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A PARABOLIC REGULARIZATION PROPERTY

OF p–LOGARITHMIC SOBOLEV GENERATORS

GABRIELE GRILLO

Abstract. Let N be a Riemannian manifold, M ⊂ N be a domain with smooth boundary, μ
a positive measure on M such that M has unit μ –volume. Consider the evolution driven by
the p–Laplace–type operator ( p > 2) associated to the natural p–energy functional E (p) con-
structed from μ , homogeneous Dirichlet boundary conditions on ∂M being assumed. Assume
that a single suitable logarithmic inequality holds for E (p) .Then we show that the evolution
brings any data belonging to the natural domain of the evolution instantaneously into Lq for any
q > 2 , with quantitative bounds on the Lq norms.
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