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A PARABOLIC REGULARIZATION PROPERTY

OF p–LOGARITHMIC SOBOLEV GENERATORS

GABRIELE GRILLO

(communicated by C. Trombetti)

Abstract. Let N be a Riemannian manifold, M ⊂ N be a domain with smooth boundary, μ
a positive measure on M such that M has unit μ –volume. Consider the evolution driven by
the p–Laplace–type operator ( p > 2) associated to the natural p–energy functional E (p) con-
structed from μ , homogeneous Dirichlet boundary conditions on ∂M being assumed. Assume
that a single suitable logarithmic inequality holds for E (p) .Then we show that the evolution
brings any data belonging to the natural domain of the evolution instantaneously into Lq for any
q > 2 , with quantitative bounds on the Lq norms.

1. Introduction, basic properties of the evolution, and statement of the results

The aim of this paper is to prove an instantaneous L2 –Lq regularizing property
(q > 2 arbitrary) for the evolution equation associated to (possibly degenerate or sin-
gular) p–Laplacian–like operators on finite volume domains of Riemannian manifolds,
Dirichlet boundary conditions being assumed, provided the associated energy func-
tional satisfy a single logarithmic Sobolev inequality.

This parallels, in the present case, the results discovered by L. Gross in his cel-
ebrated paper [11] for the linear case (see also [12] and, without any claim of com-
pleteness, the fundamental papers of Federbush, Nelson, Simon and Høegh–Krohn [9],
[13], [15]), but shows a substantial and unexpected difference with that situation, in
which it is well known that no more than a L2 –Lp(t) regularization holds, with p(t)
smooth and increasing, p(0) = 2, p(t) → +∞ as t → +∞ . The Ornstein–Uhlenbeck
semigroup shows the sharpness of that result in the linear case, this being particularly
evident in the fact that the eigenfunctions of such operator are unbounded.

To start with we shall introduce our setting and the corresponding notation. We
consider a connected, smooth Riemannian manifold (N,g) of dimension n endowed
with the associated Riemannian measure m . Let M ⊂ N be an open domain with
smooth boundary and consider a measurable function V on M . It will assumed here-
after, and will be crucial in what follows, that eV is a probability measure on M , so that
the μ –volume of M is one, where we set dμ := eV dm . All Lp spaces and norms will
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be considered w.r.t. μ . Notice that eV can be degenerate or singular at the boundary
as well.

Consider a (m–)measurable, locally integrable metric a on the tangent bundle
TM . The central object of this paper will be the following energy functional:

E (p)(u) :=
∫

M
ax(∇u(x),∇u(x))|∇u(x)|p−2

x dμ . (1.1)

here ∇ is the Riemannian gradient and | · |x is the Riemannian length in the tangent
space TxM .

The functional above is first considered on the space C∞
c (M) . Then we define

the space A p
0 (M) to be the completion of C∞

c (M) under the norm ‖u‖p +E (p)(u)1/p ,
and consider the functional at hand as being finite only on the Sobolev space A p

0 (M) .
We shall say that homogeneous Dirichlet boundary conditions on the boundary hold.
Clearly A p

0 (M) depends on the choices of a and μ as well. It will be required here-
after, without further comment, that the constants do not belong to A p

0 (M) . Qualita-
tively this is related to the fact that, if eV tends to zero at the boundary, such conver-
gence must not occur too fast.

The subgradient of this functional (cf. [4],[14]) is a version of the (a, p,μ)–
Laplacian Aa,p,μ acting on L2(M,μ) , an operator which in the flat case reads formally
as

Aa,p,μu := e−V
[
2∂i(eVai, j|∇u|p−2∂ ju)+ (p−2)∂k

(
eV ai, j∂iu∂ ju

|∇u|2 |∇u|p−2∂ku

)]
,

where the summation convention is used and ai, j are the coefficient of the (symmetric)
matrix a at x . Notice that, formally, (u,Aa,p,μu)L2(μ) = −pE (p)(u) . If a belongs to
the same conformal class of g , i.e. if a = σg for some smooth nonnegative scalar σ ,
then the generator has a simpler form which, in the flat case, reads

Aσ ,p,μ := pe−V∂i(eVσ |∇u|p−2∂iu).

In the non–flat case one should replace, in local coordinates, the gradient operator
by gi j∂ j and the divergence operators by the operator acting on vector fields ξ as
g−1/2∂i(g1/2ξi) , where g is the determinant of the metric tensor. For an excellent
discussion of the evolution equation associated to p–Laplacian–like operators in the
Euclidean case see [8].

Several different assumption can be made in order that E (p) is lower semicontin-
uous in the L2 topology. We shall in the sequel use the following one.

ASSUMPTION 1.1. The metric a is locally strictly elliptic w.r.t. the metric g in
the sense that, for all compact K ⊂⊂M, there exists λK > 0 such that ax(ξ (x),ξ (x)) �
λKgx(ξ (x)ξ (x)) for all smooth vector fields ξ . Moreover, eV belongs to the Sobolev
space W 1,2(M,μ) .

LEMMA 1.2. The functional (1.1), considered as finite on A p
0 (M) and infinite

otherwise, is convex and lower semicontinuous in the strong topology of L2(μ) , so that
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(see [4]) its subgradient defines a nonexpansive semigroup {Tt}t�0 in L2(μ) . Such
semigroup enjoys the Markov property, in the sense that it preserves order, namely u � v
implies Ttu � Ttv for all t > 0 , and that it is nonexpansive (in particular contractive)
on each Lp(μ) space for any p ∈ [1,+∞] , namely ‖Ttu− Ttv‖p � ‖u− v‖p for all
t > 0 , for all u,v ∈L p(μ) .

Proof. The only point is to prove the lower semicontinuity, in the L2(μ) topology,
of E (p) . This can be shown by minor modifications of the methods of [7], Sections
4.1, 4.2. We outline the only point in which there is a difference and in which the
assumption on V has a role. As shown in [7], Sections 4.1, 4.2, it suffices to deal with
the case a = g . Take un converging in L2 to a function u and consider the sequence
an = E (p)(un) . Suppose that a := liminfn→+∞ an is finite, otherwise there is nothing
to prove. Take any subsequence, still denoted by un , such that E (p)(un) → a . Then
the set {∇un}n∈N is bounded in L p(TM,μ) so that, since this latter space is reflexive,
it is relatively weakly compact. We can then extract a subsequence, still indicated by
un , such that ∇un is weakly convergent to an element X ∈L p(TM,μ) . To prove that
X = ∇u notice that, denoting by 〈·, ·〉 the scalar product on TxM :

lim
n→+∞

∫
M
〈∇un,χ〉dμ = − lim

n→+∞

∫
M

undiv
[
eVχ

]
dm

= − lim
n→+∞

∫
M

un
(
e−Vdiv

[
eVχ

])
dμ = − lim

n→+∞

∫
M

un
(
divχ + χ∇(eV )

)
dμ

= −
∫

M
u
(
e−Vdiv

[
eVχ

])
dμ = −

∫
M

udiv
[
eVχ

]
dm =

∫
M
〈∇u,χ〉dμ

for any χ ∈C∞
c (TM) so that X =∇u∈L p(TM,μ) . Here the assumption on V has been

used to be allowed to pass to the limit in the fourth step, since ∇(eV )] is (μ –)square
integrable by assumption.

By the weak lower semicontinuity of the L p norm we thus have:

Ep(u) � liminf
n→+∞

Ep(un)

with the present choice of un . This holds for all such L p(TM,μ) weakly convergent
subsequence of ∇un , which thus converges weakly to the same limit ∇u . Lower semi-
continuity then holds.

As for the Markov property we refer to Section 4.3 of [7], where such property is
proved in much greater generality, once the lower semicontinuity of the energy func-
tional is given, for a class of evolution including the present one. �

REMARK 1.3. One could deal with p–homogeneous functionals similar to E (p)

but constructed starting from a L2 –closable vector valued derivation. We content our-
selves instead with the present assumption to avoid cumbersome notation and to focus
on the core of the argument, but stress that the results can be shown to hold in somewhat
greater generality. A relevant situation in which our discussion can be carried up is the
case in which E p is replaced by

E
(p)
X (u) :=

∫
M
|Xu|p dμ
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and |Xu|2 = ∑m
i=1(Xiu)2 , {Xi}m

i=1 being a collection of vector fields for which the rel-
evant lower semicontinuity property and the requested logarithmic Sobolev inequality
(see below) holds.

Our next, crucial assumption on the functional under consideration is the follow-
ing.

ASSUMPTION 1.4. [logarithmic Sobolev inequality] Consider a fixed number p >
2 . The following logarithmic Sobolev inequality:

∫
M

up log

(
u

‖u‖p

)
dμ � c1E

(p)(u) (1.2)

is required to hold for any A p
0 (M) and a suitable real constant c1 .

REMARK 1.5. An inequality like (1.2) cannot hold in the whole maximal domain
of E (p) , call it A p(M) , if M has finite μ –measure. In fact, even when M is compact
and E (p)( f ) =

∫
M |∇ f |p dm , notice that the constant functions belong to A p . One may

then gauge the validity of the claimed inequality on functions of the type f = 1 + sg
with g a smooth function and s a small parameter. It is clear that the r.h.s. of (1.2)
behaves like sp , while the l.h.s. behaves like s2 for small s . Such inequality is then
false on A p since p > 2 by assumption.

Logarithmic Sobolev inequalities involving the p–energy functional for general
p �= 2 appeared first, to our knowledge, in [6] as a consequence of Sobolev inequalities,
and were used there to prove some regularizing properties of the p–heat equations in
the euclidean and uniformly elliptic case. The essential difference between the paper
[6] and the present one lies in the fact that the result of the former were proved starting
from the much stronger ordinary Sobolev inequalities so that the Lp –Lq regularizing
properties proved there had, in that case, a direct correspondence with what happens in
the linear case. The validity of an instantaneous L2 –Lq smoothing under the validity
of a single logarithmic Sobolev inequality has on the contrary no linear analogue.

Notice that the evolution considered has a natural maximal domain, i.e. the L2(M)
closure of the domain of its generator. This set coincide with the L2(M) closure of the
domain of the generating functional (cf. [4], Prop. 2.11), i.e. with A p

0 (M) in this case
(the running assumptions need not imply that A p

0 (M) is dense in L2(M)).
We are now ready to state our results, which take a different form in the case in

which the datum belongs to A p
0 (M) or to the maximal domain of the evolution.

THEOREM 1.6. Consider a solution u(t) = Ttu0 to the evolution equation asso-
ciated to the subgradient of the energy functional E p with domain A p

0 (M) , where
assumptions 1.1 and 1.4 are required to hold. Fix q > 2 and define, for a suitable
numerical constant C (independent of q):

tq(u0) :=
‖u0‖2

2

E (p)(u0)

{
exp

[
C

E (p)(u0)
‖u0‖p

2

(
qp−2−2p−2)]−1

}
. (1.3)
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Then the bound

‖u(t)‖q � ‖u0‖2

(
tq(u0)

t

)1/(p−2)
(1.4)

for all t � tq(u0) , for all u0 ∈ A p
0 and for a suitable B > 0 independent of q .

The above bound is scale invariant, i.e. it invariant when applied to the scaled
solution Ru(Rp−2s) corresponding to the initial datum Ru0 .

For general data in the L2 –closure of A p
0 (M) one still has that u(t) belongs to

Lq(M) for all positive times and for all q > 2 , and the bound

‖u(t)‖q � AeB/t (1.5)

holds for any u0 in the L2 –closure of A p
0 (M) for suitable positive A,B depending on

q and ‖u0‖2 , but not on E (p)(u0) , and for any t sufficiently small.

REMARK 1.7. Clearly the bound (1.5) is weaker then the bound (1.4) as concerns
the rate of decay as t → 0, but besides the fact that it holds for the maximal class of
data, one notices that the constants involved there do not depend on the energy E (p)(u0)
of the initial datum, then making such bound closer to the kind of supercontractive–type
bounds valid in the linear case.

REMARK 1.8. The above result, and the whole present paper, deals with the L2 –
Lq regularization properties of the evolution considered and therefore concerns short
times only. Clearly t above can be replaced, by the Lq contraction property of the
evolution, by t ∧ tq(u0) with no upper bound on t , but power–type decay bounds on
the long time behaviour can be obtained if an L p Poincarè inequality holds. In turn,
the L p Poincarè inequality holds when an L2 logarithmic Sobolev inequality holds,
because the latter implies an L2 Poincarè inequality which in turns implies the required
L p Poincarè inequality since p > 2. In fact, there is a different strategy of proof to
get bounds of the above form starting from the L p Poincarè inequality, but we are not
aware of any existing proof that our L p logarithmic Sobolev inequality implies the L p

Poincaré inequality, so that this topic requires a different treatment and will be dealt
with elsewhere.

The validity of the assumed Lp logarithmic Sobolev inequality can often be proved
when a similar L2 logarithmic Sobolev inequality holds: we shall recall at the end
of the paper some cases in which this happens. The following corollary makes the
above statement precise, and has the goal of showing that the validity of the widely
studied L2 logarithmic Sobolev inequality has consequences on the instantaneous L2−
Lq regularization of the nonlinear evolution associated to the p–analogue of the energy
functional involved, in the case of homogeneous Dirichlet boundary conditions on the
boundary of a suitable M ⊂ N .
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COROLLARY 1.9. Suppose that a = g, so that E (p)(u) =
∫
M |∇u|p dμ . Assume

that the L2 –logarithmic Sobolev inequality

∫
M

u2 log

(
u

‖u‖2

)
dμ � c1E

(2)(u) (1.6)

holds for any A 2
0 (M) and a suitable real constant c1 . Consider, given p > 2 , the

evolution driven by the subgradient of the functional E
(p)
0 . Then the evolution brings

each L2 data instantaneously into Lq for all q > 2 . The same bounds of Theorem 1.6
hold.

To prove the Corollary we notice that logarithmic Sobolev inequalities in L2 im-
ply suitable logarithmic Sobolev inequalities in Lp when p > 2, a familiar fact when
dealing with ordinary Sobolev inequalities. The L2 –logarithmic Sobolev inequalities
is widely studied in the literature, so that significative examples in the case at hand can
be deduced from the L2 –theory. The include for example the Gaussian case, but sev-
eral more general examples are known: for example a complete characterization in the
one–dimensional case of the measures for which a L2 logarithmic Sobolev inequality
holds is known, and several variants of the Bakry–Emery criterion can be used in the
multi–dimensional case. Since we are not concerned here with such topic we confine
ourself to addressing the interested reader e.g. to [1] and references quoted.

The proof of the Theorem will consist in several steps. In the second section we
shall prove some properties of a suitable entropic functional and use them to estimate
the time dependence of ‖u(s)‖r(s) for r(s) increasing and bounded data. In section 3
we prove a lower bound on ‖u(s)‖2 . The latter, combined with the former, allows us to
prove in section 4 that one can choose a specific r(s) , depending on the initial datum,
such that ‖u(s)‖r(s) is decreasing. The specific form of r , a scaling argument and the
use of the order preserving property for the evolution at hand, will make it possible to
prove the main claim. The last claim is then proved by making use of a result of Brezis
[4].

2. On the behaviour of some Lr(s) –norms

From now on we shall consider a nonnegative essentially bounded initial datum
u and denote its time evolved by u(t) . Essential boundedness and nonnegativity are,
by Lemma 1.2, conserved by the evolution: notice indeed that Tt0 = 0 in the present
case. Essential boundedness is a technical requirement which will be removed later,
while nonnegativity is not necessary in what follows but simplifies notations. We also
comment here that the order property of the evolution will however be crucial later on.

In the sequel we shall also use the notation

J(q,u) :=
∫

M

uq

‖u‖q
q
log

(
u

‖u‖q

)
dμ .

Minor modifications of the results of [6] then show the following:
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LEMMA 2.1. Let r is a smooth function of time s and u = u(s) a solution to the
evolution equation at hand corresponding to a nonnegative, essentially bounded datum.
Then:

d
dt

log‖u‖r =
ṙ
r
J (r,u)− (r−1)pp

(r+ p−2)p

E (p)
(
u

r+p−2
p

)
‖u‖r

r
. (2.1)

We shall always consider r in the sequel, without further comment, such that
r(0) = 2 and r is increasing. Notice that we have not indicated explicitly the time de-
pendence of u and r in the above formula and we shall keep this notational convention
throughout the paper.

LEMMA 2.2. The inequality

d
dt

log‖u‖r � ‖u‖−r
r

[
ṙ
r

∫
M

ur log

(
u

‖u‖r

)
dμ

− pp−1(r−1)
c1(r+ p−2)p−1

∫
M

ur+p−2 log

(
u

‖u‖r+p−2

)
dμ
]

(2.2)

holds true for any solution corresponding to a nonnegative essentially bounded datum.

Proof. We may rewrite the logarithmic Sobolev inequality (1.2) as:

E (p)(u) � 1
c1
‖u‖p

pJ(p,u)

so that we may deduce from (2.1) that

d
dt

log‖u‖r � ṙ
r
J (r,u)− (r−1)pp

c1(r+ p−2)p

‖u‖r+p−2
r+p−2

‖u‖r
r

(
J(p,u(r+p−2)/p)

)

where we have used the elementary identity ‖u(r+p−2)/p‖p
p = ‖u‖r+p−2

r+p−2 . Equivalently:

d
dt

log‖u‖r � ‖u‖−r
r

[
ṙ
r

∫
M

ur log

(
u

‖u‖r

)
dμ− pp(r−1)

c1(r+ p−2)p‖u‖
r+p−2
r+p−2×

×
(

p−1
∫

M

ur+p−2

‖u(r+p−2)/p‖p
p
log

(
ur+p−2

‖u(r+p−2)/p‖p
p

)
dμ
)]

= ‖u‖−r
r

[
ṙ
r

∫
M

ur log

(
u

‖u‖r

)
dμ− pp(r−1)

c1(r+ p−2)p×

×
(

r+ p−2
p

∫
M

ur+p−2 log

(
u

‖u‖r+p−2

)
dμ
)]

= ‖u‖−r
r

[
ṙ
r

∫
M

ur log

(
u

‖u‖r

)
dμ

− pp−1(r−1)
c1(r+ p−2)p−1

∫
M

ur+p−2 log

(
u

‖u‖r+p−2

)
dμ
]

�
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To prove a hypercontractive–like property for the nonlinear semigroup at hand it is

hence necessary to deal with the ϑ –dependence of the functional
∫
M uϑ log

(
u

‖u‖ϑ

)
dμ .

It will be more convenient to deal with the functional:

H(ϑ ,u) = ϑ
∫

M
uϑ log

(
u

‖u‖ϑ

)
dμ ,

defined on L∞
+(M,μ) .

LEMMA 2.3. Let u ∈ L∞
+(M,μ) . Then the map

ϑ 
→ ϑe−
∫ ϑ
2 log‖u‖s ds

∫
M

uϑ log

(
u

‖u‖ϑ

)
dμ , ϑ � 1

is non–decreasing.

Proof. To prove the claim we first notice that the derivative of the functional
ϑ 
→ ‖u‖ϑϑ is given by

∫
M uϑ logudμ , that the the derivative of the functional r 
→∫

M uϑ logudμ is given by
∫
M uϑ log2 udμ , and then compute:

H ′(ϑ ,u) =
d

dϑ

[
ϑ
(∫

M
uϑ logudμ−‖u‖ϑϑ log‖u‖ϑ

)]

=
∫

M
uϑ logudμ+ϑ

∫
M

uϑ log2 udμ− d
dϑ

(
‖u‖ϑϑ log‖u‖ϑϑ

)
=
∫

M
uϑ logudμ+ϑ

∫
M

uϑ log2 udμ

−
(∫

M
uϑ logudμ

)
log‖u‖ϑϑ −

∫
M

uϑ logudμ

= ϑ
[∫

M
uϑ log2 udμ−

(∫
M

uϑ logudμ
)

log‖u‖ϑ
]

= ϑ
∫

M
uϑ (logu) log

(
u

‖u‖ϑ

)
dμ .

We may also write

1
ϑ

d
dϑ

[
ϑ
∫

M
uϑ log

(
u

‖u‖ϑ

)
dμ
]

=
∫

M
uϑ log2

(
u

‖u‖ϑ

)
dμ+

∫
M

uϑ log

(
u

‖u‖ϑ

)
dμ log‖u‖ϑ .

Let now A be a differentiable function of ϑ , to be chosen later. We compute using the
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last formula, a prime denoting derivative with respect to ϑ :

1
ϑ

d
dϑ

[
A(ϑ)ϑ

∫
M

uϑ log

(
u

‖u‖ϑ

)
dμ
]

= A′
∫

M
uϑ log

(
u

‖u‖ϑ

)
dμ+A

∫
M

uϑ log2
(

u
‖u‖ϑ

)
dμ

+A
∫

M
uϑ log

(
u

‖u‖ϑ

)
dμ log‖u‖ϑ

= A
∫

M
uϑ log2

(
u

‖u‖ϑ

)
dμ+

∫
M

uϑ log

(
u

‖u‖ϑ

)
dμ
(
A log‖u‖ϑ +A′) .

We now choose A so that the above derivative is nonnegative. To this end it suffices to
require that A is nonnegative and that

A′ +A log‖u‖ϑ = 0.

This equation has the solution, for ϑ � 2 and a given u :

A(ϑ) = Ce−
∫ ϑ
2 log‖u‖s ds.

We have therefore proven that

d
dϑ

[
ϑe−

∫ ϑ
2 log‖u‖s ds

∫
M

uϑ log

(
u

‖u‖ϑ

)
dμ
]

� 0

as claimed. �
We may rewrite the conclusion of the last lemma as follows: for any positive δ

and any r � 1 one has

(r+ δ )e−
∫ r+δ
2 log‖u‖s ds

∫
M

ur+δ log

(
u

‖u‖r+δ

)
dμ � re−

∫ r
2 log‖u‖s ds

∫
M

ur log

(
u

‖u‖r

)
dμ

or equivalently∫
M

ur+δ log

(
u

‖u‖r+δ

)
dμ � r

r+ δ
e
∫ r+δ
r log‖u‖s ds

∫
M

ur log

(
u

‖u‖r

)
dμ . (2.3)

We now use the latter inequality in (2.2) and deduce that

d
dt

log‖u‖r �
(

ṙ
r
− pp−1r(r−1)

c1(r+ p−2)p e
∫ r+p−2
r log‖u‖s ds

)∫
M

ur

‖u‖r
r
log

(
u

‖u‖r

)
dμ . (2.4)

It is in the following Lemma that we need to assume that M has unit μ –measure,
a property which has not been used so far.

LEMMA 2.4. The inequality

d
dt

log‖u‖r �
(

ṙ
r
− pp−1r(r−1)

c1(r+ p−2)p‖u‖
p−2
2

)∫
M

ur

‖u‖r
r
log

(
u

‖u‖r

)
dμ (2.5)

holds true for any solution corresponding to a positive essentially bounded datum.



132 GABRIELE GRILLO

Proof. Jensen’s inequality applied to the convex function x 
→ x logx implies,
since the μ –mass of M is one, that

∫
M

ur

‖u‖r
r
log

(
u

‖u‖r

)
dμ � 0.

Notice now that, again because the μ –mass of M is one, one has ‖u‖r � ‖u‖s

whenever r � s so that

e
∫ r+p−2
r log‖u‖s ds � e(p−2) log‖u‖r = ‖u‖p−2

r � ‖u‖p−2
2 .

Putting back this inequalities into (2.4) we then obtain

d
dt

log‖u‖r �
(

ṙ
r
− pp−1r(r−1)

c1(r+ p−2)p‖u‖p−2
r

)∫
M

ur

‖u‖r
r
log

(
u

‖u‖r

)
dμ

and finally, using also that ‖u‖r � ‖u‖2 since r is increasing and r(0) = 2:

d
dt

log‖u‖r �
(

ṙ
r
− pp−1r(r−1)

c1(r+ p−2)p‖u‖
p−2
2

)∫
M

ur

‖u‖r
r
log

(
u

‖u‖r

)
dμ (2.6)

as claimed. �

3. A lower bound

To proceed further in discussing the consequences of the bounds proved in the
previous Section we need to prove a lower bound on the L2 norm of the solution. This
can be done by using a technique due to Alikakos and Rostamian [2] and modifying it
slightly in order to take care of the dependence of the bound upon the initial datum.

We comment that the constant C below depends on p only and could be explicitly
estimated by the interested reader, as the other numerical constant appearing in the
paper, by following carefully the proofs.

LEMMA 3.1. Let u be a solution to the equation at hand corresponding to the
initial datum u0 ∈ A p

0 (M) . Then the inequality

‖u(t)‖2 � ‖u0‖2(
1+CE (p)(u0)

‖u0‖2
2

t
)1/(p−2) (3.1)

holds true.

Proof. The proof follows closely [2] and we underline only the points which are
more relevant to our discussion. Consider the functional

E(u) := E (p)(u)− 1
2(p−2)

‖u‖2
2.
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Let also v(t) := u(t)(1+ t)1/(p−2) and consider the time scaling τ = log(t +1) .
Consider the easily verified formula (t + 1)v̇(t) = �pv+ v(t)/(p− 2) . This for-

mula, the fact that Aa,p,μ is the generator of the evolution and that such evolution is
associated to the subgradient of the functional E (p)(u) then yield, for any τ > 0 :

d
dτ

E(v(τ)) = −‖v̇(τ)‖2
2 � 0

so that E(v(τ)) � E(v(ε)) for all τ � ε > 0. Recall that for any positive time the time
evolved of any L2 datum belongs to the domain of the energy functional associated to
the evolution, i.e. in the present case to A p

0 , see [4]. For an initial datum belonging to
A p

0 we may of course replace ε with zero, and then we rewrite the formula as

E (p)(u) � 1
2(p−2)

‖u‖2
2 +E0 (3.2)

where E0 := E(v(0)) = E(u0) .
It is easily verified that

1
2

d
dτ

‖v(τ)‖2
2 = −pE (p)(v(τ))+

1
p−2

‖v(τ)‖2
2.

The latter bound implies, using (3.2), that

d
dτ

‖v(τ)‖2
2 � −‖v(τ)‖2

2−2pE0(v(0)). (3.3)

Integrating the above inequality gives

‖v(τ)‖2
2 � e−τ‖v(0)‖2

2−2pE0(v(0))(1− e−τ)

and it is then immediate to see (notice that E0 may be negative) that

‖v(τ)‖2
2 � min(‖v(0)‖2

2,−2pE0(v(0))) ∀τ > 0. (3.4)

Since the map t 
→ t(τ) is a bijection of [0,+∞) into itself and τ is arbitrary a similar
estimate holds with t replacing τ . Coming back to the original solution u and recalling
that v(0) = u0 this shows that, whenever E0 � 0:

‖u(t)‖2 �

√
min(‖u0‖2

2,−2pE0(u0))

(1+ t)1/(p−2) ∀t > 0. (3.5)

Notice now that the homogeneity of the generator at hand allows to conclude that,
if u(t) is the solution corresponding to the datum u0 , then û(t) := Ru(Rp−2t) is the
solution corresponding to the datum Ru0 given any positive R . Let us notice that

E0(û(0)) = RpE (p)(u0)− R2

2(p−2)
‖u0‖2

2 = R2
(

Rp−2E (p)(u0)− 1
2(p−2)

‖u0‖2
2

)
.
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Choose now

R = Ru0 :=
1
2

( ‖u0‖2
2

2(p−2)E (p)(u0)

)1/(p−2)

where we notice that by assumption the constants do not belong to the domain of
the energy functional and hence we can suppose that E (p)(u0)1/p �= 0. Therefore
E0(û(0)) = −CR2

u0
‖u0‖2

2 for a suitable positive constant C . The bound (3.5) and the
previous calculation then gives

‖û(t)‖2 �

√
min[‖û0‖2

2,−2pE0(û0)]

(1+ t)1/(p−2) = const.
Ru0‖u0‖2

(1+ t)1/(p−2)

that is

‖u(Rp−2
u0

t)‖2 � C
‖u0‖2

(1+ t)1/(p−2) .

We can rewrite the above formula as follows, where we set s = Rp−2t and inessential
numerical constants may hereafter change from line to line:

‖u(s)‖2 � C‖u0‖p/(p−2)
2(

C‖u0‖2
2 + sE (p)(u0)

)1/(p−2) =
‖u0‖2(

1+CE (p)(u0)
‖u0‖2

2
s
)1/(p−2) (3.6)

where C is a positive constant independent of u0 . �

4. Proof of the main results

Proof of the Theorem. We now insert the bound (3.1) into the formula (2.5) to
yield:

d
dt

log‖u‖r �

⎛
⎜⎝ ṙ

r
− pp−1r(r−1)

c1p(r+ p−2)p

‖u0‖p−2
2(

1+CE (p)(u0)
‖u0‖2

2
t
)
⎞
⎟⎠∫

M

ur

‖u‖r
log

(
u

‖u‖r
r

)
dm.

Finally we may also write, C denoting below a constant depending only on p and on
c1 :

d
dt

log‖u‖r �

⎛
⎜⎝ ṙ

r
− C

rp−2

‖u0‖p−2
2(

1+ E (p)(u0)
‖u0‖2

2
t
)
⎞
⎟⎠∫

M

ur

‖u‖r
r
log

(
u

‖u‖r

)
dm. (4.1)

We shall need the following proposition.

PROPOSITION 4.1. [state dependent hypercontractivity] Let, for a suitable nu-
meric constant C , for all positive t and all data in A p

0 ,

ru0(t) :=

[
2p−2 +C

‖u0‖p
2

E (p)(u0)
log

(
1+

E (p)(u0)
‖u0‖2

2

t

)]1/(p−2)

.
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Then the state dependent hypercontractive bound

‖u(t)‖ru0(t) � ‖u0‖2, ∀t � 0

holds. The latter bound is scale invariant, i.e. it is invariant when applied to the scaled
solution Ru(Rp−2t) corresponding to the initial datum u0 .

Proof. We choose r , depending on the initial datum u0 , so that the right–hand
side of (4.1) vanishes. In fact, let r solve the ordinary differential equation

ṙrp−3 =
C‖u0‖p−2

2

1+ E (p)(u0)
‖u0‖2

2
t

Then r is strictly increasing in time and, recalling that r(0) = 2, it has the explicit
expression

r(t) = ru0(t) =

[
2p−2 +C

‖u0‖p
2

E (p)(u0)
log

(
1+

E (p)(u0)
‖u0‖2

2

t

)]1/(p−2)

. (4.2)

Notice that r(t) → +∞ as t → +∞ .
We have thus shown that ‖u(t)‖ru0(t) � ‖u0‖2 for all t � t(u0) and for all data

which belong to L∞∩A p
0 .

The assumption of essential boundedness of the data can be removed. Take indeed
a sequence {un}n∈N ⊂ L∞ ∩A p

0 with un → u in A p
0 . Then in particular un → u in

L2 as well since M has finite measure. Our previous bound implies that, for any fixed
t > 0, ‖un(t)‖run (t) � ‖un‖2 for all t . Thus the sequence {‖un(t)‖run(t)} is bounded
and, since run(t) → ru0(t) , so is the sequence {‖un(t)‖ru0(t)−ε} for any given positive

ε . By the Banach–Alaoglu Theorem there exists a function f ∈ Lru0 (t)−ε such that,
possibly by passing to a subsequence, un(t)→ f in the weak-* topology of such space.
Weak–* lower semicontinuity of the norm then implies that ‖ f‖ru0 (t)−ε � ‖u0‖2 for all
ε > 0 so that ‖ f‖ru0(t) � ‖u0‖2 as well. The identification of f with u(t) follows from
the Markov property for the evolution at hand which implies that ‖un(t)− u0(t)‖q �
‖un−u0‖q for all q ∈ [1,+∞] .

Therefore, we have shown that

‖u(t)‖ru0(t) � ‖u0‖2 ∀t < t(u0), ∀u0 ∈ A p
0 . (4.3)

It is of some importance to notice that the present bound is scale invariant. Indeed
take a solution u to the equation at hand and consider the rescaled solution v(t) =
Ru(Rp−2t) , corresponding to the initial datum Ru0 . Writing the above bound for v
leads to the inequality ‖u(s)‖rRu0

(s/Rp−2) � ‖u0‖2 for s � t(u0) , a formula which is

obtained by setting s = Rp−2t . It is then elementary to check that rRu0(s/Rp−2) = ru0(s)
as claimed. �
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Proof of Theorem 1.6. Consider now a fixed q > 2 and notice that ru0(t) = q if
and only if, C denoting again an inessential numerical constant (independent of q ):

t = tq(u0) :=
‖u0‖2

2

E (p)(u0)

{
exp

[
C

E (p)(u0)
‖u0‖p

2

(
qp−2−2p−2)]−1

}
.

To proceed further, take now a nonnegative initial datum u0 .
Then the function vλ := λu0 is pointwise not smaller then u0 whenever λ � 1.

Therefore the Markov property implies 0 � Ttu0 � Ttvλ for all t where for notational
clarity we have indicated, in the present steps only, by Tt the nonlinear semigroup
which represents the evolution at hand. Therefore, fixing any q larger than 2:

‖Ttu0‖q � ‖Ttvλ‖q � ‖vλ‖2 = λ‖u0‖2

provided t and λ are related by the condition t = tq(λu0) = tq(u0)/λ p−2. Equivalently
one must have, given a fixed t > 0, λ = [tq(u0)/t]1/(p−2) . Since λ must be not smaller
than one one must require that t � tq(u0) as well. With this choice of λ it follows that,

‖u(t)‖q � tq(u0)1/(p−2)‖u0‖2

t1/(p−2) .

To end with, we finally notice that the case of initial data with changing sign
can be considered similarly starting from the fact that −|u0| � u0 � |u0| , using the
order preserving property of the evolution and noticing finally that the homogeneity
properties of the evolution imply that the solution corresponding to a nonpositive datum
v0 = −u0 is obtained by changing sign to the time evolved of u0 .

To prove the latter claim we shall use Theorem 3.2, formula (13) of [4]. Noticing
that Aa,p,μ(0) = 0 in the case at hand and then choosing v = 0 in the mentioned result
gives

‖Aa,p,μ(u(t))‖2 � ‖u0‖2

t
.

This fact also implies that

E (p)(u(t)) � C
‖u0‖2

2

t
, (4.4)

a bound which, incidentally, is easily shown to be scale invariant as well. Use this fact
as follows. Write the conclusion of the main Theorem, using the semigroup property,
choosing t/2 instead of zero as initial time. Then:

‖u(t)‖q �
( ‖u(t/2)‖2

E (p)(u(t/2))1/p

)p/(p−2)
[
exp

(
Bq

E (p)(u(t/2))
‖u(t/2)‖p

2

)
−1

]1/(p−2)
C

t1/(p−2)

�
( ‖u0‖2

E (p)(u(t/2))1/p

)p/(p−2)
[
exp

(
Bq

E (p)(u(t/2))
‖u(t/2)‖p

2

)
−1

]1/(p−2)
C

t1/(p−2)
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� C‖u0‖2

[
exp

(
Bq

E (p)(u(t/2))
‖u(t/2)‖p

2

)
−1

]1/(p−2)

� C‖u0‖2

[
exp

(
Bq

E (p)(u(t/2))
‖u0‖p

2

)
−1

]1/(p−2)

� C‖u0‖2

[
exp

(
Bq

t‖u0‖p−2
2

)
−1

]1/(p−2)

for t sufficiently small, the constant Bq and C being as usual allowed to change from
line to line. We have used the fact that the present evolution is L2 –contractive in the
second step (since we deal with a nonexpansive semigroup {Tt}t�0 for which Tt0 = 0
for all times), the bound (4.4) in the third and in the fifth step, and in the fourth step
the fact that, due to the strong L2 –continuity of the evolution, there exists a positive t1
such that for t � t1 one has ‖u(t)‖2 � ‖u0‖2/2. From the above bound the assertion
follows. �

To prove the corollary, we now consider the case in which a = g , so that

E (p)(u) :=
∫

M
|∇u(x)|px dμ (4.5)

Proof of Corollary 1.9. We notice that the if the logarithmic Sobolev inequality

∫
M

u2 log

(
u

‖u‖2

)
dμ � c1E

(2)(u), (LS2)

holds for any u ∈ A 2
0 (M) , then the logarithmic Sobolev inequality

∫
M

up log

(
u

‖u‖p

)
dμ � c1E

(p)(u), (LSp)

holds for any p > 2 and any function u ∈ A p
0 (M) .

To prove such claim we first notice that the obvious identity J (r,uγ) = γJ(γr,u)
holds true for all γ,r > 0. Then we compute, first for positive bounded functions in
A p :

pJ(p,u) = 2
p
2
J
(
2

p
2
,u
)

= 2J
(
2,u

p
2

)
� C

E2

(
u

p
2

)
∥∥∥u p

2

∥∥∥2

2

= C

∫
M u2( p

2 −1) |∇u|2 dμ
‖u‖p

p
� C

∥∥up−2
∥∥
σ ′

∥∥∥|∇u|2
∥∥∥
σ

‖u‖p
p

= C
‖u‖p−2

p ‖∇u‖2
p

‖u‖p
p

= C
‖∇u‖2

p

‖u‖2
p

. (4.6)



138 GABRIELE GRILLO

where we also used Hölder inequality with the choice of the two conjugate exponents
σ = p

2 and σ ′ = p
p−2 . To conclude the proof it is then clearly sufficient to prove the

fact that the Poincaré inequality ‖u‖p �C‖∇u‖p holds for any u∈ A p
0 . To prove such

claim notice that, by a variant of a result of Gross (see [5], Theorem 3.1 and Exam-
ple 3.2) the bottom λ0 of the L2 –spectrum of the (nonnegative) self–adjoint operator

associated to E
(2)
0 is an eigenvalue with finite multiplicity. The quantity λ0 cannot

then equal zero because of the Dirichlet boundary condition which would force in such
case the corresponding eigenfunction to vanish identically. This amounts to the validity
of the L2 –Poincaré inequality ‖u‖2 � C‖∇u‖2 . That this latter inequality implies the
corresponding one in Lp is standard, see however the much more general arguments of
[10], section 3, or [3]. �
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