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Abstract. A second-order linear differential equation (P) : y′′ + f (x)y = 0 , x ∈ I , where I =
(0,1) and f ∈ C(I) , is said to be two-point oscillatory on I , if all its nontrivial solutions
y ∈ C( I )∩C2(I) , oscillate both at x = 0 and x = 1 , i.e. having sequences of infinite zeros
converging to x = 0 and x = 1 . It necessarily implies that all solutions y(x) of (P) must satisfy
the Dirichlet boundary conditions and that f (x) must be singular at both end points of I . We
first describe a class of two-point oscillatory equations of (P) . Secondly, we prove that (P)
is two-point oscillatory if f (x) satisfies certain Hartman-Wintner type asymptotic conditions.
Furthermore, we study the arclength of the graph G(y) of solutions curve y(x) on I . Two-point
oscillatory equation (P) is said to be two-point rectifiable (unrectifiable) oscillatory if the ar-
clengths of all solutions are finite (infinite). We give conditions on f (x) which imply (P) is
two-point rectifiable (unrectifiable) oscillatory. When (P) is two-point unrectifiable oscillatory,
we determine the fractal dimension of its solution curves for a special class of f (x) similar to
the Euler type equations when f (x) is only singular at one end point of I . Finally, the preceding
results motivate a study on two-sided oscillations of (P) at an interior point of I .

1. Introduction

Let I =(0,1) be the unit interval in R and let f ∈C(I) . Let y = y(x) be a real func-
tion defined on the interval I = [0,1] and smooth enough on I , that is, y∈C( I )∩C2(I) .
Let G(y) denote the graph of y(x) defined as usual by G(y) = {(x,y(x)) : 0 � x � 1} ⊆
R2 . A function y(x) is said to be oscillatory (respectively nonoscillatory) on an inter-
val J ⊆ R if it has an infinite (respectively a finite) number of zeros on J . A linear
differential equation y′′ + f (x)y = 0 is said to be oscillatory (respectively nonoscilla-
tory) on J if all its nontrivial solutions are oscillatory (respectively nonoscillatory) on
J . If an interval J ⊆R is infinite or if J is finite and 0∈ J , then the famous Euler linear
differential equation y′′ + λx−2y = 0 is oscillatory (respectively nonoscillatory) on J
provided λ > 1/4 (respectively λ � 1/4), see for instance [22]. This kind of results
was generalized to several class of linear and nonlinear ordinary differential equations
on infinite intervals, with the help of several methods like the Sturm comparison princi-
ple, the transformation to Ricati equation, etc.. See for instance [7], [22], and references
therein.

In the paper, we study the so-called 2-point oscillations of real functions and linear
differential equations on the finite interval I , introduced in the following way.
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DEFINITION 1.1. A function y(x) is said to be 2 -point oscillatory on the interval
I if:

(i) for any closed interval J ⊆ I , 0 /∈ J and 1 /∈ J , y(x) is nonoscillatory on J ,

(ii) there is a decreasing sequence ak ∈ I and an increasing sequence bk ∈ I of consec-
utive zeros of y(x) such that ak ↘ 0 and bk ↗ 1.

Let T > 0 and let W = W (t) be a T -periodic and smooth real function with
W (t0) = 0 for some t0 ∈ R . As a basic class of 2-point oscillatory functions on I
can be taken y(x) = p(x)W (q(x)) , where p,q ∈ C2(I) , |p(x)| > 0 in I , p(0+) =
p(1−) = 0, and |q(0+)| = |q(1−)| = ∞ . For instance, for α > 0, β > 0, ρ > 0,
and W (t) = sin t or W (t) = cost , the functions y(x) = (x− x2)αW ((x− x2)−β ) and
y(x) = [x ln(1/x)]αW (ρ ln ln(1/x)) are 2-point oscillatory on I .

Using the proto-type of 2-point oscillatory functions introduced above, we can
consider 2-point oscillations in second-order linear differential equations on the finite
interval I .

DEFINITION 1.2. A linear differential equation y′′ + f (x)y = 0 is said to be 2 -
point oscillatory on I if all its non-trivial solutions y(x) are 2-point oscillatory on I .

The condition (ii) from Definition 1.1 necessarily implies that all solutions y(x)
of a 2-point oscillatory linear differential equation y′′ + f (x)y = 0 on I satisfy the
Dirichlet boundary conditions on I , and hence, we can always to assume y(0) = y(1) =
0. As the pre-model-equation for 2-point oscillations on I , we consider the so-called
Riemann-Weber version of the Euler differential equation,

y′′ +
1
x2

(1
4

+
λ

| lnx|2
)
y = 0, x ∈ I, (1)

where λ > 1/4. This equation plays an important role in the theory of nonlinear os-
cillations of Euler type equations: see for instance Sugie and Hara [20], Sugie and
Kita [21], and Wong [24]. The general solution of (1) is explicitly given by y(x) =
c1y1(x)+ c2y2(x) , where

y1(x) = [x ln(1/x)]1/2 cos(ρ ln ln(1/x)) , y2(x) = [x ln(1/x)]1/2 sin(ρ ln ln(1/x)) ,

and ρ = (λ−1/4)1/2 . Obviously, the functions y1(x) and y2(x) are 2-point oscillatory
on I , and hence, the equation (1) is 2-point oscillatory on I . Moreover, in Section
2 below, we will present a more systematic way to establish 2-point oscillations of
(1) . We shall also discuss other model-equations for 2-point oscillations with f (x)
involving polynomial or exponential functions which are singular at both end points
of I .

In the sequel, some essential results on 2-point oscillations on I will be proved by
using the following 2-point version of well known Sturm comparison principle.

LEMMA 1.3. Let f , g ∈ C(I) and let equation y′′ + f (x)y = 0 be 2 -point oscil-
latory on I . If f (x) � g(x) near x = 0 and x = 1 , then equation y′′ + g(x)y = 0 is
2 -point oscillatory on I too.
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Now, by means of Lemma 1.3 we can obtain a large class of second-order linear
differential equations which are 2-point oscillatory on I .

THEOREM 1.4. Let λ > 1/4 and let f ∈C(I) such that

f (x) � 1
x2

(1
4

+
λ

| lnx|2
)

near x = 0 and x = 1. (2)

Then equation y′′ + f (x)y = 0 is 2 -point oscillatory on I .

In view of Theorem 1.4, it is natural to seek conditions on f (x) for 2-point oscil-
lations of equation y′′ + f (x)y = 0 on I when (2) is not satisfied.

THEOREM 1.5. Let f ∈C(I) such that

f (x) � 1
4x2

(
1+

1
| lnx|2

)
near x = 0 and x = 1. (3)

Then equation y′′ + f (x)y = 0 is not 2 -point oscillatory on I .

The proof of Theorem 1.5 follows also from Sturm comparison theorem and the
fact that equation (1) is nonoscillatory for λ = 1/4. It is because the general solution
y(x) = c1y1(x)+ c2y2(x) of equation (1) for λ = 1/4 is determined by the functions
y1(x) = x−1/2 ln(1/x) and y2(x) = x−1/2 ln(1/x) ln ln(1/x) which are nonoscillatory at
x = 0 and x = 1, even y1(0) = y2(0) = y1(1) = y2(1) = 0.

There are many classes of linear differential equations which are not 2-point oscil-
latory on the interval I. Therefore, it is helpful to have a necessary condition for 2-point
oscillations of a linear differential equation on I , which again follows from the Sturm’s
comparison principle.

THEOREM 1.6. Let f ∈C(I) and let equation y′′+ f (x)y = 0 be 2 -point oscilla-
tory on the interval I . Then | f (0+)| = | f (1−)| = +∞ .

Consequently, the Euler linear differential equation y′′ +λx−2y = 0, λ > 1/4, as
well as its generalization, y′′ + λx−αy = 0, x ∈ I , where λ > 0 and α > 2, are not
2-point oscillatory on I . Also, the so called chirp-equation y′′ + x−2

(
δ 2x−2δ + (1−

δ 2)/4
)
y = 0 as well as the equation y′′ + x−4

(
e2/x −1/4

)
y = 0 with exponential term

in its coefficient, are also not 2-point oscillatory on I . These kinds of equations have
been recently studied in [12], [13], [14], and [25].

In Section 2, we present a method by which the functions y1(x) = p(x)cosq(x)
and y2(x) = p(x)sinq(x) via general solution formula y(x) = c1y1(x) + c2y2(x) pro-
duce an important class of 2-point oscillatory equations y′′ + f (x)y = 0 on I , where
f (x) is explicitly expressed in terms of given functions p(x) and q(x) . In Section
3, in a more general setting, we explore some asymptotic conditions of Hartman-
Wintner type on the coefficient f (x) such that a second-order linear differential equa-
tion y′′ + f (x)y = 0 is 2-point oscillatory on I . As a consequence of these results, we
prove that equation

y′′ +
c(x)

(x− x2)σ
y = 0, x ∈ I, (4)
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is 2-point oscillatory on I if σ > 2, where c(x) is a smooth and positive function on
I . Hence, besides equation (1) , the equation (4) is also a model-equation for 2-point
oscillations on the interval I .

The geometric structure of all solutions of equation (4) is rather rich. More pre-
cisely, since the arc-length of the graph G(y) = {(x,y(x)) : 0 � x � 1} of a 2-point
oscillatory function y(x) on I may be finite, infinite or of fractal type, the so-called
2-point rectifiable, unrectifiable, and fractal oscillations of y(x) on I are introduced
and studied respectively in Section 4, Section 5, and Section 6. As a consequence of
these results, we observe that such three kinds of 2-point oscillations of equation (4)
depend only on parameter σ in this way: equation (4) is 2-point rectifiable oscillatory
on I if σ ∈ (2,4) , 2-point unrectifiable oscillatory on I if σ � 4, and 2-point fractal
oscillatory on I if σ > 4. Since equation (1) is only 2-point rectifiable oscillatory
on I , the equation (4) will be taken as a principal model-equation for all remaining
discussion in the paper.

According to the above results, in Section 8 we propose a study on the oscillations
of equation (P) : y′′ + f (x)y = 0 near an interior point x0 of I , where x0 is a singular
point of f (x) . Analogously to 2-point oscillations, it provides corresponding results
on the so-called 2-sided rectifiable, unrectifiable, and fractal oscillations of equation
(P) at x0 .

When equation (4) is fractal oscillatory, we determine the box dimension of its
solution curves to be 3/2− 2/σ , similar to the simpler case of equation (P) of Euler
type, see [13]. By box dimension, we refer to Minkowski-Bouligand dimension see
[6] and [11]. Fractal oscillations have been recently studied in nonlinear equations: in
half-linear equation — see [15], in Liénard equation — see [16], and Emden-Fowler
equation — see [26], [27]. Geometric measure theory has been successfully applied to
prove smoothness of weak solutions of Navier-Stokes equations see [3], [9], and [19].

2. Existence of a class of 2-point oscillatory equations on I

In this section, we give the existence of a large class of second-order linear differ-
ential equations which are 2-point oscillatory on the interval I and which contain, as a
particular case, our pre-model-equation (1) . That class of equations will be determined
by a given real function q = q(x) which satisfies the following structural conditions:

q ∈C3(I), (5)

|q(0+)|= |q(1−)| = +∞ and |q′(0+)| = |q′(1−)| = +∞ , (6)

q′(x) < 0 for all x ∈ I and S(q′) ∈C(I) . (7)

Here S(q′)(x) denotes as usual the Schwarzian derivative of q(x) defined by

S(q′)(x) =
q′′′(x)
q′(x)

− 3
2

[q′′(x)
q′(x)

]2
, x ∈ I.

We mention that in the theory of chaos, the Schwarzian derivative S(q′)(x) plays an
important role to determine the chaotic behaviour of a discrete iteration equation xn+1 =
q(xn) when n → ∞ , see for instance [2] and [18].



TWO-POINT OSCILLATIONS IN SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS 89

With the help of the general solution y(x) = c1y1(x)+ c2y2(x) which is explicitly
given in terms of the function q(x) by the formula:

y1(x) = |q′(x)|− 1
2 cosq(x) and y2(x) = |q′(x)|− 1

2 sinq(x) , (8)

one can form the following class of second-order linear differential equations on I :

y′′ +
[1
2
S(q′)(x)+ (q′)2(x)

]
y = 0, x ∈ I. (9)

In the first main result of this section, the structural conditions (5) , (6) , and (7) ensure
the existence of 2-point oscillations of equation (9) .

THEOREM 2.1. Let q(x) satisfy the conditions (5) , (6) , and (7) . Then equation
(9) is 2 -point oscillatory on I .

In order to prove this theorem, it is enough to show that (8) is the general solution
of (9) and that the conditions (5) , (6) , and (7) imply 2-point oscillations of general
solution (8) . It is an elementary procedure and we leave it to the reader.

We are able now to verify 2-point oscillations in equation (1) in a different way
than in Section 1, by showing that (1) is a particular case of equation (9) where the
corresponding function q(x) satisfies the conditions (5) , (6) , and (7) .

EXAMPLE 2.2. Let q(x) = ρ ln ln(1/x) and ρ = (λ −1/4)1/2 . It is easy to check
that for all x ∈ I , q′(x) = −ρ/[x ln(1/x)] < 0 and q′ ∈C2(I) , which implies that q(x)
satisfies the conditions (5) and (6) . Also,

S(q′)(x) =
1+ ln2(1/x)
2x2 ln2(1/x)

∈C(I) and
1
x2

(1
4

+
λ

| lnx|2
)

=
1
2
S(q′)(x)+ (q′)2(x).

It shows that q(x) satisfies the condition (7) and that equation (1) is a particular case
of (9) . Hence by Theorem 2.1, the equation (1) is 2-point oscillatory on I . �

The condition (7) implies the existence and continuity of f (x) = 1
2S(q′)(x) +

(q′(x))2 . In the following example we give a very simple function q(x) which satisfies
the conditions (5) and (6) but does not satisfy the condition (7) , and so f /∈C(I) .

EXAMPLE 2.3. Let q(x) = 1/(x−x2) . Since q′(x) = (2x−1)/(x−x2)2 and q′ ∈
C2(I) , it is clear that q(x) satisfies the conditions (5) and (6) . Also, since q′(1/2) = 0
and S(q′)(x) = −6/(1−2x)2 , we have obviously that S(q′) is singular at x = 1/2 and
thus the condition (7) is not satisfied. �

An example for the function q(x) which satisfies the conditions (5) , (6) , and (7) ,
is the following.

EXAMPLE 2.4. Let q(x) = (1−2x)/(x− x2)β , β > 0. Then q ∈C3(I) and:

q′(x) = − Q(x)
(x− x2)β+1

< 0 and S(q′)(x) =
P6(x,β )

(x− x2)2Q2(x)
, (10)



90 MERVAN PAŠIĆ AND JAMES S. W. WONG

where Q(x) = 2(2β − 1)x2 − 2(2β − 1)x + β and P6(x,β ) is a polynomial function
in variables x and β of the 6th degree. Therefore, the function q(x) satisfies the
conditions (5) , (6) , and (7) , and for such a choice of q(x) , equation (9) is 2-point
oscillatory on I by Theorem 2.1. For all β > 0, we have

0 < min{β ,1/4}� Q(x) � max{β ,1/4} for all x ∈ I (11)

and Q(x) is decreasing near x = 0 and increasing near x = 1 when β > 1/2. We
therefore have the following estimates for |q′(x)|−1 which will be frequently used in
Section 5 and Section 6 below:{

c1(x− x2)β+1 � |q′(x)|−1 � c2(x− x2)β+1 for all x ∈ I and β > 0,

|q′(x)|−1 is increasing near x = 0 and decreasing near x = 1, if β > 1/2,
(12)

where c1,c2 are positive constants. Next, we obviously have S(q′)(x) + 2(q′)2(x) =
P6(x,β )(x− x2)−2Q−2(x)+ 2Q2(x)(x− x2)−2β−2 . Since for all β > 0 the functions
P6(x,β ) and Q(x) are bounded on I from below and above, from previous equality
easily follows

[1
2
S(q′)(x)+ (q′)2(x)

] ∼ (x− x2)−2β−2 near x = 0 and x = 1 . � (13)

Next, by using the Sturm’s comparison principle, Theorem 2.1 can be extended to
a general class of linear differential equations.

THEOREM 2.5. Let f ∈C(I) and let there be a real function q(x) satisfying (5) ,
(6) , and (7) such that

f (x) � 1
2S(q′)(x)+ (q′)2(x) near x = 0 and x = 1 .

Then equation y′′ + f (x)y = 0 is 2 -point oscillatory on I .

As a consequence of Theorem 2.5, besides equation (9) , one can explore some addi-
tional class of model-equations which are 2-point oscillatory on I . It is equation (4) .
With the help of Example 2.4, one can find a function c(x) for which equation (4)
equals to equation (9) , where q(x) = (1−2x)/(x− x2)β , β > 0, and σ = 2β +2. In
general, since the coefficient c(x) from (4) is an arbitrarily given positive continuous
function on I , it would be difficult to find a suitable q(x) so that equation (9) becomes
(4) .

COROLLARY 2.6. If σ > 2 , then equation (4) is 2 -point oscillatory on I .

Proof. Let g(x) be a function defined by g(x) = c(x)/(x− x2)σ , x ∈ I . Since c(x) is
a positive and continuous function on I , there is a constant m > 0 such that m � c(x)
for all x ∈ I , and so, since σ > 2 there is a β1 > 0 such that 2β1 +2 < σ and

m

(x− x2)2β1+2
� c(x)

(x− x2)σ
= g(x), x ∈ I. (14)
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Next, for q(x) = (1− 2x)/(x− x2)β , x ∈ I , and for any β > 0 such that β < β1 , let
f (x) be a function defined by f (x) =

[ 1
2S(q′)(x)+(q′)2(x)

]
, x ∈ I . From Example 2.4

we know that f (x) is a continuous function on I and that equation y′′ + f (x)y = 0 is
2-point oscillatory on I . By (13) and (14) , near x = 0 and x = 1, we have:

f (x) =
[1
2
S(q′)(x)+ (q′)2(x)

]
� m

(x− x2)2β+2
� m

(x− x2)2β1+2
� g(x).

Hence, by using Lemma 1.3 we conclude that equation (4) is 2-point oscillatory on I .
�

Now, we present a particular case of equation (9) , where the singular term is of
exponential type.

EXAMPLE 2.7. Let c(x) be a continuous function on I such that c(x) � 1 for all
x ∈ I . We consider the equation

y′′(x)+ c(x)e
4

x−x2 y(x) = 0, x ∈ I . (15)

This equation is a particular case of (9) when q(x) = (1−2x)e1/(x−x2) , x ∈ I . Also, it
can be shown that for such a choice of q(x) , all conditions of Theorem 2.5 are satisfied
and hence, the equation (15) is 2-point oscillatory on I . Indeed, q ∈C3(I) and

f (x) = c(x)e
4

x−x2 � e
4

x−x2 � e
4

x−x2
e

−2
x−x2

(x− x2)4 =
e

2
x−x2

(x− x2)4

� Q(x)e
2

x−x2

(x− x2)4 =
1
2
S(q′)(x)+ (q′)2(x),

where Q(x) is a continuous function on I such that

Q(x) =
1

4[1+2(x2− x)(x2− x+2)]2
[e

−2
x−x2 P16(x)+Q16(x)],

and P16(x) and Q16(x) are two suitable polynomial functions. Also,

q′(x) = − (1−2x)2 +2x2(1− x)2

(x− x2)2 e
1

x−x2 < 0. �

3. Hartman-Wintner type asymptotic conditions

The equations (1) , (4) , and (9) have been proposed in the previous sections as
the model-equations for 2-point oscillations on the interval I . It has been based on
Theorem 2.1 and Theorem 2.5. In this section, we study 2-point oscillations on I in
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the case of second-order linear differential equations in a general form y′′ + f (x)y = 0,
where the coefficient f (x) satisfies the Hartman-Wintner asymptotic condition on I :

f−
1
4 ( f−

1
4 )′′ ∈ L1(I). (16)

The main properties for such a class of functions f (x) satisfying (16) are the non-
integrability of f 1/2(x) on I and the regular asymptotic behaviour of f−3/2(x) f ′(x)
near x = 0 and x = 1 as follows.

LEMMA 3.1. Let f ∈C2(I) , f (x) > 0 on I , f (0+) = f (1−) = ∞ , and let f (x)
satisfy the Hartman-Wintner condition (16) . Then we have:∫ 1/2

0
f

1
2 (x)dx =

∫ 1

1/2
f

1
2 (x)dx = ∞, (17)

and
lim

x→0+
f−

3
2 f ′(x) = lim

x→1−
f−

3
2 f ′(x) = 0. (18)

Proof. In order to prove (17) , it is enough to use the following technical result, which
will be proved in Appendix of the paper.

PROPOSITION 3.2. Let F = F(x) be a real function such that F ∈C2(I) , F(x) >
0 on I , and F(0) = F(1) = 0 . If A > 1 and FA−1F ′′ ∈ L1(I) , then F−A /∈ L1(0, 1

2 ) ,
F−A /∈ L1( 1

2 ,1) , and limx→0 FA−1F ′(x) = limx→1 FA−1F ′(x) = 0 .

Now, the desired properties (17) and (18) easily follow from Proposition 3.2 by
putting F(x) = f−1/4(x) . �

Now, we are able to state the main result of this section, which generalizes results
obtained in previous sections.

THEOREM 3.3. Let f ∈C2(I) , f (x) > 0 on I , f (0+) = f (1−) =∞ , and let f (x)
satisfy the Hartman-Wintner condition (16) . Then equation y′′ + f (x)y = 0 is 2 -point
oscillatory on I .

Proof. Using Liouville transformation u(s) = y(x) f
1
4 (x) and s =

∫ 1/2
x f

1
2 (ξ )dξ , we

transform equation y′′ + f (x)y = 0 on (0,1/2] to the equation

ü(s)+ (1+φ(s))u(s) = 0, s � 0, (19)

where ”dot” denotes differentiation with respect to s and

φ(s) =
5
16

f−3 f ′2 − 1
4

f−2 f ′′ ∈ L1[0,∞).

Applying Hartman-Wintner theorem (see Hartman [7, Corollary 8.1, p. 371]) to equa-
tion (19) , we obtain

y(x) = f−
1
4 (x)

[
c1 cos(

∫ 1/2

x
f

1
2 (ξ )dξ )+ c2 sin(

∫ 1/2

x
f

1
2 (ξ )dξ )+o(1)

]
(20)
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and

y′(x) = f
1
4 (x)

[
c2 cos(

∫ 1/2

x
f

1
2 (ξ )dξ )− c1 sin(

∫ 1/2

x
f

1
2 (ξ )dξ )+o(1)

]
(21)

near x = 0. Similarly, we use s =
∫ x
1/2 f

1
2 (ξ )dξ in the above to obtain equation (19)

and

y(x) = f−
1
4 (x)

[
c1 cos(

∫ x

1/2
f

1
2 (ξ )dξ )+ c2 sin(

∫ x

1/2
f

1
2 (ξ )dξ )+o(1)

]
(22)

and

y′(x) = f
1
4 (x)

[
c2 cos(

∫ x

1/2
f

1
2 (ξ )dξ )− c1 sin(

∫ x

1/2
f

1
2 (ξ )dξ )+o(1)

]
(23)

near x = 1. Now, since f (0+) = f (1−) = ∞ , so by (17) , (20) , and (22) , we deduce
that y′′ + f (x)y = 0 is 2-point oscillatory on I , which proves the theorem. �

With the help of Theorem 3.3, one can establish 2-point oscillations of equation
(4) in a different way than the one presented in Corollary 2.6.

EXAMPLE 3.4. Let c(x) be a continuous and smooth function on I such that
c(x) > 0 for all x ∈ I and let σ > 2. It is easy to check that the function f (x) =
c(x)/(x− x2)σ satisfies: f ∈C2(I) , f (x) > 0 on I , f (0+) = f (1−) = ∞ , and

f−
1
4 ( f−

1
4 )′′ = Q(x)(x− x2)−2+ σ

2 ∈ L1(I),

where Q(x) is a smooth and bounded function on I , that is,

Q(x) = −(x− x2)2[
c′′(x)

4c3/2(x)
− 5c′2(x)

16c5/2(x)
]− (x− x2)[

σ(1−2x)c′(x)
8c3/2(x)

+
σ

2c1/4(x)
]

+
σ(σ −1/4)(1−2x)2

4c1/4(x)
.

Now, by the use of Theorem 3.3, we can conclude once again that equation (4) is
2-point oscillatory on I . �

Now, we are able to derive some important consequences of the asymptotic formu-
las (20) , (21) , (22) , and (23) , which will be frequently used in the following sections.
The first one is about the a priori estimates of y(x) near x = 0 and x = 1 and the sec-
ond one is about the stationary points of y(x) , where y(x) is a solution of equation
y′′ + f (x)y = 0.

COROLLARY 3.5. Let f ∈ C2(I) , f (x) > 0 on I , f (0+) = f (1−) = ∞ , and let
f (x) satisfy the Hartman-Wintner condition (16) . Then for all solutions y(x) of equa-
tion y′′ + f (x)y = 0 we have:

|y(x)| � c f−
1
4 (x) and |y′(x)| � c f

1
4 (x) near x = 0 and x = 1 . (24)
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Furthermore, let sk, tk ∈ I be two sequences of consecutive zeros of y′(x) such that
sk ↘ 0 and tk ↗ 1 . Then there are two constants c0 > and c1 > 0 and a k0 ∈ N such
that for all k � k0 there hold true :

|y(sk)| � c0 f−
1
4 (sk) and |y(tk)| � c0 f−

1
4 (tk) , (25)

and ∫ sk

sk+1

f
1
2 (ξ )dξ � c1π and

∫ tk+1

tk
f

1
2 (ξ )dξ � c1π . (26)

Proof. It is clear that the desired statement (24) immediately follows from (20) , (21) ,
(22) , and (23) . Next, we can rewrite (20) , (21) as follows (see Hartman [7, p. 371]):

y(x) = A f−
1
4 (x)cos

(∫ 1/2

x
f

1
2 (ξ )dξ +B+o(1)

)
, (27)

and

y′(x) = −A f
1
4 (x)sin

(∫ 1/2

x
f

1
2 (ξ )dξ +B+o(1)

)
(28)

near x = 0. So, for x = sk where y′(sk) = 0 and limk→∞ sk = 0, we obtain from (28)

∫ 1/2

sk
f

1
2 (ξ )dξ +B+o(1) = n(k)π , (29)

where n(k) is an integer which increases by 1 as k is increased by 1. Using (29) in

(27) we obtain |y(sk)|� c0 f−
1
4 (sk) , k � k0 , where c0 is any positive constant less than

|A| for sufficiently large k0 . A similar argument applies to the sequence tk ∈ I , where
y′(tk) = 0 and limk→∞ tk = 1. This proves (25) . Next, from (29) , we deduce that

∫ 1/2

sk
f

1
2 (ξ )dξ +o(1) = π ,

so for k � k0 , k0 sufficiently large, we have (26) , where c1 is any real number greater
than 1. Likewise, a similar argument applies to the sequence tk ∈ I in (26) . �

REMARK 3.6. Let S( f ) denote the Schwarzian derivative of
∫ 1/2
x f

1
2 (ξ )dξ or∫ x

1/2 f
1
2 (ξ )dξ , which is defined by

S( f )(x) =
f ′′(x)
f (x)

− 3
2

[ f ′(x)
f (x)

]2
, x ∈ I.

In equation (9) , let f (x) = q′2(x) where q(x) satisfies (5) , (6) , and (7) . Note that
f ∈C2(I) , f (x) > 0, and

1
2
S(q′)(x) =

1
2
S( f

1
2 )(x) = f

1
4 (x)( f−

1
4 (x))′′. (30)
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Using Liouville transformation u(s)= y(x) f
1
4 (x) and s =

∫ 1/2
x f

1
2 (ξ )dξ or s =

∫ x
1/2 f

1
2 (ξ )dξ

and the identity (30) , we can transform equation (9) to ü(s)+u(s) = 0. Condition (6)
implies that f (0+) = f (1−) = ∞ , so y(x) = u(s) f−

1
4 (x) shows that equation (9) is

2-point oscillatory on I .
On the other hand, we can write equation y′′ + f (x)y = 0 as a perturbation of

equation (9) as below:

y′′(x)+
[(1

2
S( f

1
2 )(x)+ f (x)

)− 1
2
S( f

1
2 )(x)

]
y(x) = 0. (31)

Observe that Liouville transformation now transforms (31) into ü(s)+(1+φ(s))u(s)=
0, where

−φ(s) =
1

2 f (x)
S( f

1
2 )(x) = f−

3
4 (x)( f−

1
4 (x))′′.

By Hartman-Wintner Theorem (see Hartman [7, Corollary 8.1]), y′′(x)+ f (x)y(x) =
0 is 2-point oscillatory if φ ∈ L1[0,∞) which is equivalent to the Hartman-Wintner

condition f−
1
4 ( f−

1
4 )′′ ∈ L1(I) . This provides an alternative proof of Theorem 3.3. �

4. Two-point rectifiable oscillations

The problem of oscillations of any real continuous function y(x) mostly consid-
ered on an infinite interval (x0,∞) , and so the graph G(y) as a curve in R2 posses the
infinite length. However, in some recent papers [8], [12], [14], [13], and [25], the oscil-
lations of all solutions y(x) of the second order differential equations y′′+ f (x)y = 0 is
studied on a finite interval, where the problem of finiteness or infiniteness of the graph
G(y) was naturally arises. The length of the graph G(y) is determined as usually by,

length(G(y)) = sup
m

∑
i=1

||(ti,y(ti))− (ti−1,y(ti−1))||2,

where the supremum is taken over all partitions 0 = t0 < t1 < .. . < tm = 1 of the interval
I and || ||2 denotes the norm in R2 . It is known that the graph G(y) is said to be
rectifiable curve in R2 provided length(G(y)) < ∞ . Otherwise, G(y) is said to be
unrectifiable curve in R2 . See for instance [6, Chapter 5.2].

DEFINITION 4.1. A 2-point oscillatory function y(x) on I is said to be 2 -point
rectifiable oscillatory on I , if its graph G(y) is a rectifiable curve in R2 . The equation
y′′ + f (x)y = 0 is said to be 2 -point rectifiable oscillatory on I , if all its non-trivial
solutions are 2-point rectifiable oscillatory on I .

In this section, we study 2-point rectifiable oscillations of equation (9) and some
other model-equations on I . Under the assumption of Hartman-Wintner condition
(16) , we prove an integral criterion for 2-point rectifiable oscillations of equation
y′′ + f (x)y = 0 on I .
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THEOREM 4.2. Let q(x) satisfy (5) , (6) , and (7) . If(|q′|− 3
2 |q′′|+ |q′| 1

2
) ∈ L1(I), (32)

then equation (9) is 2 -point rectifiable oscillatory on I .

Proof. The proof is based on the following elementary geometric fact, see for instance
[5, Theorem 1, p.217].

LEMMA 4.3. The graph G(y) is a rectifiable curve in R2 , if and only if, y′ ∈
L1(I) .

Now, let y(x) be a solution of equation (9) . By (8) , we have that

|y′(x)| � |c1y
′
1(x)|+ |c1y

′
2(x)| � c(|q′(x)|− 3

2 |q′′(x)|+ |q′(x)| 1
2 ).

By (32) , we have y′ ∈ L1(I) , which together with Lemma 4.3 proves Theorem 4.2. �

EXAMPLE 4.4. The equation (1) is 2-point rectifiable oscillatory on I . From
Example 2.2 we know that equation (1) is 2-point oscillatory on I and that the function
q(x) = ρ ln ln(1/x) , ρ = (λ −1/4)1/2 , satisfies the conditions (5) , (6) , and (7) . Also,

|q′(x)|− 3
2 |q′′(x)|+ |q′(x)| 1

2 =
1

[x ln(1/x)]1/2
(ln(1/x)−1−ρ)∈ L1(I).

Now, by Theorem 4.2 we observe that (1) is 2-point rectifiable oscillatory on I . �

Next, we give a simple example for the function q(x) which satisfies the conditions
(5) , (6) , and (7) , but does not satisfy the condition (32) .

EXAMPLE 4.5. Let q(x) = (1−2x)/(x−x2) . By Example 2.4 we know that such
defined q(x) satisfies (5) , (6) , and (7) . However, the function q(x) does not satisfy
the condition (32) since

|q′(x)|− 3
2 |q′′(x)|+ |q′(x)| 1

2 =
2|1−2x|(x2− x+1)

(2x2−2x+1)3/2
+

(2x2−2x+1)3/2

x− x2 /∈ L1(I).

This gives a sub-class of equation (9) which are not 2-point rectifiable oscillatory on
I . In Section 5, we shall give a condition to q(x) which ensures that equation (9) is
2-point unrectifiable oscillatory on I (see Theorem 5.2). �

The most simple case for the function q(x) satisfying the conditions (5) , (6) , (7) ,
and (32) is the following.

EXAMPLE 4.6. Let 0 < β < 1 and let q(x) = (1− 2x)/(x− x2)β , x ∈ I . By
Example 2.4 we know that such a class of functions q(x) satisfies (5) , (6) , and (7) .
Moreover, since 0 < β < 1 we have

|q′(x)|− 3
2 |q′′(x)|+ |q′(x)| 1

2 � c(x− x2)
β−1

2 + c(x− x2)−
β+1

2 ∈ L1(I),

which shows that q(x) satisfies the condition (32) . �
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THEOREM 4.7. Let f ∈C2(I) , f (x) > 0 on I , f (0+) = f (1−) =∞ , and let f (x)
satisfy the Hartman-Wintner condition (16) . If

f 1/4 ∈ L1(I), (33)

then equation y′′ + f (x)y = 0 is 2 -point rectifiable oscillatory on I .

Proof. Let y(x) be a solution of equation y′′ + f (x)y = 0. According to Theorem 3.3
we know that y(x) is 2-point oscillatory on I . From (24) and (33) we conclude that
y′ ∈ L1(I) which by Lemma 4.3 proves that G(y) is a rectifiable curve in R2 . Hence,
y(x) is 2-point rectifiable oscillatory on I . �

As the main consequence of Theorem 4.7, we establish 2-point rectifiable oscilla-
tions on I of our principal model-equation (4) .

COROLLARY 4.8. If σ ∈ (2,4) , then equation (4) is 2 -point rectifiable oscilla-
tory on I .

Proof. From f (x) = c(x)/(x− x2)σ , x ∈ I , follows f 1/4(x) = c1/4/(x− x2)σ/4 ∈ L1(I)
provided σ ∈ (2,4) , which together by Example 3.4 implies that f (x) satisfies all
assumptions of Theorem 4.7. Hence, equation (4) is 2-point rectifiable oscillatory on
I . �

5. Two-point unrectifiable oscillations

In this section, we study 2-point unrectifiable oscillations of second-order linear
differential equations on the interval I . In Example 4.5, we show that such a kind of
2-point oscillations is very possible.

DEFINITION 5.1. A 2-point oscillatory function y(x) on I is said to be 2 -point
unrectifiable oscillatory on I , if its graph G(y) is an unrectifiable curve in R2 . The
equation y′′ + f (x)y = 0 is said to be 2 -point unrectifiable oscillatory on I , if all its
non-trivial solutions are 2-point unrectifiable oscillatory on I .

At first we give a sufficient condition on the function q(x) such that equation
(9) is 2-point unrectifiable oscillatory on I . It completes preceding Theorem 2.1 and
Theorem 4.2 about 2-point oscillations of equation (9) on the interval I .

THEOREM 5.2. Let q(x) satisfy the conditions (5) , (6) , and (7) . We suppose
that |q′(x)|−1 is increasing near x = 0 and decreasing near x = 1 . If the series,

∑
k

|q′(q−1(kπ))|− 1
2 or ∑

k

|q′(q−1(−kπ))|− 1
2 (34)

are divergent, then the equation (9) is 2 -point unrectifiable oscillatory on I .

In order to prove Theorem 5.2, we need the following elementary fact.
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LEMMA 5.3. Let sk ∈ I and tk ∈ I be two sequences of consecutive zeros of y′(x)
such that sk ↘ 0 and tk ↗ 1 . If ∑k |y(sk)| or ∑k |y(tk)| is divergent, then the graph
G(y) is an unrectifiable curve in R2 .

For the proofs of this lemma, we refer reader to [12, Proposition 4.2].

Proof of Theorem 5.2. Let y(x) be a solution of equation (9) . According to (5) ,
(6) , (7) , and Theorem 2.1, we know that y(x) is 2-point oscillatory on I . By means of
general solution (8) , we derive two cases: either y(x) = c2y2(x) or y(x) and y2(x) are
linearly independent, where y2(x) = |q′(x)|−1/2 sinq(x) . Suppose that y(x) = c2y2(x) ,
ak = q−1(kπ) , bk = q−1(−kπ) , sk = q−1(π/2+kπ) , and tk = q−1(−π/2−kπ) . Since
q(x) is decreasing, we have that y(ak) = y(bk) = 0, sk ∈ (ak+1,ak) , tk ∈ (bk,bk+1) , and

∑
k

|y(q−1(±(k+1/2)π))|= |c2|∑
k

|y2(q−1(±(k+1/2)π))|

= |c2|∑
k

|q′(q−1(±(k+1/2)π))|− 1
2

� |c2|∑
k

|q′(q−1(±(k+1)π))|− 1
2 .

This together with (34) imply that ∑k |y(sk)| or ∑k |y(tk)| is divergent. Hence by
Lemma 5.3, y(x) = c2y2(x) is 2-point unrectifiable oscillatory on I .

In the second case when y(x) and y2(x) are two linearly independent solutions of
equation (9) , by Theorem 2.1, there are ak and bk ∈ I , two sequences of consecutive
zeros of y(x) such that ak is decreasing and ak ↘ 0, and bk is increasing and bk ↗ 1.
Let sk = q−1(kπ) and tk = q−1(−kπ) be two sequences of consecutive zeros of y2(x) .
By Sturm comparison principle and since y(x) and y2(x) are linearly independent, we
know that there is k0 ∈ N such that sk ∈ (ak−k0+1,ak−k0) and tk ∈ (bk−k0 ,bk−k0+1) for

all k � k0 . Obviously, y2(q−1(±kπ)) = 0 and |y′2(q−1(±kπ))| = |q′(q−1(±kπ))| 1
2 .

Since the Wronskian |W (y2,y)(x)| = c > 0 for each x ∈ I , it implies that

0 < c = |W (y2,y)(q−1(±kπ))| = |y′2(q−1(±kπ))y(q−1(±kπ))|
= |q′(q−1(±kπ))| 1

2 |y(q−1(±kπ))|, for k > k0. (35)

From (35) follows

∑
k

|y(q−1(±kπ))| = c∑
k

|q′(q−1(±kπ))|− 1
2 .

Now, the assumption (34) implies that either one of the sequences ∑k |y(sk)| and
∑k |y(tk)| is divergent. Hence from Lemma 5.3 follows that y(x) is 2-point unrecti-
fiable oscillatory on I . �

EXAMPLE 5.4. Let q(x) = (1−2x)/(x− x2)β , x ∈ I , where β � 1. By Example
2.4, we know that q(x) satisfies (5) , (6) , and (7) . Also, from (12) we have that

|q′(x)|− 1
2 � c(x− x2)

β+1
2 � c

( |1−2x|
|q(x)|

) β+1
2β

for all x ∈ I . (36)
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Since sk = q−1(π/2 + kπ) tends to 0 and tk = q−1(−π/2− kπ) tends to 1, from
equalities q(sk) = π/2± kπ , q(tk) = ±kπ , and (36) with x = dk , where dk = sk or
dk = tk and k is sufficiently large, together yield:

|q′(dk)|−
1
2 � c

( |1−2dk|
|q(dk)|

) β+1
2β

� c1

(
1
k

) β+1
2β

.

Since β � 1, it implies that series ∑ |q′(dk)|− 1
2 is divergent, so by (34) and Theorem

5.2, equation (9) is 2-point unrectifiable oscillatory on I . �

THEOREM 5.5. Let f ∈C2(I) , f (x) > 0 on I , f (0+) = f (1−) =∞ , and let f (x)
satisfy the Hartman-Wintner condition (16) . If

f
1
4 /∈ L1(I), (37)

then equation y′′ + f (x)y = 0 is 2 -point unrectifiable oscillatory on I .

Proof. The main idea is taken from a proof of unrectifiable oscillations of p -
Laplacian equation, see [15, Theorem 3.2]. Let y(x) be a solution of equation y′′ +
f (x)y = 0. Let sk, tk ∈ I be two sequences of consecutive zeros of y′(x) such that
sk ↘ 0 and tk ↗ 1 when k goes to infinity. Let ϕ(x) and ψ(x) be two functions
defined on (0, 1

2 ] and [ 1
2 ,1) respectively by

ϕ(x) =
∫ 1/2

x
f

1
2 (ξ )dξ , x ∈ (0,

1
2
], and ψ(x) =

∫ x

1/2
f

1
2 (ξ )dξ , x ∈ [

1
2
,1).

It is clear that ϕ(x) is decreasing on (0, 1
2 ] and ψ(x) is increasing on [ 1

2 ,1) . Also, from
(17) follows that limx→0+ϕ(x) = limx→1−ψ(x) =∞ . Therefore, there exist the inverse
functions ϕ−1(t) and ψ−1(t) , and two sequences Sk and Tk such that sk = ϕ−1(Sk)
and tk = ψ−1(Tk) respectively. Let k0 be a sufficiently large natural number. In order
to show that G(y) is an unrectifiable curve in R2 , by Lemma 5.3 it is enough to show

that at least one of ∑ |y(ϕ−1(Sk))| and ∑ |y(ψ−1(Tk))| is divergent. Let F(x) = f−
1
4 (x)

and let σk ∈ [Sk,Sk+1] and τk ∈ [Tk,Tk+1] be two sequences of real numbers defined by

F(ϕ−1(σk)) = max
t∈[Sk ,Sk+1]

F(ϕ−1(t)) and F(ψ−1(τk)) = max
t∈[Tk ,Tk+1]

F(ψ−1(t)).

We claim that

F(ϕ−1(Sk)) � 3
4F(ϕ−1(σk)) and F(ψ−1(Tk)) � 3

4F(ψ−1(τk)) , k � k0 . (38)

Indeed, for k � k0 , by Lagrange mean-value theorem we obviously have:{
F(ϕ−1(Sk)) � F(ϕ−1(σk))−maxt∈[Sk ,Sk+1] | d

dt [F(ϕ−1(t))]||Sk −σk|,
F(ψ−1(Tk)) � F(ψ−1(τk))−maxt∈[Tk ,Tk+1] | d

dt [F(ψ−1(t))]||Tk − τk|.
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Hence, with the help of (26) we have |Sk−Sk+1|� c1π and |Tk−Tk+1|� c1π , and so,{
F(ϕ−1(Sk)) � F(ϕ−1(σk))− c1πmaxt∈[Sk ,Sk+1] | d

dt [F(ϕ−1(t))]|,
F(ψ−1(Tk)) � F(ψ−1(τk))− c1πmaxt∈[Tk ,Tk+1] | d

dt [F(ψ−1(t))]|.
(39)

From (18) we also have | f− 3
2 (x) f ′(x)| < 1/(c1π) near x = 0 and x = 1. Since

|ϕ ′(x)| = |ψ ′(x)| = f
1
2 (x) , it implies that

| d
dt

[F(ϕ−1(t))]| = 1
4

f−
5
4 (x)| f ′(x)|
|ϕ ′(x)| =

1
4

f−
5
4 (x)| f ′(x)|
f

1
2 (x)

=
1
4

f−
3
2 (x)| f ′(x)|F(ϕ−1(t)) � 1

4c1π
F(ϕ−1(t)).

Putting the above inequality into (39) we obtain the desired statement (38) . Next,
since F(x) = f−1/4(x) , the statement (25) can be rewritten in the form:

|y(ϕ−1(Sk))| � c0F(ϕ−1(Sk)) and |y(ψ−1(Tk))| � c0F(ψ−1(Tk)). (40)

Now, from (38) and (40) , we observe that:

∑
k

|y(sk)| =∑
k

|y(ϕ−1(Sk))| � c0 ∑
k�k0

F(ϕ−1(Sk))

� 3c0

4 ∑
k�k0

F(ϕ−1(σk)) =
3c0

4 ∑
k�k0

f−
1
4 (ϕ−1(σk))

=
3c0

4 ∑
k�k0

1
|Sk −Sk+1|

∫ Sk+1

Sk

f−
1
4 (ϕ−1(σk))dt

� 3c0

4c1π ∑
k�k0

∫ Sk+1

Sk

f−
1
4 (ϕ−1(t))dt = c3 lim

ε→0

∫ ϕ(ε)

Sk0

f−
1
4 (ϕ−1(t))dt

= −c3 lim
ε→0

∫ ϕ−1(Sk0
)

ε
f−

1
4 (x)ϕ ′(x)dx = c3 lim

ε→0

∫ ϕ−1(Sk0
)

ε
f−

1
4 (x) f

1
2 (x)dx

= c3 lim
ε→0

∫ ϕ−1(Sk0
)

ε
f

1
4 (x)dx, (41)

where c3 = 3c0/(4c1π) . Analogously, we obtain for the sequence tk that

∑
k

|y(tk)| � c3 lim
ε→0

∫ 1−ε

ψ−1(Tk0
)
f

1
4 (x)dx. (42)

Since by (37) we have that f 1/4 /∈ L1(I) and so, from (41) and (42) , we have that at
least one of ∑k |y(sk)| and ∑k |y(tk)| is divergent. Hence by Lemma 5.3 the graph G(y)
is an unrectifiable curve in R2 , which together by Theorem 3.3 implies that equation
y′′ + f (x)y = 0 is 2-point unrectifiable oscillatory on I . �

As a consequence of Theorem 5.5 we establish 2-point unrectifiable oscillation on
I of equation (4) as follows.
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COROLLARY 5.6. If σ � 4 , then equation (4) is 2 -point unrectifiable oscillatory
on I .

Proof. Let f (x) = c(x)/(x− x2)σ , x ∈ I . Since σ � 4, we have

f 1/4(x) =
c1/4(x)

(x− x2)σ/4
/∈ L1(I),

which together by Example 3.4 implies that the function f (x) satisfies all assumptions
of Theorem 5.5. Hence, equation (4) is 2-point unrectifiable oscillatory on I . �

6. Two-point fractal oscillations of equation (4)

In the next two sections, we discuss 2-point oscillations of a function y(x) on I ,
where the graph G(y) is a fractal curve in R2 . The fractality of a graph G(y) will
be expressed in terms of its upper Minkowski-Bouligand dimension, also known as
box-counting dimension,

dimM G(y) = limsup
ε→0

(
2− log |Gε(y)|

logε
)
,

and corresponding d -dimensional upper Minkowski content

Md(G(y)) = limsup
ε→0

(2ε)d−2|Gε(y)|, d ∈ [1,2).

Here, the ε− neighbourhood Gε(y) of the graph G(y) is given by Gε(y) = {(t1,t2) ∈
R2 : d((t1, t2),G(y)) � ε} , where ε > 0 and d((t1,t2),G(y)) denotes the distance from
(t1,t2) to G(y) , and |Gε(y)| denotes the Lebesgue measure of Gε (y) .

DEFINITION 6.1. Let y(x) be 2-point oscillatory function on I . If there is an
d ∈ (1,2) such that dimM G(y) = d and 0 < Md(G(y)) < ∞ , then y(x) is said to be
2 -point fractal oscillatory on I .

In order to find a number d ∈ (1,2) such that dimM G(y) = d and 0 < Md(G(y)) <
∞ , we will use two geometric lemmas: the first one deals with dimM G(y) � d and
Md(G(y)) > 0 and the second one with dimM G(y) � d and Md(G(y)) < ∞ . Since
the statements dimM G(y) = d and 0 < Md(G(y)) < ∞ imply that G(y) is an unrec-
tifiable curve in R2 , 2-point fractal oscillations on I present a refinement of 2-point
unrectifiable oscillations on I .

DEFINITION 6.2. The equation y′′+ f (x)y = 0 is said to be 2 -point fractal oscil-
latory on I , if all its non-trivial solutions are 2-point fractal oscillatory on I .

In this section, we study 2-point fractal oscillations of second-order linear dif-
ferental equation y′′+ f (x)y = 0 where f (x) satisfies the Hartman-Wintner asymptotic
condition (16) and prove results concerning 2-point fractal oscillations of equation
(4) .
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THEOREM 6.3. Let f ∈C2(I) , f (x) > 0 on I , f (0+) = f (1−) =∞ , and let f (x)
satisfy the Hartman-Wintner condition (16) . Let σ > 4 and let f (x)∼ (x−x2)−σ near
x = 0 and x = 1 , that is, there exist constants λ0 > 0 , λ1 > 0 , and δ ∈ I such that

λ0

(x− x2)σ
� f (x) � λ1

(x− x2)σ
for all x ∈ (0,δ )∪ (1− δ ,1). (43)

Then equation y′′ + f (x)y = 0 is 2 -point fractal oscillatory on I with the dimensional
number d = 3/2−2/σ .

Proof. We first need the following result concerning the zeros of solution y(x) of
the second-order linear differential equation y′′+ f (x)y = 0, where f (x) satisfies (43) .
It will be proved in Appendix of the paper.

LEMMA 6.4. Let f ∈C2(I) , f (x) > 0 on I , and f (0+) = f (1−) = ∞ . Let f (x)
satisfy the conditions (16) and (43) , where σ > 4 . Let y(x) be a nontrivial solution
of equation y′′ + f (x)y = 0 . Let ak and bk be two sequences of consecutive zeros of
y(x) such that ak ↘ 0 and bk ↗ 1 , when k → ∞ . Then there is k0 ∈ N such that for
all k � k0 :

2−σ/2λ−1/2
1 aσ/2

k+1 � (ak −ak+1) � πλ−1/2
0 aσ/2

k , (44)

and
2−σ/2λ−1/2

1 (1−bk+1)σ/2 � (bk+1−bk) � πλ−1/2
0 (1−bk)σ/2. (45)

Next, for m > 0 small enough and M > 0 large enough there is a k0 ∈ N such that:

(
m
2π

) 2
σ−2

(
1

k+ k0

) 2
σ−2

� ak � 2

(
M
π

) 2
σ−2

(
1

k− k0

) 2
σ−2

, k � k0, (46)

and

1−2

(
M
π

) 2
σ−2

(
1

k− k0

) 2
σ−2

� bk � 1−
(

m
2π

) 2
σ−2

(
1

k+ k0

) 2
σ−2

, k � k0. (47)

Furthermore, y(x) is convex-concave function on (ak+1,ak) and (bk,bk+1) , and there
are a constant c > 0 and two sequences sk ∈ (ak,ak+1) and tk ∈ (bk,bk+1) such that
for all k � k0 :

|y(sk)| � csσ/4
k and |y(tk)| � c(1− tk)σ/4 . (48)

Next, we need the following 2-point version of a result in [13, Lemma 4.1], which
is valid for any arbitrarily given continuous function y(x) on I .

LEMMA 6.5. Let y = y(x) be a real function, y ∈ C( I ) , and y(0) = y(1) = 0 .
Let ak ∈ I and bk ∈ I be two sequences of consecutive zeros of y(x) such that ak is
decreasing, ak ↘ 0 , and bk is increasing, bk ↗ 1 . For any ε ∈ (0,min{ε0,ε1}) , where
ε0 and ε1 are two positive constants, we suppose that there are two natural numbers
k0(ε),k1(ε) ∈ N such that

max{|ak −ak+1|, |bk+1 −bk|} � ε/2 , for each k � max{k0(ε),k1(ε)} . (49)
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If there are four sequences of real numbers, δk,γk > 0 , and sk ∈ (ak+1,ak) , tk ∈
(bk,bk+1) such that

|y(sk)| � δk and |y(tk)| � γk , for each k � max{k0(ε),k1(ε)} , (50)

then for all ε ∈ (0,min{ε0,ε1}) , the function y(x) satisfies:

|Gε(y)| � max{
∞

∑
k=k0(ε)

δk(ak −ak+1),
∞

∑
k=k1(ε)

γk(bk+1−bk)}. (51)

In order to prove Lemma 6.5, it is enough to follow the same argument from the proof
of [11, Lemma 2.1], see also [8, Appendix].

Now, we proceed with the proof of Theorem 6.3. We will show that any solution
y(x) of equation y′′ + f (x)y = 0 satisfies assumptions of Lemma 6.5. Let k(ε) be a
natural number determined for all ε ∈ (0,ε0) by

c0ε−
σ−2
σ + k0 < k0(ε) = k1(ε) < 2c0ε−

σ−2
σ − k0−1, (52)

where the constants c0 and ε0 satisfy

c0 = M

(
2σ

2−4

π4λσ−2
0

)1/(2σ)

and ε0 =
(

c0

2k0 +2

)σ/(σ−2)

.

Here the constants M , λ0 , and k0 are from (44)− (47) . From (44) , (45) , (46) , and
(47) , for all k � k0 we derive:⎧⎨

⎩
|ak −ak+1| � πλ−1/2

0 aσ/2
k � 1

2c
σ

σ−2
0 ( 1

k−k0
)

σ
σ−2 ,

|bk+1−bk| � πλ−1/2
0 (1−bk)σ/2 � 1

2c
σ

σ−2
0 ( 1

k−k0
)

σ
σ−2 .

(53)

Putting (52) into (53) , for dk = ak , dk = bk , and k � ki(ε) , we obtain that |dk −
dk+1| � 1

2c
σ

σ−2
0 (1/(k− ki(ε)))

σ
σ−2 � ε/2, which together with (48) implies that y(x)

satisfies all assumptions of Lemma 6.5. Hence by (51) we derive that

|Gε(y)| � cmax{
∞

∑
k=k0(ε)

sσ/4
k (ak −ak+1),

∞

∑
k=k1(ε)

(1− tk)σ/4(bk+1−bk)}. (54)

Since sk � ak+1 and tk � bk+1 , from (44) , (45) , and (54) follows

|Gε(y)| � c1 max{
∞

∑
k=k0(ε)

a3σ/4
k+1 ,

∞

∑
k=k1(ε)

(1−bk+1)3σ/4}.

Therefore, from (46) and (47) follows

|Gε (y)| � c2

∞

∑
k=ki(ε)

(
1

k+1+ k0

) 3σ
2σ−4

� c3

(
1

ki(ε)+1+ k0

) 3σ
2σ−4−1

� c4ε
σ−2
σ

σ+4
2σ−4 = c4ε

σ+4
2σ .
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Applying the definitions of dimM G(y) and Md(G(y)) to the previous inequality, we
observe that

dimM G(y) � d = 3/2−2/σ and Md(G(y)) > 0 . (55)

In addition to Lemma 6.4 and Lemma 6.5, we need the following geometric lemma,
which is the 2-point version of [13, Lemma 5.1].

LEMMA 6.6. Let y = y(x) be a real function, y ∈ C2(I)∪C( I ) . Let ak,bk ∈ I ,
sk ∈ (ak+1,ak) , and tk ∈ (bk,bk+1) be four sequences of consecutive zeros of y(x) and
y′(x) respectively such that:

⎧⎪⎨
⎪⎩

y(ak) = y(bk) = 0, ak ↘ 0, and bk ↗ 1,

y(x) is convex-concave on (ak+1,ak) and (bk,bk+1),

y′(sk) = y′(tk) = 0.

(56)

Let k0,k1 ∈ N be large enough, and let k0(ε) and k1(ε) be two natural numbers de-
pending on ε such that ki(ε) � ki +1 . There is a positive constant c > 0 such that

|Gε(y|I)| � cε +2ak0(ε)|y(sk0(ε))|+2(1−bk1(ε))|y(tk1(ε))|

+ ε
k0(ε)

∑
k=k0+1

[2|y(sk)|+ak−ak+1]+ ε
k1(ε)

∑
k=k1+1

[2|y(tk)|+bk+1−bk]. (57)

In order to prove this lemma we suggest to use the partitions of I in the fol-
lowing way: I1 = [0,ak0(ε)] , I2 = [ak0(ε),ak0 ] , I3 = [ak0 ,bk1 ] , I4 = [bk1 ,bk1(ε)] , and
I5 = [bk1(ε),1] . If y|J denotes the function-restriction of y(x) on a closed interval J ,
then

Gε(y|I) = ∪5
i=1Gε(y|Ii) and |Gε(y|I)| � ∪5

i=1|Gε(y|Ii)| . (58)

Obviously, there is a constant c3 > 0 such that |Gε(y|I3 )| � c3ε . By an easy geometric
argument (for an exact calculation see [11, Lemma 2.2]), the desired inequality (57)
follows from (56) and (58) .

Next, we now return to the proof of Theorem 6.3 and let sk ∈ (ak+1,ak) and tk ∈
(bk,bk+1) such that y′(sk) = y′(tk) = 0. From (24) and (43) follows that |y(x)| �
λ−1/4

1 (x− x2)σ/4 near x = 0 and x = 1. Since sk � ak and tk � bk , from previous
inequality we conclude:

|y(sk)| � c0a
σ/4
k and |y(tk)| � c0(1−bk)σ/4 , for all k > k0 , (59)

where k0 is sufficiently large. Furthermore, since f (x) > 0 on I , we have that y(x)
is convex-concave function on (ak+1,ak) and (bk,bk+1) , and so, the statement (56) is
satisfied. Now, with the help of (44) , (46) , (52) , and (59) we obtain:

ak0(ε)|y(sk0(ε))| � c0(ak0(ε))
1+ σ

4 � c1

(
1

k− k0(ε)

) σ+4
2σ−4

� c2(ε
σ−2
σ )

σ+4
2σ−4 = c2ε

σ+4
2σ ,
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and

ε
k0(ε)

∑
k=k0+1

[2|y(sk)|+ak −ak+1] � c3ε
k0(ε)

∑
k=k0+1

[aσ/4
k +aσ/2

k ] � c4ε
k0(ε)

∑
k=k0+1

aσ/4
k

� c5ε
k0(ε)

∑
k=k0+1

(
1

k− k0
)

σ
2σ−4 � c6ε(

1
k− k0(ε)

)
σ

2σ−4−1

� c7ε(ε
σ−2
σ )

4−σ
2σ−4 = c7ε

σ+4
2σ .

Also, from (45) , (47) , (52) , (59) , and by similar reasoning as in the previous inequal-
ities, we derive:

(1−bk1(ε))|y(tk1(ε))| � c0(1−bk1(ε))
1+ σ

4 � c8(
1

k− k1(ε)
)
σ+4
2σ−4 � c9ε

σ+4
2σ ,

and

ε
k1(ε)

∑
k=k1+1

[2|y(tk)|+bk+1−bk] � c3ε
k1(ε)

∑
k=k1+1

[(1−bk)σ/4 +(1−bk)σ/2]

� c10ε
k1(ε)

∑
k=k1+1

(1−bk)σ/4 � c11ε
k1(ε)

∑
k=k1+1

( 1
k− k1

) σ
2σ−4 � c12ε

σ+4
2σ .

Using all the above inequalities into (57) we observe that

|Gε(y)| � cε +2c2ε
σ+4
2σ + c7ε

σ+4
2σ +2c9ε

σ+4
2σ + c12ε

σ+4
2σ � c13ε

σ+4
2σ .

Hence, by the definitions of dimM G(y) and Md(G(y)) , from previous inequality fol-
lows dimM G(y) � d = 3/2−2/σ and Md(G(y)) <∞ . This together with (55) proves
that the equation y′′ + f (x)y = 0 is 2-point fractal oscillatory on I , where the dimen-
sional number d = 3/2−2/σ . �

As a consequence of Theorem 6.3, we complete results on 2-point rectifiable and
unrectifiable oscillations concerning equation (4) given in Corollary 4.8 and Corollary
5.6.

COROLLARY 6.7. If σ > 4 , then equation (4) is 2 -point fractal oscillatory on I
with the dimensional number d = 3/2−2/σ .

7. Two-point fractal oscillations of equation (9)

In this section, we will show that the function

y(x) = (x− x2)α sin
1−2x

(x− x2)β
,

where x∈ I and 0 <α < β , are 2-point fractal oscillatory on I , where the dimensional
number d = 2− (α+1)/(β +1) . Here, the function sin(t) can be repleaced by cos(t)
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or by any T -periodic and smooth function W (t) such that W (t∗) = 0 for some t∗ ∈ R .
We then enlarge our discussion on 2-point fractal oscillations to include equation (9)
where its fundamental solution (8) is of the form just described. Therefore, we firstly
derive the lower bounds for dimM G(y) and Md(G(y)) , where the function y(x) is given
in the form y(x) = p(x)sinq(x) . Here p(x) is the amplitude and q(x) is the frequence
of y(x) . The crucial role in our procedure to bound dimM G(y) and Md(G(y)) from
below will be played by the inverse function q−1(t) of q(x) satisfying conditions (5) ,
(6) , and (7) . In many examples of the function q(x) , where the corresponding y(x)
is 2-point oscillatory on I , it is not easy to determine explicitly q−1(t) , for instance
q(x) = (1− 2x)/(x− x2)β . Since the calculation of the lower bounds of dimM G(y)
and Md(G(y)) involves explicitly determination of q−1(t) , the function q(x) need to
be repleaced by its asymptotic approximations q0(x) and q1(x) near x = 0 and x = 1
respectively, where q−1

0 (t) and q−1
1 (t) exist. It is also useful to consider asymptotic ap-

proximations p0(x) and p1(x) of the function p(x) near x = 0 and x = 1 respectively.
We use the notation f (x) ∼ g(x) near x = x0 to represent limx→x0 f (x)/g(x) = 1.

LEMMA 7.1. Let y(x) = p(x)sinq(x) , x ∈ I , where p ∈C(I) , p(0) = p(1) = 0 ,
q∈C(I) , q(0+) =−q(1−) =∞ , and q(x) is decreasing on I . Let h0(x) and h1(x) be
two positive functions, where h0(x) is increasing near x = 0 and h1(x) is decreasing
near x = 1 , such that for all s < t ,{

μ h0(q−1(t))(t− s) � |q−1(s)−q−1(t)| � ν h0(q−1(s))(t − s), (s,t) ⊆ J0,

μ h1(q−1(s))(t − s) � |q−1(s)−q−1(t)| � ν h1(q−1(t))(t − s), (s, t) ⊆ J1,
(60)

where μ1 and ν are two positive constants, and J0 = (t0,∞) and J1 = (−∞,−t0) ,
t0 > 0 . Let ε0,ε1 > 0 and let k0(ε) and k1(ε) be two natural numbers such that

ki(ε) � ± 1
π

q(h−1
i (

ε
2πν

)),ε ∈ (0,εi), (61)

where ± = + for i = 0 and ± = − for i = 1 . We suppose that{ |p(x)| ∼ p0(x) and |q(x)| ∼ q0(x) near x = 0,

|p(x)| ∼ p1(x) and |q(x)| ∼ q1(x) near x = 1,
(62)

where the functions pi ∈C( I ) and qi ∈C(I) satisfy:{
p0(x) is increasing and q0(x) is decreasing near x = 0,

p1(x) is decreasing and q1(x) is increasing near x = 1.
(63)

If there are σ0,σ1 ∈ (0,1) and c0,c1 > 0 such that

∞

∑
k=ki(ε)+1

|pi(q−1
i (2kπ))|hi(q−1

i (2kπ)) � ciεσi , ε ∈ (0,εi), (64)

then
dimM G(y) � d∗ = 2−min{σ0,σ1} > 1 and Md∗(G(y)) > 0 . (65)
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Proof. Let y(x) = p(x)sinq(x) , x ∈ I . We will show that such defined y(x) satisfies
all assumptions of Lemma 6.5. Since p ∈ C( I ) , p(0) = p(1) = 0, and q ∈ C(I) ,
we have that y ∈ C( I ) , and y(0) = y(1) = 0. Next, since q(x) is supposed to be
decreasing on I , its inverse function q−1(t) exists. Therefore, the zeros and stationary
points of y(x) can be given by ak = q−1(kπ) , bk = q−1(−kπ) , sk = q−1(π2 + kπ) , and
tk = q−1(− π

2 − kπ) . Since |q(0+)| = |q(1−)| = ∞ and since q−1(t) is decreasing in
t , it is clear that ak ↘ 0, bk ↗ 1, sk ∈ (ak+1,ak) , and tk ∈ (bk,bk+1) . From (60) and
(61) , since h0(x) is increasing near x = 0 and h1(x) is decreasing near x = 1, for each
k � max{k0(ε),k1(ε)} we obtain:

|ak −ak+1| = |q−1(kπ)−q−1((k+1)π)|� πν h0(q−1(kπ))

� πν h0(q−1(k0(ε)π)) � ε/2,

and
|bk+1−bk| = |q−1(−(k+1)π)−q−1(−kπ)| � πν h1(q−1(−kπ))

� πν h1(q−1(−k1(ε)π)) � ε/2.

Hence, the statement (49) is satisfied for such choice of ak , bk , and ki(ε) . Next, since
f (x) ∼ g(x) near x = x0 means that limx→x0 f (x)/g(x) = 1 we have: if f (x) > 0 and
g(x) > 0 on I , then

f (x) ∼ g(x) near x = x0 implies 1
2g(x) � f (x) � 2g(x) near x = x0 . (66)

Therefore, from (62) , (63) , and (66) follows:

|y(sk)| = |p(sk)||sinq(sk)| = |p(sk)| � 1
2
|p0(sk)| � 1

2
|p0(ak+1)|,

|y(tk)| = |p(tk)||sinq(tk)| = |p(tk)| � 1
2
|p1(tk)| � 1

2
|p1(bk+1)|.

Hence, the statement (50) is satisfied for δk = 1
2 |p0(ak+1)| and γk = 1

2 |p1(bk+1)| .
Thus, all hypotheses of Lemma 6.5 are fulfiled, and so we may use the statement (51)
to observe that

|Gε(y)| � 1
2

max{
∞

∑
k=k0(ε)

|p0(ak+1)|(ak −ak+1),
∞

∑
k=k1(ε)

|p1(bk+1)|(bk+1 −bk)}. (67)

Next, with the help of the left inequality from (60) , we get:

|ak −ak+1| = |q−1(kπ)−q−1((k+1)π)|� πμ h0(q−1((k+1)π)) = πμ h0(ak+1),

|bk+1−bk|= |q−1(−(k+1)π)−q−1(−kπ)|� πμ h1(q−1(−(k+1)π)) = πμ h1(bk+1).

Putting these inequalities into (67) , we obtain:

|Gε(y)| � πμ
2

max{
∞

∑
k=k0(ε)

|p0(ak+1)|h0(ak+1),
∞

∑
k=k1(ε)

|p1(bk+1)|h1(bk+1)}. (68)
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Next, from (62) and (66) follows that 1
2qi(x) � |q(x)|� 2qi(x) near x = 0 when i = 0

and near x = 1 when i = 1. In particular for x = ak and x = bk , since |q(ak)| =
|q(bk)| = kπ , we get 1

2q0(ak) � kπ � 2q0(ak) and 1
2q1(bk) � kπ � 2q1(bk) . Using

these estimates, we can bound ak ’s and bk ’s in terms of q−1
0 (t) and q−1

1 (t) as follows:{
q−1

0 (2kπ) � ak = q−1(kπ) � q−1
0 (kπ/2),

q−1
1 (kπ/2) � bk = q−1(−kπ) � q−1

1 (2kπ).
(69)

Since p0(x) and h0(x) are increasing near x = 0, and p1(x) and h1(x) are decreasing
near x = 1, by putting (69) into (68) , we obtain that for i = 1,2,

|Gε (y)| � c
∞

∑
k=ki(ε)

|pi(q−1
i ((2k+2)π))|hi(q−1

i ((2k+2)π))|

= c
∞

∑
k=ki(ε)+1

|pi(q−1
i (2kπ))|hi(q−1

i (2kπ))|. (70)

Now, by combining the hypothesis (64) with the conclusion (70) , we finally observe
that |Gε(y)| � max{c0εσ0 ,c1εσ1} , which by using the corresponding definitions for
d = dimM G(y) and Md(G(y)) proves the desired statement (65) . �

In many examples of the function q(x) , the inverse function q−1(t) is not explic-
itly determined and hence, the verification of (60) is not a simple procedure. However,
if q ∈ C1(I) and q′(x) �= 0 on I , then (60) can be easy verified by using Lagrange
mean-value theorem. In that case, the functions hi(x) which appear in (60) can be
explicitly given in the dependence of q′(x) as in the following variant of Lemma 7.1.

COROLLARY 7.2. Let y(x)= p(x)sinq(x) , x∈ I , where p∈C( I ) , p(0)= p(1)=
0 , q ∈C1(I) , q(0+) = −q(1−) = ∞ , q′(x) < 0 on I , and

|q′(x)|−1 is increasing near x = 0 and decreasing near x = 1 . (71)

Let p(x) and q(x) satisfy the asymptotic conditions (62) and (63) . Let the natural
numbers k0(ε) and k1(ε) be determined by (61) , where h−1

0 (t) and h−1
1 (t) are the

inverse functions respectively of h0(x) = |q′(x)|−1 near x = 0 and h1(x) = |q′(x)|−1

near x = 1 . If there are σ0,σ1 ∈ (0,1) and c0,c1 > 0 such that

∞

∑
k=ki(ε)+1

|pi(q−1
i (2kπ))|q′(q−1

i (2kπ))|−1 � ciεσi , ε ∈ (0,εi), (72)

then
dimM G(y) � d∗ = 2−min{σ0,σ1} > 1 and Md∗(G(y)) > 0 . (73)

Proof. Since q′(x) �= 0 on I , by the use of Lagrange mean-value theorem, for
any s < t there is ξ ∈ (s,t) such that q−1(t)− q−1(s) = [q′(q−1(ξ ))]−1(t − s) . Since
|q′(x)|−1 is increasing near x = 0 and decreasing near x = 1, and q−1(t) is decreasing



TWO-POINT OSCILLATIONS IN SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS 109

in all t , for all s < t we have that |q′(q−1(t))|−1 � |q′(q−1(ξ ))|−1 � |q′(q−1(s))|−1 ,
(s,t) ⊆ J0 , and |q′(q−1(s))|−1 � |q′(q−1(ξ ))|−1 � |q′(q−1(t))|−1 , (s, t) ⊆ J1 , where
J0 = (t0,∞) and J1 = (−∞,−t0) , t0 > 0. Thus, the condition (60) is satisfied, where
h0(x) = |q′(x)|−1 near x = 0 and h1(x) = |q′(x)|−1 near x = 1. Also, for such choice of
hi(x) , the hypotheses (64) and (72) are equivalent. Hence, the function q(x) satisfies
all assumptions of Lemma 7.1 and the desired statement (73) immediately follows
from (65) . �

The most interesting example for the function y(x) which satisfies all hypotheses
of previous Corollary 7.2 is the following.

EXAMPLE 7.3. Let 1/2<α < β and let y(x) = (x−x2)α sin[(1−2x)/(x−x2)β ] ,
x ∈ I . With the help of Example 2.4, one can check that the functions p(x) = (x− x2)α

and q(x) = (1− 2x)/(x− x2)β satisfy all assumptions of Corollary 7.2. For instance,
from (12) follows (71) . Also, |p(x)| ∼ p0(x) = xα and |q(x)| ∼ q0(x) = x−β near
x = 0, and |p(x)| ∼ p1(x) = (1− x)α and |q(x)| ∼ q1(x) = (1− x)−β near x = 1. It is
clear that such defined functions pi(x) and qi(x) satisfy the conditions (62) and (63) .
Hence, all assumptions of Corollary 7.2 are fulfiled. Next, with the help of (61) we
derive the natural numbers k0(ε) and k1(ε) determined by

c0ε
− β

β+1 � k0(ε) = k1(ε) � 2c0ε
− β

β+1 for all ε ∈ (0,ε0 = ε1) . (74)

We claim that y(x) satisfies the condition (72) in particular for σ0 =σ1 = α+1
β+1 . Indeed,

one can easily check that q−1
0 (t) = t−1/β , q−1

1 (t) = 1− t−1/β , pi(q−1
i (t)) = t−α/β , and

with the help of Example 2.4 follows:

|q′(q−1
i (t))|−1 =

[q−1
i (t)− (q−1

i (t))2]β+1

Q(q−1
i (t))

� c1[q−1
i (t)− (q−1

i (t))2]β+1 � c2t
− β+1

β ,

which together with (74) implies:

∞

∑
k=ki(ε)

|pi(q−1
i ((2k+2)π))||q′(q−1

i ((2k+2)π))|−1 � c3

∞

∑
k=ki(ε)

k
− α

β k
− β+1

β

= c4

∞

∑
k=ki(ε)

k
− α+β+1

β � c5
(
ki(ε)

)− α+β+1
β +1 � c6ε

β
β+1

α+1
β = c6ε

α+1
β+1 .

Hence, the statement (72) is fulfiled, where σ0 = σ1 = α+1
β+1 . Now by Corollary 7.2

follows (73) . Thus, we derive that dimM G(y) � d∗ = 2− α+1
β+1 and Md∗(G(y)) > 0. �

Using the same argument as in Example 7.3, one can show that the following class
of functions:

y(x) = xα0(1− x)α1 sin[(1−2x)/(xβ0(1− x)β1)] , x ∈ I , 1/2 < αi < βi , (75)

also satisfies the statements dimM G(y) � d∗ and Md∗(G(y)) > 0, like the function y(x)
from Example 7.3, but with different dimensional number d∗ .
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In the sequel, we study the upper bounds for dimM G(y) and Md(G(y)) of the
functions y(x) = p(x)sinq(x) . We begin with the following geometric lemma.

LEMMA 7.4. Let y(x) = p(x)sinq(x) , x ∈ I , where p ∈C( I ) , p(0) = p(1) = 0 ,
q ∈ C2(I) , q(0+) = −q(1−) = ∞ , q(x) is decreasing on I , and satisfies (60) . We
suppose that

y(x) is either convex or concave function between its zeros. (76)

Let p(x) and q(x) satisfy the conditions (62) and (63) . Let ε0,ε1 > 0 , let k0,k1 ∈ N ,
and let k0(ε) and k1(ε) be two natural numbers which satisfy

ki +1 < ki(ε), for all ε ∈ (0,εi) . (77)

Let qi,ε = q−1
i (ki(ε)π/2) and let hi(x) be from (60) . If there are constants σ0,σ1 ∈

(0,1) and c0,c1 > 0 such that for all ε ∈ (0,εi) ,

q0,ε p0(q0,ε)+ (1−q1,ε)p1(q1,ε)

+ ε
ki(ε)

∑
k=ki+1

[|pi(q−1
i (kπ/2))|+hi(q−1

i (kπ/2))
]
� ciεσi , (78)

then
dimM G(y) � d∗ = 2−max{σ0,σ1} and Md∗(G(y)) < ∞ . (79)

Proof. Let y(x) = p(x)sinq(x) , x∈ I , and let ak = q−1(kπ) , bk = q−1(−kπ) , sk =
q−1(π2 + kπ) , and tk = q−1(− π

2 − kπ) . With the help of (76) , we get that y(x) satis-
fies all assumptions of Lemma 6.6. Next, from (62) , (63) , and (66) follows: |y(sk)|=
|p(sk)||sinq(sk)|= |p(sk)|� 2p0(sk)� 2p0(ak) and |y(tk)|= |p(tk)||sinq(tk)|= |p(tk)|�
2p1(tk) � 2p1(bk) . Since p0(x) is increasing near x = 0 and p1(x) is decreasing near
x = 1, from previous inequalities and (69) we observe that:

|y(sk)| � 2p0(q−1
0 (kπ/2)) and |y(tk)| � 2p1(q−1

1 (kπ/2)) . (80)

Also, from (60) follows

|ak −ak+1| = |q−1(kπ)−q−1((k+1)π)|� πν h0(q−1(kπ)) = πν h0(ak),

|bk+1−bk| = |q−1(−(k+1)π)−q−1(−kπ)| � πν h1(q−1(−kπ)) = πν h1(bk),

which together with (69) imply

|ak −ak+1| � πν h0(q−1
0 (kπ/2)) and |bk+1−bk| � h1(q−1

1 (kπ/2)). (81)

Since qi,ε = q−1
i (ki(ε)π/2) , from (69) and (80) we obtain:

ak0(ε)|y(sk0(ε))| � 2q−1
0 (k0(ε)π/2)p0(q−1

0 (k0(ε)π/2)) = 2q0,ε p0(q0,ε), (82)
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(1−bk1(ε))|y(tk1(ε))| � 2[1−q−1
1 (k1(ε)π/2)]p1(q−1

1 (k1(ε)π/2))

= 2(1−q1,ε)p1(q1,ε). (83)

Also, from (69) , (80) , and (81) we obtain:

k0(ε)

∑
k=k0+1

[2|y(sk)|+ak−ak+1] �
k0(ε)

∑
k=k0+1

[4p0(q−1
0 (kπ/2))+πν h0(q−1

0 (kπ/2))], (84)

k1(ε)

∑
k=k1+1

[2|y(tk)|+bk+1−bk] �
k1(ε)

∑
k=k1+1

[4p1(q−1
1 (kπ/2))+πν h1(q−1

1 (kπ/2))]. (85)

Involving (82) , (83) , (84) , and (85) into (57) , and using the hypothesis (78) we ob-
serve that |Gε(y|I)| � ciεσi . By the definitions of dimM G(y) and Md∗(G(y)) , it gives
the desired statement (79) . �

In the case when y(x) is a solution of (9) , the hypothesis (76) is satisfied if we
assume that S(q′)(x) > 0 on I . Also, in the case when y(x) = p(x)sinq(x) , we can
ensure that the hypothesis (76) holds if d j p/dx j and d jq/dx j do not change the sign
near x = 0 and x = 1, where j = 0,1,2. Next, we present an example for the functions
q(x) which satisfies all assumptions of Lemma 7.4.

EXAMPLE 7.5. Let 0 < α < β and let y(x) = (x− x2)α sin[(1− 2x)/(x− x2)β ] ,
x ∈ I . Let p(x) = (x− x2)α and q(x) = (1−2x)/(x− x2)β . Let us remark that we do
not explicitly expresed the inverse function q−1(t) of q(x) . By (12) and by Lagrange
mean-value theorem, we obtain

c1[q−1(t)− (q−1(t))2]β+1 � |q−1(s)−q−1(t)| � c2[q−1(s)− (q−1(s))2]β+1.

Therefore, the statement (60) is satisfied for such defined q(x) , where h0(x) = xβ+1

near x = 0 and h1(x) = (1− x)β+1 near x = 1, and so, the functions p(x) and q(x)
satisfy all assumptions of Lemma 7.4. Next, as in Example 7.3, we have that p(x) ∼
p0(x) = xα and q(x) ∼ q0(x) = x−β near x = 0, and p(x) ∼ p1(x) = (1− x)α and
q(x) ∼ q1(x) = (1− x)−β near x = 1, and that these functions satisfy the conditions
(62) and (63) . Let k0(ε) and k1(ε) be two natural numbers defined in (74) . Since
q−1

0 (t) = t−1/β , q−1
1 (t) = 1− t−1/β , pi(q−1

i (t)) = t−α/β and hi(q−1
i (t)) = t−(β+1)/β ,

we observe that:

q0,ε p0(q0,ε) = [q−1
0 (k0(ε)π/2)]α+1 � c1(k0(ε))

− α+1
β � c2ε

β
β+1

α+1
β = c2ε

α+1
β+1 ,

(1−q1,ε)p1(q1,ε) = [1−q−1
i (k1(ε)π/2)]α+1 � c1(k1(ε))

− α+1
β � c2ε

β
β+1

α+1
β = c2ε

α+1
β+1 ,
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ε
ki(ε)

∑
k=ki+1

|pi(q−1
i (kπ/2))| � c3ε

ki(ε)

∑
k=ki+1

k
− α

β � c4ε[ki(ε)]
− α

β +1

� c5ε ε
β

β+1
α−β
β = c5ε

α+1
β+1 ,

ε
ki(ε)

∑
k=ki+1

hi(q−1
i (kπ/2)) � c6ε

ki(ε)

∑
k=ki+1

k−
β+1
β � c7 ε(ki(ε))

− β+1
β +1 � c8 εε

β
β+1

1
β � c9ε,

which all together imply that (78) is fulfiled in particular for σ1 = σ2 = α+1
β+1 . Now,

by means of Lemma 7.4 follows that dimM G(y) � d∗ = 2− α+1
β+1 and Md∗(G(y)) <∞ .

�

It can be generalized to the function defined in (75) and hence, we obtain

dimM G(y) � d∗ = 2−max{α0+1
β0+1 , α1+1

β1+1} and Md∗(G(y)) <∞ .

As a consequence of Lemma 6.5, Lemma 6.6, Corollary 7.2, and Lemma 7.4, the
main result of this section gives sufficient conditions on q(x) such that equation (9) is
2-point fractal oscillatory on the interval I .

THEOREM 7.6. Let q(x) satisfy the conditions (5) , (6) , (7) , (71) , and S(q′)(x)>
0 on I . Let |q(x)| ∼ qi(x) as in (63) . Let the natural numbers k0(ε) and k1(ε) satisfy

ki(ε) � 1± 1
π

q(h−1
i (

ε
4π

)), ε ∈ (0,εi), (86)

where ±= + for i = 0 and ±=− for i = 1 , and where h−1
0 (t) and h−1

1 (t) are the in-
verse functions respectively of h0(x) = |q′(x)|−1 near x = 0 and h1(x) = |q′(x)|−1 near
x = 1 . Let k1 be a natural number determined as in (77) and let qi,ε = q−1

i (ki(ε)π) .
If there are σ0,σ1 ∈ (0,1) and c0,c1 > 0 such that

∞

∑
k=ki(ε)+1

|q′(q−1
i (4kπ))|− 3

2 � ciεσi , ε ∈ (0,εi), (87)

q0,ε |q′(q0,ε)|− 1
2 +(1−q1,ε)|q′(q1,ε)|− 1

2

+ ε
ki(ε)

∑
k=ki

[|q′(q−1
i (kπ/2))|− 1

2 + |q′(q−1
i (kπ/2))|−1] � ciεσi , (88)

then for all nontrivial solutions y(x) of equation (9) ,{
2−min{σ0,σ1} = d∗ � dimM G(y) � d∗ = 2−max{σ0,σ1},
0 < Md∗(G(y)) and Md∗(G(y)) < ∞.

(89)

Moreover, if σ0 = σ1 then equation (9) is 2 -point fractal oscillatory on I .
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Proof. Let y(x) be a solution of equation (9) . Obviously, the following conclusion
there holds true:

S(q′)(x) > 0 on I implies that y(x) is either convex or concave on I . (90)

As in the proof of Theorem 5.2, we consider two cases of y(x) : the first one when
y(x) = c2y2(x) and the second one when y(x) and y2(x) are two linearly independent

solutions of (9) , where y2(x) = |q′(x)|− 1
2 sinq(x) defined in (8) . At the first, let y(x) =

c2y2(x) and let pi(x) be two functions such that p0(x) = |q′(x)|− 1
2 near x = 0 and

p1(x) = |q′(x)|− 1
2 near x = 1. Since (71) , such defined pi(x) satisfy all assumptions

of Corollary 7.2. Also, from (71) and by using the assumption (87) we get:

ciεσi �
∞

∑
k=ki(ε)+1

|q′(q−1
i (4kπ))|− 3

2 �
∞

∑
k=ki(ε)+1

|q′(q−1
i (2kπ))|− 3

2

=
∞

∑
k=ki(ε)+1

|q′(q−1
i (2kπ))|− 1

2 |q′(q−1
i (2kπ))|−1

=
∞

∑
k=ki(ε)+1

pi(q−1
i (2kπ))|q′(q−1

i (2kπ))|−1.

Hence, the condition (72) is fulfiled and by Corollary 7.2 follows that dimM G(y) �
d∗ = 2−min{σ0,σ1} > 1 and Md∗(G(y)) > 0. Moreover, since it is supposed that
S(q′)(x) > 0 on I , from (88) and (90) follow that all assumptions of Lemma 7.4 are
fulfiled and therefore by (79) , the desired statement (89) is shown in the case when
y(x) = c2y2(x) .

In the second case, when y(x) and y2(x) are two linearly independent solutions
of equation (9) , let ak,bk ∈ I be two sequences of consecutive zeros of y(x) such that
ak ↘ 0 and bk ↗ 1. Such defined sequences exist by Theorem 2.1. Let us remark
that in the proof of Theorem 5.2, we have derived two sequences sk ∈ (ak+1,ak) , tk ∈
(bk,bk+1) , sk = q−1(kπ) , and tk = q−1(−kπ) , which satisfy the equality (35) . It
together with (69) implies that

⎧⎨
⎩

|y(sk)| = |y(q−1(kπ))| = c|q′(q−1(kπ))|− 1
2 � c|q′(q−1

0 (2kπ))|− 1
2 ,

|y(tk)| = |y(q−1(−kπ))| = c|q′(q−1(−kπ))|− 1
2 � c|q′(q−1

1 (2kπ))|− 1
2 .

Next, let dk = ak for i = 0 and dk = bk for i = 1. By means of Lagrange mean-value
theorem, we have:

|dk −dk+1| � |q−1(±(k−1)π)−q−1(±(k+1)π)|
� 2π |q′(q−1(±(k−1)π))|−1 = 2πhi(q−1(±(k−1)π)). (91)
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Putting (86) into (91) , we obtain that |dk−dk+1|� 2πhi(q−1(±(ki(ε)−1)π)) � ε/2.
Hence, the function y(x) satisfies all assumptions of Lemma 6.5, and we observe that:

|Gε(y)| � c
∞

∑
k=ki(ε)

|q′(q−1
i (2kπ))|− 1

2 |dk −dk+1|

� c
∞

∑
k=ki(ε)

min{|q′(q−1
i (2kπ))|− 1

2 , |q′(q−1
i ((2k+2)π))|− 1

2 }|dk −dk+2|

= c
∞

∑
k=ki(ε)

|q′(q−1
i ((2k+2)π))|− 1

2 |dk −dk+2|,

that is,

|Gε(y)| � c
∞

∑
j=1

|q′(q−1
i ((2ki(ε)+2 j)π))|− 1

2 |dki(ε)+2 j−2−dki(ε)+2 j|. (92)

Since

|dki(ε)+2 j−2−dki(ε)+2 j| � |q−1(±(ki(ε)+2 j−2)π)−q−1(±(ki(ε)+2 j−1)π)|

� π |q′(q−1(±(ki(ε)+2 j−1)π))|−1 � π |q′(q−1
i ((2ki(ε)+4 j−2)π))|−1,

from (92) follows:

|Gε(y)| � c
∞

∑
j=1

|q′(q−1
i ((2ki(ε)+2 j)π))|− 1

2 |q′(q−1
i ((2ki(ε)+4 j−2)π))|−1

� c
∞

∑
j=1

|q′(q−1
i ((4ki(ε)+4 j)π))|− 1

2 |q′(q−1
i ((4ki(ε)+4 j)π))|−1

� c
∞

∑
j=1

|q′(q−1
i (4(ki(ε)+ j)π))|− 3

2 �
∞

∑
k=ki(ε)+1

|q′(q−1
i (4kπ))|− 3

2 .

Hence from assumption (87) follows that |Gε (y)| � max{c0εσ0 ,c1εσ1} . Now using
the definitions for d = dimM G(y) and Md(G(y)) , we conclude:

dimM G(y) � d∗ = 2−min{σ0,σ1} > 1 and Md∗(G(y)) > 0 . (93)

Next, let sk ∈ (ak+1,ak) and tk ∈ (bk,bk+1) such that y′(sk) = y′(tk)= 0. Since y(x) and
y2(x) are two linearly independent solutions of equation (9) , we have that q−1(kπ) ∈
(ak+1,ak) and q−1(−kπ) ∈ (bk,bk+1) or

sk � ak � q−1((k−1)π) and tk � bk � q−1(−(k−1)π) . (94)

Since |y(x)| � (|c1|+ |c2|)|q′(x)|−1/2 , with the help of (69) and (94) , we obtain:⎧⎨
⎩

|y(sk)| � c|q′(sk)|− 1
2 � c|q′(q−1

0 ((k−1)π))|− 1
2 � c|q′(q−1

0 ( (k−1)π
2 ))|− 1

2 ,

|y(tk)| � c|q′(tk)|− 1
2 � c|q′(q−1

1 (−(k−1)π))|− 1
2 � c|q′(q−1

1 (−(k−1)π
2 ))|− 1

2 .
(95)
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Also, from (69) , (91) , (94) , and by definitions of hi(x) , it follows:

|dk −dk+1| � 2πhi(q−1(±(k−1)π)) = 2π |q′(q−1(±(k−1)π))|−1

� 2π |q′(q−1
i (

(k−1)π
2

))|−1. (96)

Since S(q′)(x) > 0 on I , from (90) follows (56) and hence (57) holds. Very similar
to the proof of (79) , we now put (95) and (96) into (57) to obtain:

|Gε(y)| � q0,ε |q′(q0,ε)|− 1
2 +(1−q1,ε)|q′(q1,ε)|− 1

2

+ ε
ki(ε)

∑
k=ki+1

[|q′(q−1
i (

(k−1)π
2

))|− 1
2 + |q′(q−1

i (
(k−1)π

2
))|−1].

Shifting the index k into k+1 on right hand side in the previous inequality and by using
the assumption (88) , we get |Gε(y|I)| � ciεσi . Applying the definitions of dimM G(y)
and Md∗(G(y)) , we get dimM G(y) � d∗ = 2−max{σ0,σ1} and Md∗(G(y)) < ∞ ,
which by (93) proves the desired statement (89) in the second case of y(x) too. �

Now, using the same argument as in Example 7.3 and Example 7.5, where p(x) =
|q(x)|−1/2 , we can show that the function q(x) = (1− 2x)/(x− x2)β , x ∈ I , β > 1,
satisfies all assumptions of Theorem 7.6. Hence, the equation (9) is 2-point fractal
oscillatory on I , where the dimensional number d∗ = d∗ = (3β +1)/(2β +2) .

8. Two-sided oscillations

In this section, we consider equation (P) : y′′ + f (x)y = 0, where the coefficient
function f (x) has an interior singularity x0 ∈ I . A solution y(x) of (P) is said to be
2-sided oscillatory at x0 if there exist two sequences of zeros of y(x) such that:

{si : si < si+1 < x0, y(si) = 0, lim
i→∞

si = x0},

{t j : x0 < t j+1 < t j, y(t j) = 0, lim
j→∞

t j = x0}.

Equation (P) is said to be 2-sided oscillatory at x0 if all solutions of (P) are
2-sided oscillatory at x0 . The concept of 2-point rectifiable (unrectifiable) oscillations
can be extended to study 2-sided oscillations of (P) . Likewise, equation (P) is said
to be 2-sided rectifiable (unrectifiable) oscillatory at x0 if all its solution curves are 2-
sided oscillatory at x0 and have finite (infinite) arclength on I . Furthermore, equation
(P) is said to be 2-sided fractal oscillatory at x0 if all its solutions y(x) are 2-sided
oscillatory at x0 and there is d ∈ (1,2) such that dimM G(y) = d and 0 < Md(G(y)) <
∞ .

EXAMPLE 8.1. Consider equation (E1) : y′′ +(2x− 1)−4y = 0. Here the func-
tion f (x) = (2x− 1)−4 satisfies the Hartman-Wintner condition (16) so solutions of
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(E1) satisfy the asymptotic formula given by Hartman-Wintner theorem near x = 1/2,
namely,

y(x) = |1−2x|
[
c1 cos

(
1+2x

2|1−2x|
)

+ c2 sin

(
1+2x

2|1−2x|
)

+o(1)
]
. (97)

Clearly y(x) given in (97) is oscillatory on [0, 1
2 ) and ( 1

2 ,1] and has two sequences of
zeros converging from the left and the right to x = 1/2. �

Similar to equation (4) , we consider the model equation for 2-sided oscillations:

y′′ +
c(x)

|2x−1|σ y = 0, x ∈ I, (98)

where c(x) is a positive and continuous function on I . Following Theorem 3.3, Theo-
rem 4.7, and Theorem 5.5, we can also prove similar results for 2-sided oscillations of
y′′ + f (x)y = 0.

THEOREM 8.2. Let f ∈ C( I − x0)∩C2(I − x0) , f (x) > 0 on I , where x0 is an
interior point of I . Suppose that f (x) satisfies the Hartman-Wintner condition (16) .
Then equation (P): y′′ + f (x)y = 0 is 2 -sided oscillatory at x0 . Furthermore:

(a) (P) is 2 -sided rectifiable oscillatory at x0 if f ∈ L1(I);

(b) (P) is 2 -sided unrectifiable oscillatory at x0 if f /∈ L1(I) .

In the case when f (x)∼ (x−x0)σ near x = x0 , σ > 4, we can also prove a similar
result as Theorem 6.3.

THEOREM 8.3. Let f (x) satisfy all assumptions in Theorem 8.2. In addition f (x)
satisfies for λ0,λ1 > 0 ,

λ0|2x−1|−σ � f (x) � λ1|2x−1|−σ near x = x0 , σ > 4 .

Then equation (98) is 2 -sided fractal oscillatory at x = 1/2 with the box dimension
d = 3/2−2/σ .

The proofs of Theorem 8.2 and Theorem 8.3 are similar to the proofs of Theorem
3.3, Theorem 4.7, Theorem 5.5, and Theorem 6.3 and we leave the details to the reader.

Using the concept of 2-sided oscillations which deals with the case when f (x)
has interior singularities, we consider the equation

y′′ +
R(x)
|P(x)|y = 0, x ∈ I, (99)

where P(x) = xn +an−1xn−1 + ....+a1x+a0 is a nth degree polynomial and R(x) is a
positive rational function. Assume that P(x) has real roots x1,x2, ...,xk all lie in I (note
that complex roots can be grouped into the rational function R(x)), with multiplicity



TWO-POINT OSCILLATIONS IN SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS 117

m1,m2, ...,mk such that ∑k
j=1 mj = n and mj � 2. We can then claim that equation

(99) is 2-sided oscillatory at all multiple zeros of P(x) and when the multiplicity � 4
the solutions are unrectifiable 2-sided oscillatory with fractal dimension 3/2− 2/mj ,
mj � 4.

EXAMPLE 8.4. Consider the equation

y′′ +(1− x2)(x+1)−1(2x−1)−5y = 0, x ∈ I. (100)

Here the denominator has a multiple root at x = 1/2 with multiplicity 5 and (1−
x2)(x+1)−1 is a positive rational function on I . So by Theorem 8.3, we conclude that
equation (100) is fractal oscillatory at x = 1/2 with fractal dimension 11/10. �

A result due to Laguerre (see [1] and also [17]) states that if all roots of the poly-
nomial P(x) = xn + an−1xn−1 + .....+ a1x+ a0 are real then they must lie between an
interval [A,B] , where A,B are given by

A,B = −an−1

n
± n−1

n

(
a2

n−1−
2n

n−1
an−2

)1/2
.

We can rescale the independent variable x in [A,B] by the linear translation ξ = (x−
A)(B− A) to an equation y′′(ξ ) + f̂ (ξ )y(ξ ) = 0, ξ ∈ I , where f̂ (ξ ) satisfies the
Hartman-Wintner condition whenever f (x) does.

EXAMPLE 8.5. Consider the equation

y′′ +(x2− x+1)(x−1)−3(x−2)−4y = 0, x � 0. (101)

We can use Laguerre formula to determine an optimal interval, i. e. [ 11
7 − 6

√
2

7 , 11
7 +

6
√

2
7 ] , in which the singular points x = 1,2 lie. However, it is simpler to make a scale

change ξ = x/3 to transforms (101) to

d2y
dξ 2 +9(9ξ 2−3ξ +1)(3ξ −1)−3(3ξ −2)−4y = 0, (102)

where y(ξ ) = y(x) and ξ ∈ I = [0,1] . We can now appply Theorem 8.2 and Theorem
8.3 to conclude that equation (101) is:

(a) 2-sided oscillatory at x = 1 and x = 2;

(b) 2-sided rectifiable oscillatory at x = 1;

(c) 2-sided unrectifiable oscillatory at x = 2.
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9. Appendix

In this section we give the proof of Proposition 3.2 and Lemma 6.4.

Proof of Proposition 3.2. The main idea is taken from the proof of [15, Proposi-
tion 2.9]. Since FA−1F ′′ ∈ L1(I) , there are two constants K0,K1 > 0 such that

K0 =
∫ 1/2

0
FA−1(x)|F ′′(x)|dx and K1 =

∫ 1

1/2
FA−1(x)|F ′′(x)|dx.

Hence,

FA−1(1/2)F ′(1/2)−FA−1(s)F ′(s)− (A−1)
∫ 1/2

s
FA−2(x)(F ′(x))2dx

=
∫ 1/2

s
FA−1(x)F ′′(x)dx � −K0, s ∈ (0,1/2), (103)

and

FA−1(t)F ′(t)−FA−1(1/2)F ′(1/2)− (A−1)
∫ t

1/2
FA−2(x)(F ′(x))2dx

=
∫ t

1/2
FA−1(x)F ′′(x)dx � −K1, t ∈ (1/2,1). (104)

Now, from (103) and (104) follows{
FA−1(s)F ′(s) � K0 +FA−1(1/2)|F ′(1/2)|, s ∈ (0,1/2),

−FA−1(t)F ′(t) � K1 +FA−1(1/2)|F ′(1/2)|, t ∈ (1/2,1).

Integrating these two inequalities respectively over (0,x) where x ∈ (0,1/2) and (x,1)
where x ∈ (1/2,1) , and using that F(0) = F(1) = 0 we obtain

F−A(x) � c0
x , x ∈ (0, 1

2 ) and F−A(x) � c1
1−x , x ∈ ( 1

2 ,1) ,

which show that F−A /∈ L1(0, 1
2 ) and F−A /∈ L1( 1

2 ,1) .
Next, from (103) we also obtain,

(A−1)
∫ 1/2

s
FA−2(x)(F ′(x))2dx � K0 +FA−1(1/2)|F ′(1/2)|−FA−1(s)F ′(s).

Since F(0) = 0 and F(x) > 0 for all x ∈ I , from the mean value theorem we get a
sequence sn ∈ I such that sn → 0 and F ′(sn) > 0. Putting for s = sn in the previous
inequality and passing to the limit, we obtain that

∫ 1/2

0
FA−2(x)(F ′(x))2dx = lim

sn→0

∫ 1/2

sn
FA−2(x)(F ′(x))2dx �

K0 +FA−1( 1
2 )|F ′( 1

2 )|
A−1

,
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which proves that FA−2(F ′)2 ∈ L1(0,1/2) which together with (103) implies that there
exists constant c such that lims→0 FA−1(s)F ′(s) = c . If c �= 0, then

∫ 1/2

0
F−A(x)dx =

∫ 1/2

0

FA−2(x)(F ′(x))2

(FA−1(x)F ′(x))2 dx < ∞,

which is not possible since F−A /∈L1(0,1/2) . Hence, c = 0 and so lims→0 FA−1(s)F ′(s)=
0. Analogously to the above observation, since F(1) = 0 and F(x) > 0 for all x ∈ I ,
from (104) follows lims→1 FA−1(s)F ′(s) = 0 which completes the proof of Proposition
3.2. �

Proof of (44) and (45) . The proofs of (44) and (45) are very similar to the
proofs of corresponding inequalities for the Euler equation presented in the proofs of
[13, Lemma 3.3]. �

Proof of (46) and (47) . Let λ0 and λ1 be from (43) . Let σ > 2 and β =
(σ −2)/2 > 0. Let m,M be two real numbers such that

0 < m <

√
λ0

max{β ,1/4} and M >

√
λ1

min{β ,1/4} . (105)

For the function q(x) = (1−2x)/(x−x2)β , x ∈ I , since S(λq) = S(q) , λ �= 0, by (10)
and (11) we derive a γ0 ∈ I only depending on λ0 , m , σ and a γ1 ∈ I only depending
on λ1 , M , σ such that

(mq′)2(x)+
1
2
S(mq)(x) � λ0

(x− x2)σ
, x ∈ (0,γ0)∪ (1− γ0,1),

and
λ1

(x− x2)σ
� (Mq′)2(x)+

1
2
S(Mq)(x), x ∈ (0,γ1)∪ (1− γ1,1),

which together with (43) yield:

(mq′)2(x)+
1
2
S(mq)(x) � f (x) � (Mq′)2(x)+

1
2
S(Mq)(x), (106)

for all x ∈ (0,ε)∪ (1− ε,1) and ε = min{δ ,γ0,γ1} , where δ is from (43) . Next, by
(8) and (9) , the function yλ (x) = λ−1/2|q′(x)|−1/2 sin(λq(x)) satisfies the equation

y′′λ +
[
(λq′)2(x)+

1
2
S(λq)(x)

]
yλ = 0, x ∈ I. (107)

Since q(x) is decreasing on I with q(0+) =∞ and q(1−) =−∞ , there is a k1 ∈N and
there are two sequences uλ ,k ↘ 0 and vλ ,k ↗ 1 of consecutive zeros of yλ (x) which
satisfy λq(uλ ,k) = kπ and λq(vλ ,k) = −kπ for all k � k1 . We claim that there is a
k2 � k1 such that:

( m
2π

) 1
β
(1
k

) 1
β � um,k � 2

(m
π

) 1
β
(1
k

) 1
β for all k � k2 , (108)
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and

1−2
(M
π

) 1
β
(1
k

) 1
β � vM,k � 1− ( M

2π
) 1
β
(1
k

) 1
β for all k � k2 , (109)

where m,M are from (105) . Indeed, the starting identity λq(x) = ±kπ can be written
in the form:

λ (1−2x)
xβ (1− x)β

= ±kπ . (110)

We know that:
λ

2xβ
� λ (1−2x)

xβ (1− x)β
� λ2β

xβ
for all x ∈ (0, 1

4 ) , (111)

and

− λ2β

(1− x)β
� λ (1−2x)

xβ (1− x)β
� − λ

2(1− x)β
for all x ∈ ( 3

4 ,1) . (112)

Putting x = um,k into (111) and x = vM,k into (112) and using (110) , we derive:

λ
2uβm,k

� kπ � λ2β

uβm,k

, k � k2, (113)

and

− λ2β

(1− vM,k)β
� −kπ � − λ

2(1− vM,k)β
, k � k2, (114)

where k2 � k1 such that um,k ∈ (0, 1
4 ) and vM,k ∈ ( 3

4 ,1) for all k � k2 . Now, from
(113) and (114) immediately follows the desired inequalities (108) and (109) .

Next, let y(x) be a solution of equation y′′ + f (x)y = 0 on I and let ak,bk be two
sequences of consecutive zeros of y(x) such that ak ↘ 0 and bk ↗ 1, when k → ∞ . It
gives the existence of a k0 ∈ N such that k0 � k2 and ak ∈ (0,ε) and bk ∈ (1− ε,1)
for all k > k0 . Now, by means of the left inequality from (106) and Sturm comparison
theorem applied to equations (107) with λ = m and y′′ + f (x)y = 0, we conclude that
between two consecutive zeros um,k0+1 and um,k0 of ym(x) there is at least one zero ai0
of y(x) such that um,k0+1 < ai0 < um,k0 . Repeating this procedure to all um,k0+k and
um,k0+k−1 , we observe that um,k0+k < ai0+k−1 for all k � 1, which together with left
inequality from (108) imply:

( m
2π

) 2
σ−2

( 1
k+ k0

) 2
σ−2 =

( m
2π

) 1
β
( 1
k0 + k

) 1
β � um,k0+k � ai0+k−1 � ak, k � 1.

It proves the left inequality in (46) .
From the right inequality in (106) and Sturm comparison theorem applied to equa-

tions y′′ + f (x)y = 0 and (107) with λ = M , we conclude that between two consec-
utive zeros ak0+1 and ak0 of y(x) there is at least one zero uM,i0 of yM(x) such that
ak0+1 < uM,i0 < ak0 . Applying this procedure to all pairs ak0+ j and ak0+ j−1 , we get
ak0+ j < uM,i0+ j−1 for each j � 1. Hence, for k = k0 + j we derive ak < uM,k−k0+i0−1 �
uM,k−k0 for each k > k0 , which together with the right inequality from (108) imply:

ak � uM,k−k0 � 2
(M
π

) 1
β
(1
k

) 1
β =

(M
π

) 2
σ−2

( 1
k− k0

) 2
σ−2 , k > k0.
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It proves the right inequality in (46) and thus, the inequality (46) is proved. Inequality
(47) concerning the sequence bk can be proved similarly. �

Proof of (48) . According to assumptions of Lemma 6.4 we may use Corollary
3.5. Hence, by (25) and (43) , we derive two sequences sk,tk ∈ I of consecutive zeros
of y′(x) , sk ↘ 0, tk ↗ 1, such that for sufficiently large k ,

|y(sk)| � c0 f−
1
4 (sk) � c0

λ 1/4
1

(sk − s2
k)
σ/4 = c1s

σ/4
k (1− sk)σ/4 � c2s

σ/4
k ,

and

|y(tk)| � c0 f−
1
4 (tk) � c0

λ 1/4
1

(tk − t2k )σ/4 = c1t
σ/4
k (1− tk)σ/4 � c3(1− tk)σ/4.

It proves (48) . �
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Department of Mathematics

FER
Unska 3

University of Zagreb, 10000 Zagreb
Croatia

e-mail: pasic@net.hr

James S. W. Wong
Department of Mathematics

University of Hong Kong
2308, Wing On Centre

Central
Hong Kong

China
e-mail: jsww@chinneyhonkwok.com

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


