continuous non-decreasing function ψ : [0,∞)−→ (0,∞), p∈L1(J,R+)
such that ‖F(t,u)‖ � p(t)ψ(‖u‖D) for each (t,u) ∈ J×D with

∫ T

0
γ(s)ds <

∫ ∞

c

ds
ψ(s)

,
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where

γ(t) =
MM∗e−ωt p(t)

1− c1
and c =

M∗

1− c1

[
(1+ c1)(‖φ‖D +Q)+ c2 +

c2

M∗
]
.

The ideas in the proof of Theorem 2.2 immediately yield the following result.

THEOREM 3.4. Assume that the conditions (2.1.2), (2.1.4), (3.3.1)–(3.3.4) hold.
In addition we suppose that the following condition is satisfied:

(3.4.1) there exist a continuous non-decreasing function ψ : [0,∞) −→ (0,∞), p ∈
L1(J,R+) such that

‖F(t,u)‖ � p(t)ψ(‖u‖D) for each (t,u) ∈ J×D

and there exists a constant M∗ > 0 with

(1− c1)M∗

M∗(1+ c1)‖φ‖D +M∗(c2 +Q)+ c2 +MM∗ψ(M∗)
∫ T

0
e−ωsp(s)ds

> 1.

Then the IVP (3.3)–(3.4) has at least one integral solution on [−r,T ].

4. Semilinear evolution differential inclusions with infinite delay

In this section we are interested in existence results for neutral functional differ-
ential inclusions with infinite delay of the form

(d/dt)[y(t)− f (t,yt)] ∈ Ay(t)+F(t,yt), t ∈ J := [0,T ], (4.1)

y0(t) = φ(t)+q(yt1 , . . . ,ytn)(t), for t ∈ (−∞,0], (4.2)

where A is the infinitesimal generator of an analytic semigroup of bounded linear op-
erators S (t), t � 0 on a Banach space E, F : J×F → P(E) is a bounded, closed,
convex-valued multivalued map, f : J×F → E and yt : (−∞,0] → E, yt(θ ) = y(t +
θ ),θ � 0 belongs to some abstract phase space F , that is, a linear space of functions
mapping (−∞,0] into E endowed with a seminorm ‖ · ‖F in F , 0 < t1 < t2 < .. . <
tn � T and q : F n → F .

Let FT be the space of all functions y : (−∞,T ] → E such that y0 ∈ F and the
restriction y : J → E is continuous. Let ‖ · ‖T be the seminorm in FT defined by

‖y‖T = ‖y0‖F + sup{‖y(s)‖ : 0 � s � T}, y ∈ FT .

We will employ an axiomatic definition of the phase space F similar to those
introduced by Hale and Kato [11] (see also the book of Hino et al [14]). We will
assume that F satisfies the following axioms:
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(A) If y : (−∞,T ] → E,T > 0 is such that y|[0,T ] is continuous and y0 ∈ F , then for
every t in [0,T ) the following conditions hold:

(i) yt is in F ;

(ii) ‖y(t)‖ � H‖yt‖F ;

(iii) ‖yt‖F � K(t)sup{‖y(s)‖ : 0 � s � t}+M(t)‖y0‖F ,

where H � 0 is a constant, K : [0,∞)→ [0,∞) is continuous, M : [0,∞) → [0,∞)
is locally bounded and H,K,M are independent of y(·).
Denote

KT = sup{K(t),t ∈ [0,T ]}, MT = sup{M(t),t ∈ [0,T ]}.

(A-1) For the function y in (A), the mapping t ∈ [0,T ) → yt ∈ F is continuous on
[0,T ).

(A-2) The space F is complete.

In the statements that follow we consider conditions (2.1.2), (2.1.4), (2.1.5) with
F instead of D . Also for the remainder of this section we will have an extra assump-
tion, namely we will assume (F ,‖.‖F ) is a normed space.

THEOREM 4.1. Assume that (2.1.1), (2.1.2), (2.1.4), (2.1.5), and (2.1.6) hold. In
addition we suppose that

(4.1.1) there exist constants 0 < β < 1,c1,c2,Lf such that f is Eβ -valued, (−A)β f
is continuous, and

(i) ‖(−A)β f (t,x)‖ � c1‖x‖F + c2 , (t,x) ∈ J×F ,

(ii) ‖(−A)β f (t,x1)− (−A)β f (t,x2)‖ � Lf ‖x1 − x2‖F , (t,xi) ∈ J ×F , i =
1,2 ,

(4.1.2) the problem

u′(t) = b′K′
2g(t,u(t)), a.e. t ∈ J,

u(0) = b′K′
0,

where

K′
0 = [MT‖φ‖F +KTΛ′](1− c1‖(−A)−β‖)−1,

K′
1 = KTC1−β c1(1− c1‖(−A)−β‖)−1, K′

1T
ββ−1 < 1

K′
2 = KT M(1− c1‖(−A)−β‖)−1, b′ = eK′

1
m(Γ(β ))mTmβ /Γ(mβ )

m−1

∑
j=0

(
K′

1T
β

β

) j

,

Λ′ = M‖φ‖F

{
H + c1‖(−A)−β‖}+MQ(1+‖(−A)−β‖)

+c2‖(−A)−β‖{M +1}+
C1−β c2T β

β
,

has a maximal solution r(t);
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(4.1.3) assume that

Θ = max

{
KTΛ1 +M2

T

n

∑
i=1

Li(q),Λ2

n

∑
i=1

Li(q)

}
< 1,

where

Λ1 = MT

[
‖(−A)−β‖Lf +MH

n

∑
i=1

Li(q)+Lf
C1−βT β

β

]
+MLf ‖(−A)−β‖,

Λ2 = KT

[
‖(−A)−β‖Lf +MH

n

∑
i=1

Li(q)+Lf
C1−βT β

β

]
.

Then the IVP (4.1)–(4.2) has at least one mild solution on (−∞,T ].

Proof. Consider the operator N ′ : FT −→ P(FT ) defined by:

N ′(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈C((−∞,T ],E) :

h(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ(t)+q(yt1 , . . . ,ytn)(t), t ∈ (−∞,0],

S (t)[φ(0)+q(yt1 , . . . ,ytn)(0)− f (0,y0)]

+ f (t,yt)+
∫ t

0
AS (t − s) f (s,ys)ds

+
∫ t

0
S (t− s)v(s)ds, t ∈ J,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

where v ∈ SF,y. Now, we define two operators as follows. A ′ : FT −→ FT by

A ′(y)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
φ(t)+q(yt1 , . . . ,ytn)(t), t ∈ (−∞,0],

S (t)[φ(0)− f (0,y0)+q(yt1 , . . . ,ytn)(0)]+ f (t,yt)

+
∫ t

0
AS (t− s) f (s,ys)ds, t ∈ J,

(4.3)

and the multi-valued operator B′ : FT −→ P(FT ) by

B′(y) =

⎧⎪⎨
⎪⎩h ∈C([−r,T ],E) : h(t) =

⎧⎪⎨
⎪⎩

0, t ∈ (−∞,0],∫ t

0
S (t− s)v(s)ds, t ∈ J,

⎫⎪⎬
⎪⎭ (4.4)

Then N ′ = A ′+B′ . We shall show that the operators A ′ and B′ satisfy all the
conditions of Theorem 1.1. For better readability, we break the proof into a sequence
of steps.
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Step 1: We show that A ′ is a contraction on FT . Let x,y ∈ FT . Then

‖A ′(x)(t)−A ′(y)(t)‖
� MLf ‖(−A)−β‖‖x0− y0‖F +MH

n

∑
i=1

Li(q)‖xti − yti‖F

+‖(−A)−β‖Lf ‖xt − yt‖F +
∫ t

0

C1−β
(t − s)1−β dsL f max

0�s�t
‖xs− ys‖F

�
[
‖(−A)−β‖Lf +MH

n

∑
i=1

Li(q)+Lf
C1−βTβ

β

]
[KT ‖x− y‖T +MT‖x0− y0‖F ]

+MLf ‖(−A)−β‖‖x0− y0‖F

� Λ1‖x0− y0‖F +Λ2‖x− y‖T .

On the other hand for t ∈ [−r,0] we have A ′(y)(t) = φ(t) + q(yt1 , . . . ,ytn)(t) from
which we deduce

‖(A ′(x))0 − (A ′(y))0‖ � MT

n

∑
i=1

Li(q)‖x0− y0‖F +KT

n

∑
i=1

Li(q)‖x− y‖T .

The above relations and assumption (4.1.3) show that A ′ is a contraction.

Step 2: Theorem 2.1 guarantees that the multi-valued operator B′ has compact
convex values and it is completely continuous.

Therefore the operators A ′ and B′ satisfy all the conditions of Theorem 1.1 and
hence an application of it yields that either condition (i) or condition (ii) holds. We
show that the conclusion (ii) is not possible. If y ∈ λA ′(y)+λB′(y) for λ ∈ (0,1),
then there exists v ∈ SF,y such that

y(t) = λS (t)[φ(0)+q(yt1 , . . . ,ytn)(0)− f (0,y0)]+λ f (t,yt)

+λ
∫ t

0
AS (t − s) f (s,ys)ds+λ

∫ t

0
S (t− s)v(s)ds, t ∈ J.

(4.5)

Then

‖y(t)‖ � M(H‖φ‖F +Q)+M‖(−A)−β‖[c1(‖φ‖F +Q)+ c2]

+‖(−A)−β‖[c1‖yt‖F + c2]

+C1−β c1

∫ t

0

‖ys‖F

(t − s)1−β ds+
C1−β c2Tβ

β
+M

∫ t

0
g(s,‖ys‖F )ds

� Λ′ + c1‖(−A)−β‖ω(t)+C1−βc1

∫ t

0

ω(s)
(t − s)1−β ds

+M
∫ t

0
g(s,ω(s))ds, t ∈ J,

where the inequality

‖yt‖F � KT sup{‖y(s)‖ : 0 � s � t}+MT‖φ‖F := ω(t)
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is used. Since ω(·) is nondecreasing, it follows that

sup{‖y(s)‖ : 0 � s � t} � Λ′ + c1‖(−A)−β‖ω(t)

+C1−βc1

∫ t

0

ω(s)
(t− s)1−β ds+M

∫ t

0
g(s,ω(s))ds, t ∈ J.

Employing the last inequality and the definition of ω(·) we get

ω(t) = MT ‖φ‖F +KT sup{‖y(s)‖ : 0 � s � t}
� MT ‖φ‖F +KTΛ′ +KT c1‖(−A)−β‖ω(t)

+KTC1−β c1

∫ t

0

ω(s)
(t− s)1−β ds+MKT

∫ t

0
g(s,ω(s))ds, t ∈ J,

and hence

ω(t) � 1

1−KTc1‖(−A)−β‖
{

MT‖φ‖F +KTΛ′ +KTC1−β c1

∫ t

0

ω(s)
(t− s)1−β ds

+MKT

∫ t

0
g(s,ω(s))ds

}
� K′

0 +K′
1

∫ t

0

ω(s)
(t− s)1−β ds+K′

2

∫ t

0
g(s,ω(s))ds, t ∈ J.

From [17, Lemma 2.3] we have

ω(t) � b

(
K′

0 +K′
2

∫ t

0
g(s,ω(s))ds

)
, t ∈ J.

Proceed as in Theorem 2.1 to get that ‖y‖� b′0. So now we can take a large enough ball
so that (ii) does not occur. Hence the conclusion (i) holds and consequently the initial
value problem (1.3)–(1.4) has a solution y on (−∞,T ] . This completes the proof.

EXAMPLE 4.1. As an example of a function F satisfying the conditions (2.1.5),
(2.1.6) of Theorem 2.1 and (4.1.2) of Theorem 4.1 we assume that:

(h2) there exist a continuous non-decreasing function ψ : [0,∞)−→ (0,∞), p∈L1(J,R+)
such that ‖F(t,u)‖ � p(t)ψ(‖u‖D) for each (t,u) ∈ J×D with

bK′
2

∫ T

0
p(s)ds <

∫ ∞

bK0′

ds
ψ(s)

,

where b,K′
0,K

′
2 are defined in Theorem 4.1.

THEOREM 4.2. Assume that the conditions (2.1.1), (2.1.2), (2.1.4), (4.1.1) and
(4.1.3) hold. In addition we suppose that the following condition is satisfied:
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(4.2.1) there exist a continuous non-decreasing function ψ : [0,∞) −→ (0,∞), p ∈
L1(J,R+) such that

‖F(t,u)‖ � p(t)ψ(‖u‖F ) for each (t,u) ∈ J×D

and there exists a constant M∗ > 0 with(
1−K′

1
T β

β

)
M∗
/(

K′
0 +K′

2ψ(M∗)
∫ T

0
p(s)ds

)
> 1,

where K′
0,K

′
1,K

′
2 are as in Theorem 4.1.

Then the IVP (3.3)–(3.4) has at least one mild solution on (−∞,T ].

5. Second order semilinear neutral functional differential inclusions with
nonlocal conditions

In this section we study the problem (1.5)–(1.6). Some preliminaries facts are
necessary.

We say that a family {C(t) | t ∈ R} of operators in B(E) is a strongly continuous
cosine family if

(i) C(0) = I ,

(ii) C(t + s)+C(t− s) = 2C(t)C(s) , for all s,t ∈ R ,

(iii) the map t �→C(t)(x) is strongly continuous, for each x ∈ E .

The strongly continuous sine family {S(t) | t ∈R} , associated to the given strongly
continuous cosine family {C(t) | t ∈ R} , is defined by

S(t)(x) =
∫ t

0
C(s)(x)ds, x ∈ E, t ∈ R. (5.1)

The infinitesimal generator A : E → E of a cosine family {C(t) | t ∈ R} is defined by

A(x) =
d2

dt2
C(t)(x)

∣∣∣
t=0

.

For more details on strongly continuous cosine and sine families, we refer the reader
to the books of Goldstein [8], Heikkila and Lakshmikantham [12] and Fattorini [7] and
the papers [21] (in particular Proposition 2.2) and [22].

PROPOSITION 5.1. [21] Let C(t),t ∈ R be a strongly continuous cosine family in
E. Then:

(i) there exist constants M1 � 1 and ω � 0 such that |C(t)|� M1eω|t| for all t ∈ R;

(ii) |S(t1)−S(t2)| � M1

∣∣∣∣
∫ t1

t2
eω|s|ds

∣∣∣∣ for all t1,t2 ∈ R.
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DEFINITION 5.1. A function y ∈ C([−r,T ],E) is said to be a mild solution of
(1.5)-(1.6) if y0(t) = φ(t)+ q(yt1 , . . . ,ytn)(t), for t ∈ [−r,0], y′(0+)+ h(y) = η and
there exists v ∈ L1(J,E) such that v(t) ∈ F(t,yt) a.e. on J and

y(t) = C(t)[φ(0)+q(yt1 , . . . ,ytn)(0)]+S(t)[η−h(y)− f (0,y0)]

+
∫ t

0
C(t− s) f (s,ys)ds+

∫ t

0
S(t− s)v(s)ds, t ∈ J.

THEOREM 5.1. Assume (2.1.2), (2.1.4), (2.1.5), (2.1.6), and the conditions

(5.1.1) (i) the function h : C([−r,T ],E) → E is continuous and there exists a constant
Q1 > 0 such that ‖h(y)‖ � Q1, for all y ∈C([−r,T ],E);
(ii) there exists a constant k1 > 0 such that

‖h(x)−h(y)‖� k1‖x− y‖, for all x,y ∈C([−r,T ],E)

(5.1.2) for any y ∈C([−r,T ],E) there exists a δ > 0 such that

(a) the map t �→C(t)[φ(0)+ q(yt1 , . . . ,ytn)(0)] is continuously differentiable
on (0,δ ), and

(b) the map s �→ f (s,ys) is continuously differentiable a.e. on (0,δ );

(5.1.3) there exist constants 0 < c1 < 1,c2 � 0, � � 0 such that

(i) ‖ f (t,x)‖ � c1‖x‖D + c2, (t,x) ∈ J×D ;

(ii) ‖ f (t,x1)− f (t,x2)‖ � �‖x1− x2‖D , (t,xi) ∈ J×D , i = 1,2;

(5.1.4) A : D(A)⊂ E →E is the infinitesimal generator of a strongly continuous cosine
family {C(t) : t ∈ J}, and there exist constants N1 � 1, and N2 � 0 such that
‖C(t)‖B(E) � N1, ‖S(t)‖B(E) � N2 for all t ∈ [0,T ];

(5.1.5) for each bounded B ⊆C([−r,T ],E), and t ∈ J the set{∫ t

0
S(t− s)v(s)ds,v ∈ SF,B

}

is relatively compact in E, where SF,B = ∪{SF,y : y ∈ B};
(5.1.6) L1 := N1 (�T +∑n

i=1 Li(q))+N2(k1 + �) < 1,

(5.1.7) the problem

u′(t) = N1c1u(t)+N2g(t,u(t)), a.e. t ∈ J,

u(0) = C1,

where C1 = N1[‖φ‖D +Q]+N2[‖η‖+Q1 + c1(‖φ‖D +Q)+ c2]+N1c2T,
has a maximal solution ρ(t),

are satisfied. Then the problem (1.5)–(1.6) has at least one mild solution on [−r,T ].
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Proof. Consider the multivalued map N2 : C([−r,T ],E) −→ P(C([−r,T ],E))
defined by

N2(y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g ∈C([−r,T ],E) :

g(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t)+q(yt1 , . . . ,ytn)(t), if t ∈ [−r,0]

C(t)[φ(0)+q(yt1 , . . . ,ytn)(0)]
+S(t)[η−h(y)− f (0,y0)]

+
∫ t

0
C(t− s) f (s,ys)ds

+
∫ t

0
S(t− s)v(s)ds, if t ∈ [0,T ]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where v∈ SF,y. We shall show that N2 has a fixed point. Now, we define two operators
A2 : C([−r,T ],E) −→C([−r,T ],E) by

A2(y)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(yt1 , . . . ,ytn)(t), if t ∈ [−r,0]

C(t)q(yt1 , . . . ,ytn)(0)

S(t)[−h(y)− f (0,y0)]+
∫ t

0
C(t− s) f (s,ys)ds, if t ∈ J

and the multivalued map B2 : C([−r,T ],E) −→ P(C([−r,T ],E)) by

B2(y) :=

⎧⎪⎪⎨
⎪⎪⎩

g ∈C([−r,T ],E) :

g(t) =

⎧⎨
⎩
φ(t), if t ∈ [−r,0]

C(t)φ(0)+S(t)η+
∫ t

0
S(t− s)v(s)ds, if t ∈ J

⎫⎪⎪⎬
⎪⎪⎭

where v ∈ SF,y. We shall show that N2 := A2 +B2 has a fixed point, by showing that
the operators A2 and B2 satisfy all the conditions of Theorem 1.1 on C([−r,T ],E) .
We break the proof into a sequence of steps.

Step 1: We show that A2 is a contraction on C([−r,T ],E) . Let x,y∈C([−r,T ],E) .
Then

‖A2(x)(t)−A2(y)(t)‖ � N1

n

∑
i=1

Li(q)‖x− y‖+N2k1‖x− y‖

+N2�‖x− y‖+N1�T max
0�s�t

‖xs− ys‖D

�
[
N1

n

∑
i=1

Li(q)+N2k1 +N2�+N1�T

]
‖x− y‖.

Taking the supremum over t gives,

‖A2(x)−A2(y)‖ �
[
N1

n

∑
i=1

Li(q)+N1�T

]
‖x− y‖.
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This shows that A2 is a contraction, since L1 < 1.

Step 2: B2 has a closed graph (and therefore has closed values); see [17, Theorem
5.2, Step 4]. Moreover the operator B2 is completely continuous on C([−r,T ],E), as
[17, Theorem 5.2] guarantees. As a result B2 is compact valued.

Therefore the operators A2 and B2 satisfy all the conditions of Theorem 1.1 and
hence an application of it yields that either condition (i) or condition (ii) holds. We
show that the conclusion (ii) is not possible.

If y ∈ λA2(y)+λB2(y) for λ ∈ (0,1), then there exists v ∈ SF,y such that

y(t) = λC(t)[φ(0)+q(yt1 , . . . ,ytn)(0)]+λS(t)[η−h(y)− f (0,y0)]

+λ
∫ t

0
C(t− s) f (s,ys)ds+λ

∫ t

0
S(t− s)v(s)ds, t ∈ J.

(5.2)

This implies by our assumptions that for each t ∈ J we have

‖y(t)‖ � N1[‖φ‖D +Q]+N2[‖η‖+Q1 + c1(‖φ‖D +Q)+ c2]

+N1

∫ t

0
(c1‖ys‖D + c2)ds+N2

∫ t

0
g(s,‖ys‖D)ds.

We consider the function μ defined by μ(t) = sup{‖y(s)‖ : −r � s � t}, 0 � t �
T. Let t∗ ∈ [−r, t] be such that μ(t) = ‖y(t∗)‖ . If t∗ ∈ J , by the previous inequality we
have for t ∈ J

μ(t) � N1[‖φ‖D +Q]+N2[‖η‖+Q1 + c1(‖φ‖D +Q)+ c2]

+N1c1

∫ t

0
μ(s)ds+N1c2T +N2

∫ t

0
g(s,μ(s))ds

� C1 +N1c1

∫ t

0
μ(s)ds+N2

∫ t

0
g(s,μ(s))ds.

If t∗ ∈ J0 then μ(t) � ‖φ‖D +Q and the previous inequality holds.
Let us take the right-hand side of the above inequality as γ(t) . Then we have

γ(0) = C1, μ(t) � γ(t), t ∈ J

and

γ ′(t) = N1c1μ(t)+N2g(t,μ(t))
� N1c1v(t)+N2g(t,γ(t)), t ∈ [0,T ].

This implies that ([16] Theorem 1.10.2) γ(t) � ρ(t) for t ∈ J, and hence ‖y(t)‖�
b′1 = supt∈[−r,T ]ρ(t), where b′1 depends only on T and on the function ρ . So now we
can take a large enough ball so that (ii) does not occur. Hence the conclusion (i) holds
and consequently the initial value problem (1.5)-(1.6) has a solution y on [−r,T ] . This
completes the proof.
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EXAMPLE 5.1. As an example of a function F satisfying the conditions (2.1.5),
(2.1.6) of Theorem 2.1 and (5.1.5) of Theorem 5.1 we assume that:

(h) there exist a continuous non-decreasing function ψ : [0,∞)−→ (0,∞), p∈L1(J,R+)
such that ‖F(t,u)‖ � p(t)ψ(‖u‖D) for each (t,u) ∈ J×D with

∫ T

0
γ1(s)ds <

∫ ∞

C1

ds
s+ψ(s)

,

where γ1(t) = max{N1c1,N2p(t)} and C1 as defined in Theorem 5.1.

THEOREM 5.2. Assume that the conditions (2.1.2), (2.1.4), (5.1.1) hold. In addi-
tion we suppose that the following condition is satisfied:

(5.2.1) there exist a continuous non-decreasing function ψ : [0,∞) −→ (0,∞), p ∈
L1(J,R+) such that

‖F(t,u)‖ � p(t)ψ(‖u‖D) for each (t,u) ∈ J×D

and there exists M∗∗ > 0 such that

(1−Tc1N1)M∗∗
/(

C1 +N2)ψ(M∗∗)
∫ T

0
p1(s)ds

)
> 1,

where C1 as defined in Theorem 5.1.

Then the problem (1.5)–(1.6) has at least one mild solution on [−r,T ].
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