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TWO-POINT OSCILLATIONS IN SECOND-ORDER
LINEAR DIFFERENTIAL EQUATIONS

MERVAN PASIC AND JAMES S. W. WONG

Abstract. A second-order linear differential equation (P): y’ + f(x)y =0, x € I, where I =
(0,1) and f € C(I), is said to be two-point oscillatory on I, if all its nontrivial solutions
y € C(T)NC%(I), oscillate both at x =0 and x = 1, i.e. having sequences of infinite zeros
converging to x =0 and x = 1. It necessarily implies that all solutions y(x) of (P) must satisfy
the Dirichlet boundary conditions and that f(x) must be singular at both end points of T . We
first describe a class of two-point oscillatory equations of (P). Secondly, we prove that (P)
is two-point oscillatory if f(x) satisfies certain Hartman-Wintner type asymptotic conditions.
Furthermore, we study the arclength of the graph G(y) of solutions curve y(x) on I. Two-point
oscillatory equation (P) is said to be two-point rectifiable (unrectifiable) oscillatory if the ar-
clengths of all solutions are finite (infinite). We give conditions on f(x) which imply (P) is
two-point rectifiable (unrectifiable) oscillatory. When (P) is two-point unrectifiable oscillatory,
we determine the fractal dimension of its solution curves for a special class of f(x) similar to
the Euler type equations when f(x) is only singular at one end point of 7. Finally, the preceding
results motivate a study on two-sided oscillations of (P) at an interior point of 7 .

Mathematics subject classification (2000): 26A27, 26A45, 28A75, 28A80, 34B05, 34C10.
Keywords and phrases: Linear, singular, Dirichlet boundary value problem, oscillations, graph, recti-

fiability, fractal dimension, Minkowski content, chirp-like asymptotic behaviour.
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