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CONTRACTION IN L1 FOR A SYSTEM ARISING IN
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(communicated by J.-M. Rakotoson)

Abstract. We prove a contraction in L1 property for the solutions of a nonlinear reaction–
diffusion system whose special cases include a system related to intracellular transport as well
as reversible chemical reactions. We then consider the special case of the linear molecular motor
problem and prove the existence and uniqueness of the stationary solution up to a multiplicative
constant, extending to arbitrary space dimension results which were already known in the one
dimensional case; this in turn implies the convergence to stationary solutions of the solutions of
the time evolution linear molecular motor problem.

1. Introduction

We start with two specific reaction-diffusion systems. The first one describes a
reversible reaction and the other one a molecular motor. We first consider the reversible
chemical reaction (see also Bothe [3], Bothe and Hilhorst [4], Desvillettes and Fellner
[9] and Érdi and Tóth [10]). It involves a reaction-diffusion system of the form

ut =d1Δu−αk
(
rA(u)− rB(v)

)
in Ω× (0,T), Ω⊂ R

d ,

vt =d2Δv+βk
(
rA(u)− rB(v)

)
in Ω× (0,T ), Ω⊂ R

d ,
(1.1)

together with homogeneousNeumann boundary conditions, where d1 , d2 , α , β , k and
T are positive constants and where Ω is a bounded subset of R

d with smooth bound-
ary. Such systems describe, with a suitable choice of the functions rA and rB , chemical
reactions for two mobile species. For example, functions rA(u) = uk, rB(v) = vm cor-
respond to a reversible reaction kA � mB . Reactions of the type q1A1 + . . .qkAk �
q1B1 + . . .qmBm can also be described by similar systems with more complicated reac-
tions terms.
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Another model problem is a system in d = 1 space dimension and n unknown
variables u1, . . . ,un , n > 1, for intracellular transport, namely

∂ui

∂ t
=

∂
∂x

(
σ
∂ui

∂x
+uiψ ′

i

)

+
n

∑
j=1

ai ju j in QT = (0,1)× (0,T)

σ
∂ui

∂x
+uiψ ′

i = 0 on ∂QT = {0,1}× (0,T),

where
aii � 0, ai j � 0 for all i ∈ {1, . . . ,n}, i �= j,

n

∑
i=1

ai j = 0 for all i, j ∈ {1, . . . ,n}. (1.2)

It models transport via motor proteins in the eukaryotic cell where chemical energy
is transduced into directed motion. A derivation of the system from a mass transport
viewpoint is given in [6]. For an analysis of the steady state solutions and for further
references we refer to [5], [11], [12], [15] and [16].

In this paper we study the corresponding system in higher space dimension, namely

∂ui

∂ t
= div

(
σi∇ui +ui∇ψi

)
+αi

( n

∑
j=1

λi jr j
(
u j(x,t),x

))
in QT , (1.3a)

where i ∈ {1, . . . ,n} , and ui(x,t) : QT → R
+ , with QT = Ω× (0,T ) , Ω an open

bounded subset of R
d with smooth boundary, and T some positive constant. We sup-

plement this system with the Robin (no-flux) boundary conditions

σi
∂ui

∂ν
+ui

∂ψi

∂ν
= 0, i ∈ {1, . . . ,n}, on ∂Ω× (0,T), (1.3b)

where ν is the outward normal vector to ∂Ω , and the initial conditions

u1(x,0) = u0,1(x), . . . ,un(x,0) = u0,n(x), x ∈Ω. (1.3c)

We assume that the following hypotheses hold

1. The constants σi and αi ∈ R , where i ∈ {1, . . . ,n} , are strictly positive;

2. For i, j ∈ {1, . . . ,n}, λii � 0, λi j � 0 if i �= j , ∑n
k=1 λk j = 0;

3. for all i ∈ {1, . . . ,n} , the smooth functions ri are nondecreasing with respect to
the first variable; ri(0,x) = 0 and we assume that the functions ψi are smooth as
well;

4. ui(.,0) = u0i ∈C(Ω), u0i � 0.
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In the linear case of the molecular motor, this amount to choosing

ri(s,x) = s, λi j = ai j and αi = 1 for all i, j ∈ {1, . . . ,n}. (1.4)

We denote by Problem (P) the system (1.3a) together with the boundary and initial
conditions (1.3b), (1.3c), and admit without proof that Problem (P) possesses a unique
smooth and bounded solution on each time interval (0,T ] . An essential idea for proving
the existence of a solution would be to apply the Comparison principle Theorem 2.2
below to deduce that any solution of Problem (P) has to be nonnegative and bounded
from above by a stationary solution.

Finally, we note that because of the boundary conditions (1.3b) the quantity
n

∑
i=1

1
αi

∫
Ω

ui(x,t)dx (1.5)

is conserved in time.
The organization of this paper is as follows. In Section 2 we prove a comparison

principle for Problem (P). The main idea, which permits to show that Problem (P) is
cooperative, is a change of functions which transforms the Robin boundary conditions
into homogeneous Neumann boundary conditions. In Section 3 we establish a con-
traction in L1 property for the corresponding semigroup solution. Let us point out the
similarity with an old result due to Crandall and Tartar [7] where they proved in a scalar
case that in the presence of a conservation of the integral property such as (1.5), a com-
parison principle such as Theorem 2.2 is equivalent to a contraction in L1 property such
as the inequality (3.4) below. As far as we know such an abstract result is not known
in the case of systems. Finally we show in Section 4 the existence and uniqueness
of the stationary solution of the linear molecular motor problem up to a multiplicative
constant. This result holds in arbitrary space dimension whereas the proofs in [11] and
[5] only hold in the one dimensional case. The convergence to the stationary solution
as t → ∞ of the solution of the time evolution linear molecular motor problem then
follows as in [11]; their proof of convergence to the stationary solution is based on a
similar Krein-Rutman idea.

Acknowledgment. The authors acknowledge the preliminary master thesis work
of Aude Brisset about the corresponding two component system. They are grateful to
the professors Piotr Biler, Stuart Hastings, Annick Lesne and Hiroshi Matano for very
fruitful discussions.

2. Comparison principle

First, we remark that the system of equations (1.3a) is cooperative. However,

since nothing is known about the sign of the coefficients
∂ψi

∂ν
in the Robin boundary

conditions (1.3b), we cannot decide whether Problem (P) is cooperative. This leads us
to perform a change of variables which transforms the Robin boundary conditions into
homogeneous Neumann boundary conditions.
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2.1. The change of unknown functions

Performing the change of variables

wi(x,t) = ui(x,t)eψi(x)/σi , i ∈ {1, . . . ,n}, (2.1)

we deduce from (1.3) that �w := (w1, . . . ,wn) satisfies the parabolic system

∂wi

∂ t
= σi e

ψi(x)/σidiv
(
e−ψi(x)/σi∇wi

)
+αi e

ψi(x)/σi

( n

∑
j=1

λi jr j
(
wj(x,t)e−ψ j(x)/σ j ,x

))
in QT , (2.2)

together with the homogeneous Neumann boundary conditions

∂wi

∂ν
= 0, i ∈ {1, . . . ,n}, on ∂Ω, (2.3)

and the initial conditions

wi(x,0) = u0,i(x)eψi(x)/σi , i ∈ {1, . . . ,n}, x ∈Ω. (2.4)

In the following, we denote by Problem (PN) — the problem (2.2), (2.3), (2.4). To
begin with we define the operators

Li(wi) =
∂wi

∂ t
−σi e

ψi(x)/σidiv
(
e−ψi(x)/σi∇wi

)
−αi e

ψi(x)/σi

( n

∑
j=1

λi jr j
(
wj(x,t)e−ψ j(x)/σ j ,x

))
in QT . (2.5)

We say that (w1, . . . ,wn) is a subsolution of Problem (PN) if

Li(wi) � 0 in QT ,

∂wi

∂ν
� 0 on ∂Ω× (0,T),

wi(x,0) � wi(x,0), x ∈Ω

(2.6)

for all i ∈ {1, . . . ,n} . We define similarly a supersolution (u1, . . . ,un) of Problem (PN)
by the inequalities

Li(wi) � 0 in QT ,

∂wi

∂ν
� 0 on ∂Ω× (0,T),

wi(x,0) � wi(x,0), x ∈Ω.

(2.7)

The following comparison theorem holds ([1], [17]).
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THEOREM 2.1. Let (w1, . . . ,wn) and (w1, . . . ,wn) , be a sub - and a super - so-
lution, respectively, for the operators L j defined by (2.5) with j ∈ {1, . . . ,n} , which
means that (2.6) and (2.7) hold for i ∈ {1, . . . ,n} . Then wi � wi in QT . Moreover, for
all i ∈ {1, . . . ,n} such that wi � wi and wi �≡ wi on {t = 0}×Ω , we have that wi < wi

in QT . �

This comparison theorem immediately translates into a comparison theorem for
solutions of the original Problem (P). For all i ∈ {1, . . . ,n} , we define the operators

Li(ui) = (ui)t −div
(
σi∇ui +ui∇ψi

)−αi

( n

∑
j=1

λi j r j (u j,x)
)

in QT . (2.8)

The following result holds.

THEOREM 2.2. Let (u1, . . . ,un) and (u1, . . . ,un) , be a sub - and a super - so-
lution, respectively, for the operators L j , defined by (2.8) with j ∈ {1, . . . ,n} . Then
ui � ui in QT . Moreover, for all i ∈ {1, . . . ,n} such that ui � ui and ui �≡ ui on
{t = 0}×Ω then ui < ui in QT . �

Next we state two immediate corollaries of Theorem 2.2.

COROLLARY 2.3. (uniqueness) If (u1
1, . . . ,u

1
n) and (u2

1, . . . ,u
2
n) are solutions of

Problem (P) with the same initial condition (u0,1, . . . ,u0,n) ∈
(
C(Ω))n , then for all

i ∈ {1, . . . ,n}, u1
i = u2

i . �

COROLLARY 2.4. (positivity) If (u1, . . . ,un) is the solution of Problem (P) with
the nonnegative initial condition (u0,1, . . . ,u0,n) ∈

(
C(Ω)

)n
, then for all i ∈ {1, . . . ,n},

ui � 0 . Moreover, for all i ∈ {1, . . . ,n} , such that u0,i � 0 and u0,i �≡ 0 , ui > 0 in
QT . �

3. Contraction property

The purpose of this section is to show a contraction in
(
L1(Ω)

)n
property for

solutions of Problem (P) with initial conditions belonging to
(
L∞(Ω)

)n . The main
steps of the proof rely upon arguments due to [2] and [14].

We first introduce some notation. We suppose that the functions (u1
1, . . . ,u

1
n) and

(u2
1, . . . ,u

2
n) are the solutions of Problem (P) with the initial conditions (u1

0,1, . . . ,u
1
0,n)

and (u2
0,1, . . . ,u

2
0,n) , respectively. Define

(U1, . . . ,Un) := (u1
1−u2

1, . . . ,u
1
n−u2

n). (3.1)
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Then
(Ui)t = div

(
σi∇Ui +Ui∇ψi

)
+ αi

n

∑
j=1

λi j
(
r j(u1

j(x,t),x)− r j(u2
j(x,t),x)

)
in QT ,

σi
∂Ui

∂ν
+Ui

∂ψi

∂ν
= 0 on ∂Ω× (0,T),

Ui(x,0) = U0,i(x) for x ∈Ω,

(3.2)

together with
U0,i = u1

0,i−u2
0,i, (3.3)

for each i ∈ {1, . . . ,n} .

Next we prove the following contraction in L1 property.

THEOREM 3.1. For all t > 0 ,

1
α1

‖U1(·, t)‖L1(Ω) + . . .+
1
αn

‖Un(·,t)‖L1(Ω)

� 1
α1

‖U0,1(·)‖L1(Ω) + . . .+
1
αn

‖U0,n(·)‖L1(Ω), (3.4)

where Ui and U0,i, i ∈ {1, . . . ,n} , are defined by (3.1) and (3.3), respectively.

Proof. Dividing each partial differential equation of (3.2) by αi and summing
them up, we obtain

d
dt

( n

∑
i=1

1
αi

Ui

)
=

n

∑
i=1

1
αi

div(σi∇Ui +Ui∇ψi)

+
n

∑
i=1

n

∑
j=1

λi j

(
r j(u1

j(x,t),x)− r j(u2
j(x,t),x)

)

=
n

∑
i=1

1
αi

div(σi∇Ui +Ui∇ψi)

+
n

∑
j=1

{(
r j(u1

j(x,t),x)− r j(u2
j(x, t),x)

) n

∑
i=1

λi j

}

=
n

∑
i=1

1
αi

div(σi∇Ui +Ui∇ψi) ,

where we have used Hypothesis 2.
This, together with the boundary conditions (1.3b), implies the conservation in

time property
d
dt

n

∑
i=1

1
αi

∫
Ω

Ui(x,t)dx = 0. (3.5)
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Let us look closer at the nonlinear term in (3.2). We can write, for fixed index i

n

∑
j=1

λi j
(
r j(u1

j(x, t),x)− r j(u2
j(x,t),x)

)
=

n

∑
j=1

λi jUj

1∫
0

∂
∂u

r j(θu1
j +(1−θ )u2

j,x)dθ =
n

∑
j=1

Ai jUj.

Freezing the functions uk
i for i ∈ {1, . . . ,n}, k ∈ {1,2} , we deduce that the func-

tions U1, . . . ,Un satisfy a system of the form

(Ui)t = div
(
σi∇Ui +Ui∇ψi

)
+

n

∑
j=1

Ai jUj in QT , (3.6)

with the boundary and initial conditions

σi
∂Ui

∂ν
+Ui

∂ψi

∂ν
= 0 on ∂Ω× (0,T),

Ui(x,0) = U0,i(x), x ∈Ω,

(3.7)

for i ∈ {1, . . . ,n} , where Ai j are functions of space and time.
In order to make the notation more concise, we write

�U0 =
(
U0,1, . . . ,U0,n

)
,

�U =
(
U1, . . . ,Un

)
,

�U±
0 =

(
U±

0,1, . . . ,U
±
0,n

)
,

�U± =
(
U±

1 , . . . ,U±
n

)
,

where s+ = max{s,0}, s− = max{−s,0} . By (3.6), (3.7) and Corollary 2.3 we can
write �U in the form

�U(x,t) = S (t)�U0(x) =
(
S1(t)�U0, . . . ,Sn(t)�U0

)
(x).

We set (
W1, . . . ,Wn

)
= −(

U1 eψ1(x)/σ1 , . . . ,Un eψn(x)/σn
)
,

and Ãi j = Ai j eψi(x)/σi e−ψ j (x)/σ j . Then, the system of equations (3.6) can be expressed
in the form

(
Wi

)
t = σi e

ψi(x)/σidiv
(

e−ψi(x)/σi∇Wi

)
+

n

∑
j=1

Ãi jWj in QT , (3.8)

with the boundary and initial conditions

∂Wi

∂ν
= 0 on ∂Ω× (0,T), (3.9)

Wi(x,0) = −U0,i e
ψi(x)/σi , x ∈Ω, (3.10)

for i ∈ {1, . . . ,n} .
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Next we show that the solutions Wi of the problem (3.8) – (3.10) with nonpositive
initial conditions are nonpositive in Ω for all t ∈ (0,T ) . To that purpose we consider
the auxiliary problem

(
Wi

)
t −ϑi(x)div

(
ζi(x)∇Wi

)
−

n

∑
j=1

γi jWj � 0 in QT , (3.11)

∂Wi

∂ν
� 0 on ∂Ω× (0,T ), (3.12)

Wi(x,0) = W0,i(x) � 0 x ∈Ω, (3.13)

for i ∈ {1, . . . ,n} . We assume that ϑi(x) and ζi(x) are nonnegative in Ω and that the
coefficients γi j satisfy the same assumptions as the coefficients λi j in Problem (P). The
following result holds.

LEMMA 3.2. Let (W1, . . . ,Wn) be a smooth and bounded solution of the problem
(3.11)– (3.13) with nonpositive initial conditions W0,i on a time interval [0,T ] . Then
Wi(x, t) � 0 in Ω× (0,T ] . Moreover, for each i ∈ {1, . . . ,n} such that W0,i � 0 and
W0,i �≡ 0, Wi < 0 in Ω× (0,T ] .

Proof. The result of Lemma 3.2 follows from the fact that the system (3.11), (3.12),
(3.13), with the inequalities {�} replaced by the equalities {=} , is a cooperative sys-
tem. However, for the sake of completeness, we present a proof below. We first remark
that, in view of [17, Remark (i), p. 191], one can always satisfy the condition

n

∑
j=1

γi j � 0 for all i ∈ {1, . . . ,n}, (3.14)

for the matrix of coefficients
(
γi j

)n
i, j=1 by performing the change of variables Wi =

Wi e−ct for all i ∈ {1, . . . ,n} and c > 0 large enough.
Thanks to the regularity of each Wi , we can apply Theorem 15, p. 191 from [17] to
conclude that Wi−M � 0 in Ω× [0,T ] for some M > 0 and all i ∈ {1, . . . ,n} . In fact,
we can deduce that Wi−M < 0 in Ω× (0,T ) .
Indeed, if for some k ∈ {1, . . . ,n} , Wk = M in an interior point (x̃, t̃)∈Ω× (0,T ) , then
Theorem 15, p. 191 in [17] implies that Wk ≡ M for all 0 � t < t̃ , which is impossible
since Wk(x,0) � 0. If the maximum M of Wk is attained at a boundary point P ∈
∂Ω× (0,T ) then either there exists an open ball K ⊂ Ω× (0,T ) such that P ∈ ∂K
and Wk −M < 0 in K , and the last part of Theorem 15, p. 191 in [17] contradicts the
boundary inequality (3.12), or for all open balls K ⊂Ω×(0,T ) such that P∈ ∂K there
exists a point (x̃, t̃) ∈ K such that Wi(x̃, t̃) = M , and we proceed as in the case before.
Hence, there exists M̃ > 0, such that Wi � M̃ < M in Ω× [0,T ] for all i ∈ {1, . . . ,n} .
Then we can repeat the reasoning for all M > 0 until M = 0. Indeed, if this would
not be the case, we find the least real number M > 0, with Wi � M � M̃ in Ω× [0,T ] ,
which leads again to the existence of a real number 0 � M̂ < M with the same property.
This contradicts the fact that M was defined as the least such real number. �
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Since the functions u1
i , u2

i are bounded on Ω× [0,T ] , it follows that the functions
Wi are bounded on Ω× [0,T ] for all i ∈ {1, . . . ,n} .
Then we are in a position to apply Lemma 3.2 with ϑi(x) = eψi/σi , ζi(x) = σi e−ψi/σi

and γi j = Ãi j for i, j ∈ {1, . . . ,n} . We deduce that the solutions Wi of the problem
(3.8) – (3.10) with nonpositive initial conditions are nonpositive in Ω for all t ∈ (0,T ) .

Next we remark that the above reasoning can be applied either with �U0 replaced
by �U+

0 or with �U0 replaced by �U−
0 . This permits to show that Si(t)�U+

0 ,Si(t)�U−
0 � 0

and that
Si(t)�U±

0 > 0 if �U±
0 �≡ 0. (3.15)

We easily compute

n

∑
i=1

1
αi

∥∥Ui(·, t)
∥∥

L1(Ω) −
n

∑
i=1

1
αi

∥∥U0,i(·)
∥∥

L1(Ω)

=
n

∑
i=1

1
αi

∥∥Si(t)�U+
0 −Si(t)�U−

0

∥∥
L1(Ω)−

n

∑
i=1

1
αi

∥∥U0,i(·)
∥∥

L1(Ω)

=
n

∑
i=1

∫
Ω

1
αi

{
max

{
Si(t)�U+

0 ,Si(t)�U−
0

}

− 1
αi

min
{
Si(t)�U+

0 ,Si(t)�U−
0

}}
dx−

n

∑
i=1

1
αi

∫
Ω

{
U+

i,0 +U−
i,0

}
dx

=
n

∑
i=1

∫
Ω

1
αi

(
Si(t)�U+

0 +Si(t)�U−
0

)
dx−

n

∑
i=1

1
αi

∫
Ω

{
U+

i,0 +U−
i,0

}
dx

−2
n

∑
i=1

∫
Ω

1
αi

min
{
Si(t)�U+

0 ,Si(t)�U−
0

}
dx

= −2
n

∑
i=1

∫
Ω

1
αi

min
{
Si(t)�U+

0 ,Si(t)�U−
0

}
dx � 0, (3.16)

which completes the proof of (3.4). �

COROLLARY 3.3. Let (u1
0,1, . . . ,u

1
0,n), (u2

0,1, . . . ,u
2
0,n) ∈

(
C(Ω)

)n
be as in Theo-

rem 3.1. Moreover, let us assume that for at least one index k ∈ {1, . . . ,n} the difference
u1

0,k − u2
0,k changes the sign. Then, the inequality (3.4) is strict for all t > 0 , so that

solution satisfies a strict contraction property. �

4. Stationary solutions of the linear molecular motor problem

In this section we show the existence and uniqueness up to a multiplicative con-
stant of the classical stationary solution of the molecular motor problem. We suppose
that Ω is an open bounded subset of R

d with smooth boundary ∂Ω .
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We consider the linear system

div
(
σi∇vi(x)+ vi(x)∇ψi(x)

)
+

n

∑
j=1

ai jv j(x) = 0 in Ω, (4.1)

where i∈{1, . . . ,n} , n > 1. The system (4.1) is supplementedwith the Robin boundary
conditions

σi
∂vi

∂ν
+ vi

∂ψi

∂ν
= 0 on ∂Ω, (4.2)

where i ∈ {1, . . . ,n} . Thus, the problem can be written as

A�v = 0,

with a linear operator A in a suitable Banach space X of functions on Ω , to be made
precise later. Moreover, we impose the integral constraint

n

∑
i=1

∫
Ω

vi(x)dx = 1. (4.3)

The adjoint problem A ∗�ϕ = 0 to (4.1), in a dual space X ∗ , is now

σiΔϕi−∇ψi ·∇ϕi +
n

∑
j=1

a jiϕ j = 0, in Ω, (4.4)

with the Neumann boundary conditions for each i = 1, . . . , n

∂ϕi

∂ν
= 0 on ∂Ω. (4.5)

Since ∑n
j=1 a ji = 0, the problem (4.4) has the obvious solution

�ϕ = (ϕ1, . . . ,ϕn) = (1, . . . ,1). (4.6)

We are going to apply the Krein-Rutman theorem about the first eigenvalue and eigen-
vector of positive operators, which will permit to conclude that the problem (4.1)–(4.2)
has a one-dimensional space of solutions. Therefore, under the additional constraint
(4.3), the original problem (4.1)–(4.2) has a unique solution.
Perthame and Souganidis sketched this argument for n > 1 and d = 1 in [16].

THEOREM 4.1. Under the assumption ∑n
j=1 a ji = 0 , there exists a unique smooth

solution �v of the system (4.1)–(4.3).

Before proving Theorem 4.1 we recall some basic definitions as well as the Krein-
Rutman theorem from [8, Ch. VIII, p. 188–191].

DEFINITION 4.2. (Reproducing cone) We say that a closed set K in X is a cone,
if it possesses the following properties:
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i) 0 ∈ K ,

ii) u, v ∈ K =⇒ αu+βv∈ K , for all α, β � 0,

iii) v ∈ K and −v ∈ K =⇒ v = 0.

A cone K ⊂ X is said to be reproducing if X = K−K ≡ {
k1− k2 : k1, k2 ∈ K

}
.

DEFINITION 4.3. (Dual cone) If K is a cone in X , then the dual cone K∗ ⊂X ∗
is defined by

K∗ = { f ∗ ∈ X ∗ such that 〈 f ∗,v〉 � 0 for all v ∈ K}.

DEFINITION 4.4. (Strict positivity) Let B be a linear operator on X . Then B
is said to be strongly positive if Bv ∈ Ko for all v ∈ K such that v �= 0.

THEOREM 4.5. Let K be a reproducing cone in a Banach space X , with nonempty
interior Ko �= /0 , and let B be a strongly positive compact operator on K in the sense of
Definition 4.4. Then the spectral radius of B , r(B) , is a simple eigenvalue of B and
B∗ , and their associated eigenvectors belong to Ko and (K∗)o . More precisely, there
exists a unique associated eigenvector in Ko (resp. (K∗)o ) of norm 1 . Furthermore,
all other eigenvalues are strictly less in absolute value than r(B) .

Proof. We will apply Theorem 4.5 to the space X =
(
C(Ω)

)n ⊂ (
L1(Ω)

)n
en-

dowed with the usual supremum norm, and to the operators

B = (λ I−A )−1 : X → X ,

B∗ = (λ I−A ∗)−1 : X ∗ → X ∗,

where λ > 0 is a strictly positive real number to be fixed later.
Let

K =
{
�u ∈ X : ui(x) � 0 for each x ∈Ω, i = 1, . . . ,n

}
.

We remark that K is a reproducing cone, with nonempty interior

Ko =
{
�u ∈ X : inf

x∈Ω
ui(x) > 0, i = 1, . . . ,n

}
.

From the standard theory [13, Theorem 2.1 and Theorem 3.1, Ch. 7] for elliptic partial
differential linear systems, the boundary value problem

σiΔϕi−∇ψi ·∇ϕi +
n

∑
i=1

a jiϕ j −λϕi = fi in Ω, (4.7)

with the homogeneous Neumann conditions (4.5) on ∂Ω , and λ = λ̃ > 0 sufficiently
large, has a solution �ϕ = (ϕ1, . . . ,ϕn) ∈ X for each �f = ( f1, . . . , fn) ∈ X . Moreover,
if fi(x) � 0 for each i = 1, . . . ,n , and x ∈ Ω , then ϕi(x) � 0 (in fact, ϕi(x) > 0 in
Ω), which is a consequence of the maximum principle (cf. also Example 3 on p. 196–
197 in [8]). Thus, the operator B∗ =

(
λ̃ I−A ∗)−1

is a strongly positive and compact
operator, and by Theorem 4.5, the largest eigenvalue μ of B and B∗ is simple.
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Since

−σiΔϕi +∇ψi ·∇ϕi −
n

∑
j=1

a jiϕ j + λ̃ϕi = λ̃ϕi in Ω

∂ϕi

∂ν
= 0 on ∂Ω,

for all i ∈ {1, . . . ,n} , with �ϕ = (ϕ1, . . . ,ϕn) = (1, . . . ,1) , and since (1, . . . ,1) ∈ (K∗)o ,

it follows that
1

λ̃
= r

((
λ̃ I −A ∗)−1

)
is a simple eigenvalue of the operator

(
λ̃ I −

A ∗)−1
. Applying again Theorem 4.5, we deduce that

1

λ̃
is the largest eigenvalue of

the operator
(
λ̃ I−A

)−1
, that it is simple, and that there exists �v ∈ Ko ⊂ X such that(

λ̃ I−A
)−1

�v =
1

λ̃
�v,

which is equivalent to
A�v = 0.

This completes the proof of the existence of the solution of the problem (4.1)–(4.3).
�
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