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TWO–POINT OSCILLATIONS IN SECOND–ORDER

LINEAR DIFFERENTIAL EQUATIONS

MERVAN PAŠIĆ AND JAMES S. W. WONG

Abstract. A second-order linear differential equation (P) : y′′ + f (x)y = 0 , x ∈ I , where I =
(0,1) and f ∈ C(I) , is said to be two-point oscillatory on I , if all its nontrivial solutions
y ∈ C( I )∩C2(I) , oscillate both at x = 0 and x = 1 , i.e. having sequences of infinite zeros
converging to x = 0 and x = 1 . It necessarily implies that all solutions y(x) of (P) must satisfy
the Dirichlet boundary conditions and that f (x) must be singular at both end points of I . We
first describe a class of two-point oscillatory equations of (P) . Secondly, we prove that (P)
is two-point oscillatory if f (x) satisfies certain Hartman-Wintner type asymptotic conditions.
Furthermore, we study the arclength of the graph G(y) of solutions curve y(x) on I . Two-point
oscillatory equation (P) is said to be two-point rectifiable (unrectifiable) oscillatory if the ar-
clengths of all solutions are finite (infinite). We give conditions on f (x) which imply (P) is
two-point rectifiable (unrectifiable) oscillatory. When (P) is two-point unrectifiable oscillatory,
we determine the fractal dimension of its solution curves for a special class of f (x) similar to
the Euler type equations when f (x) is only singular at one end point of I . Finally, the preceding
results motivate a study on two-sided oscillations of (P) at an interior point of I .
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