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GENERALIZED SOLUTIONS TO A

NON–LIPSCHITZ GOURSAT PROBLEM

VICTOR DÉVOUÉ

(Communicated by J. M. Rakotoson)

Abstract. We study the semilinear wave equation in canonical form with non-Lipschitz non-
linearity by using the recent theories of generalized functions. We investigate solutions to the
Goursat problem. We turn this non-Lipschitz Goursat problem with irregular data into a bipa-
rameter family of problems. The first parameter replaces the problem by a family of Lipschitz
problems and the second one regularizes the data. Finally the family of problems is solved in an
appropriate biparametric (C ,E ,P) algebra.

1. Introduction

The distribution theory has some limitations when nonlinear problems are consid-
ered. The theories of algebras of generalized functions [1], [11], which form at least
presheaves of differential algebras, seem to be an efficient tool to overcome these lim-
itations. They have already been used to solve many nonlinear and irregular problems.
For example, in the case of singular data and Lipschitz nonlinearity, a method consists
in replacing the given problem with a one-parameter family of smooth problems and
has been successfully used in [5], [15], [16], [18] among other references. With similar
techniques, various type of nonlinearities are considered in [17], [19].

The main purpose of this paper is to establish the existence of a global solution

for the non-Lipschitz Goursat problem formally written as
(
Pform

)
:

∂ 2u
∂x∂y

= F(·, ·,u)

(for example F(·, ·,u)) = u2 ), in the case of irregular data given along the characteris-
tic curve C = (Ox) and along a monotonic curve γ of equation x = g(y) . We want to
investigate solutions to this nonlinear problem with distributions or other generalized
functions as data. This justifies to search for solutions in algebras which are invari-
ant under nonlinear functions and contain the space of distributions. To do this, we
use some regularization processes and cutoff techniques described in the framework of
(C ,E ,P)-algebras of Marti [12], [13], [14], [15], [16] which are an improvement and
generalization of the algebras of Colombeau [1], [11]. These algebras are designed to
admit multiparametric families of smooth functions as representatives of generalized
functions.
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The mentioned ill-posed problem remains in general unsolvable in classical func-
tional spaces. To overcome this difficulty, we associate to problem

(
Pform

)
a general-

ized one (Pgen) well formulated in a convenient algebra A (R2) .
We begin by giving general conditions for such an association: a stability condition

of A (R2) in relationship with the nonlinearity and a compatibility condition leading
to a generalization of the usual restriction.

In the case we are studying, the problem (Pgen) is constructed by means of a family
(Pλ )λ∈Λ of regularized problems, where λ = (ε,ρ) lies in the set Λ = (0,1]× (0,1] .
Our techniques use a family of cutoff functions ( fε )ε and a family mollifiers

(
θρ
)
ρ

regularizing the data in singular cases. Therefore, like in [10], the parameter ε is used
to render the problem Lipschitz, and the parameter ρ to make it regular.

We treat in details the case of irregular data given along the characteristic curve
C = (Ox) and along a monotonic curve γ of equation x = g(y) . We add some remarks
for the case of regular data.

The classical successive approximations technique used in [8], [9] permits to ob-
tain, for each λ , a global solution uλ to (Pλ ) . Using the precise estimates given
subsection 3.5, we show that the class of (uλ )λ in A (R2) is the expected solution
u of the generalized problem (Pgen) . Thus, we obtain a global generalized solution,
when the classical smooth solutions often break down in finite time as it is pointed out
in [20]. We show that this solution is unique in the constructed algebra. However, the
generalized problem (Pgen) , and obviously its solution, a priori depend on the choice of
the cutoff functions and, in the case of irregular data, on the family of mollifiers. With
regard to the regularization, we show that this solution depends solely on the class of
the cutoff functions as a generalized function, not on the particular representative. In
the case of irregular data, the solution of the problem (Pgen) depends on the family of
mollifiers but not on a class of that family.

Moreover, if the initial problem
(
Pform

)
admits a smooth solution u satisfying

appropriate growth estimates on some open subset Ω of R2 , then this solution and the
generalized one are equal in a meaning given in Theorem 13. So the theory of gener-
alized functions appears as the natural continuation of the classical theory of functions
and distributions. In the example we take advantage of our results to give a new ap-
proach of a blow-up problem. The local classical solution extends to a global general-
ized solution which absorbs the blow-up.

2. Algebras of generalized functions

2.1. The presheaves of (C ,E ,P)-algebras

2.1.1. Definitions

We refer the reader to [7], [12], [13], [14], [15] for more details. Take

• Λ a set of indices;

• A a solid subring of the ring KΛ , (K = R or C), that is A has the following
stability property: whenever (|sλ |)λ � (rλ )λ (i.e. for any λ , |sλ | � rλ ) for any
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pair ((sλ )λ ,(rλ )λ ) ∈ KΛ× |A| , it follows that (sλ )λ ∈ A , with |A| = {(|rλ |)λ :
(rλ )λ ∈ A} ;

• IA an solid ideal of A with the same property;

• E a sheaf of K -topological algebras on a topological space X , such that for any
open set Ω in X , the algebra E (Ω) is endowed with a family P(Ω) = (pi)i∈I(Ω)
of seminorms satisfying

∀i ∈ I(Ω), ∃( j,k,C) ∈ I(Ω)× I(Ω)×R
∗
+, ∀ f ,g ∈ E (Ω) : pi( f g) �Cpj( f )pk(g).

Assume that

• For any two open subsets Ω1 , Ω2 of X such that Ω1 ⊂ Ω2, we have I(Ω1) ⊂
I(Ω2) and if ρ2

1 is the restriction operator E (Ω2) → E (Ω1) , then, for each pi ∈
P(Ω1) , the seminorm p̃i = pi ◦ρ2

1 extends pi to P(Ω2) ;

• For any family F = (Ωh)h∈H of open subsets of X if Ω = ∪h∈HΩh , then, for
each pi ∈P(Ω) , i ∈ I(Ω) , there exists a finite subfamily Ω1, ...,Ωn(i) of F and
corresponding seminorms p1 ∈ P(Ω1), ..., pn(i) ∈ P(Ωn(i)) , such that, for each
u ∈ E (Ω) ,

pi (u) � p1
(
u|Ω1

)
+ ...+ pn(i)(u|Ωn(i)

).

Set

X(A,E ,P)(Ω) = {(uλ )λ ∈ [E (Ω)]Λ : ∀i ∈ I(Ω), ((pi(uλ ))λ ∈ |A|},
N(IA,E ,P)(Ω) = {(uλ )λ ∈ [E (Ω)]Λ : ∀i ∈ I(Ω), (pi(uλ ))λ ∈ |IA|},

C = A/IA.

One can prove that X(A,E ,P) is a sheaf of subalgebras of the sheaf E Λ and N(IA,E ,P)
is a sheaf of ideals of X(A,E ,P) [13]. Moreover, the constant sheaf X(A,K,|.|)/N(IA,K,|.|)
is exactly the sheaf C = A/IA .

DEFINITION 1. We call presheaf of (C ,E ,P)-algebra the factor presheaf of al-
gebras over the ring C = A/IA

A = X(A,E ,P)/N(IA,E ,P).

We denote by [uλ ] the class in A (Ω) defined by the representative

(uλ )λ∈Λ ∈ X(A,E ,P)(Ω).

2.1.2. Overgenerated rings

Let Bp =
{(

rn,λ
)
λ ∈ (R∗

+)Λ : n = 1, ..., p
}

and B be the subset of (R∗
+)Λ obtained

as rational functions with coefficients in R∗
+ of elements in Bp as variables. Define

A =
{
(aλ )λ ∈ K

Λ | ∃(bλ )λ ∈ B,∃λ0 ∈ Λ,∀λ ≺ λ0 : |aλ | � bλ
}

.
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DEFINITION 2. In the above situation, we say that A is overgenerated by Bp (and
it is easy to see that A is a solid subring of KΛ ). If IA is some solid ideal of A , we also
say that C = A/IA is overgenerated by Bp .

EXAMPLE 1. For example, as a “canonical” ideal of A , we can take

IA =
{
(aλ )λ ∈ K

Λ | ∀(bλ )λ ∈ B,∃λ0 ∈ Λ,∀λ ≺ λ0 : |aλ | � bλ
}

.

REMARK 1. We can see that with this definition B is stable by inverse.

2.1.3. Relationship with distribution theory

Let Ω an open subset of Rn . The space of distributions D ′(Ω) can be embed-

ded into A (Ω) . If
(
θρ
)
ρ∈(0,1] is a family of mollifiers θρ (x) = 1

ρn θ
(

x
ρ

)
, x ∈ Rn ,∫

θ (x)dx = 1 and if T ∈ D ′ (Rn) , the convolution product family
(
T ∗θρ

)
ρ is a fam-

ily of smooth functions slowly increasing in 1/ρ . Then, taking ρ as a component of
the multi-index λ ∈ Λ , we shall choose the subring A overgenerated by some Bp of
(R∗

+)Λ containing the family (ρ)λ [3], [18].

2.1.4. The association process

We assume that Λ is left-filtering for a given partial order relation ≺ . We denote
by Ω an open subset of X , E a given sheaf of topological K -vector spaces containing
E as a subsheaf, a a given map from Λ to K such that (a(λ ))λ = (aλ )λ is an element
of A . We also assume that

N(IA,E ,P)(Ω) ⊂
{

(uλ )λ ∈ X(A,E ,P)(Ω) : lim
E(Ω),Λ

uλ = 0

}
.

DEFINITION 3. We say that u = [uλ ] and v = [vλ ] ∈ E (Ω) are a -E associated if

lim
E(Ω),Λ

aλ (uλ − vλ ) = 0.

That is to say, for each neighborhood V of 0 for the E -topology, there exists λ0 ∈ Λ
such that λ ≺ λ0 =⇒ aλ (uλ − vλ ) ∈V . We write

u
a∼

E(Ω)
v.

REMARK 2. We can also define an association process between u = [uλ ] and T ∈
E (Ω) by writing simply

u ∼ T ⇐⇒ lim
E(Ω),Λ

uλ = T.

Taking E = D ′ , E = C∞ , Λ= (0,1], we recover the association process defined in the
literature (J.-F. Colombeau [1]).
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2.2. D ′ -singular support

Assume that

N A
D ′ (Ω) =

{
(uλ )λ ∈ X (Ω) : lim

λ→0
uλ = 0 in D ′(Ω)

}
⊃ N (Ω).

Set

D ′
A (Ω) =

{
[uλ ] ∈ A (Ω) : ∃T ∈ D ′(Ω), lim

λ→0
(uλ ) = T in D ′(Ω)

}
.

D ′
A (Ω) is clearly well defined because the limit is independent of the chosen represen-

tative; indeed, if (iλ )λ ∈ N (Ω) we have lim
λ→0
D ′(R)

iλ = 0.

D ′
A (Ω) is an R-vector subspace of A (Ω) . Therefore we can consider the set OD′

A
of

all x having a neighborhood V on which u is associated to a distribution:

OD′
A

(u) =
{
x ∈Ω : ∃V ∈ V (x), u|V ∈ D ′

A (V )
}

,

V (x) being the set of all neighborhoods of x .

DEFINITION 4. The D ′ -singular support of u∈A (Ω) , denoted singsuppD ′(u)=
SA

D ′
A

(u) , is the set

SA
D ′

A
(u) = Ω\OD′

A
(u).

2.3. Algebraic framework for our problem

Set E = C∞ , X = Rd for d = 1,2, E = D ′ and Λ a set of indices, λ ∈Λ . For any
open set Ω , in Rd , E (Ω) is endowed with the P(Ω) topology of uniform convergence
of all derivatives on compact subsets of Ω . This topology may be defined by the family
of the seminorms

PK,l(uλ ) = sup
|α |�l

PK,α(uλ ) with PK,α(uλ ) = sup
x∈K

|Dαuλ (x)| , K � Ω

and Dα =
∂α1+...+αd

∂ zα1
1 ...∂ zαd

d

for z = (z1, . . . ,zd) ∈ Ω , l ∈ N , α = (α1, ...,αd) ∈ Nd . Let A

be a subring of the ring RΛ of family of reals with the usual laws. We consider a solid
ideal IA of A . Then we have

X (Ω) = {(uλ )λ ∈ [C∞(Ω)]Λ : ∀K � Ω, ∀l ∈ N,
(
PK,l(uλ )

)
λ ∈ |A|},

N (Ω) = {(uλ )λ ∈ [C∞(Ω)]Λ : ∀K � Ω, ∀l ∈ N,
(
PK,l(uλ )

)
λ ∈ |IA|},

A (Ω) = X (Ω)/N (Ω).

The generalized derivation Dα : u(= [uλ ]) �→ Dαu = [Dαuλ ] provides A (Ω) with a
differential algebraic structure.
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EXAMPLE 2. Set Λ = (0,1] . Consider

A = R
Λ
M

=
{
(mλ )λ ∈ R

Λ : ∃p ∈ R
∗
+, ∃C ∈ R

∗
+, ∃μ ∈ (0,1], ∀λ ∈ (0,μ ], |mλ | � Cλ−p

}
and the ideal

IA =
{

(mλ )λ ∈ R
Λ : ∀q ∈ R

∗
+, ∃D ∈ R

∗
+, ∃μ ∈ (0,1], ∀λ ∈ (0,μ ], |mλ | � Dλ q

}
.

In this case we denote X s(Ω) = X (Ω) and N s(Ω) = N (Ω) . The sheaf of factor
algebras G (·) = X s(·)/N s(·) is called the sheaf of simplified Colombeau algebras
[1].

We have the analogue of theorem 1.2.3. of [11] for (C ,E ,P)-algebras. We
suppose here that Λ is left filtering and give this proposition for A (R2) , although it is
valid in more general situations.

PROPOSITION 1. Assume that there exists (aλ )λ ∈ B with limΛ aλ = 0 . Consider
(uλ )λ ∈ X (R2) such that

∀K � R
2, (PK,0 (uλ ))λ ∈ |IA| .

Then (uλ )λ ∈ N (R2) .

We refer the reader to [4], [7] for a detailed proof.

2.4. Some regularizing conditions

2.4.1. Generalized operator associated to a stability property

When Λ = Λ1 ×Λ2 , we denote by λ = (ε,ρ) an element of Λ and we shall set
ε = μ (λ ) , ρ = ν (λ ) . When Λ = Λ1 , we denote by λ = ε an element of Λ and we
shall set ε = μ (λ ) = λ .

If we use the notation λ , we also use μ (λ ) and ν (λ ) in the same expression,
else we use ε and ρ .

DEFINITION 5. Let Ω be an open subset of R
2 , Ω′ = Ω×R ⊂ R

3 . Let Fμ(λ ) ∈
C∞(Ω′,R) . We say that the algebra A (Ω) is stable under the family

(
Fμ(λ )

)
λ if the

following two conditions are satisfied:

• For each K � R
2 l ∈ N and (uλ )λ ∈ X (Ω) , there is a positive finite sequence

C0 ,..., Cl such that

PK,l(Fμ(λ )(·, ·,uλ )) �
l

∑
i=0

CiP
i
K,l(uλ ).
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• For each K � R2 , l ∈ N , (vλ )λ and (uλ )λ ∈ X (Ω) , there is a positive finite
sequence D1 ,..., Dl such that

PK,l(Fμ(λ )(·, ·,vλ )−Fμ(λ )(·, ·,uλ )) �
l

∑
j=1

DjP
j
K,l(vλ −uλ ).

REMARK 3. If A (Ω) is stable under
(
Fμ(λ )

)
λ , then for all (uλ )λ ∈ X (Ω) and

(iλ )λ ∈ N (Ω) , we have(
Fμ(λ )(·, ·,uλ )

)
λ ∈ X (Ω);

(
Fμ(λ )(·, ·,uλ + iλ )−Fμ(λ )(·, ·,uλ )

)
λ ∈ N (Ω).

Set f ∈ C∞ (R2
)
, we define

C∞ (
R

2)→ C∞ (
R

2) ,
f �→ Hλ ( f ) = Fμ(λ ) (·, ·, f ) ,

Hλ ( f ) = Fμ(λ ) (·, ·, f ) : (x,y) �→ Fμ(λ ) (x,y, f (x,y)) .

Clearly, the family (Hλ )λ maps
(
C∞ (R2

))Λ
into

(
C∞ (R2

))Λ
and allows to define a

map from A (R2) into A (R2) . For u = [uλ ] ∈ A (R2) ,
([

Fμ(λ )(., .,uλ )
])

is a well
defined element of A (R2) (i.e. not depending on the representative (uλ )λ of u ). This
leads to the following definition [7]:

DEFINITION 6. If A (R2) if stable under
(
Fμ(λ )

)
λ , the operator

F : A (R2) → A (R2), u = [uλ ] �→ [
Fμ(λ )(., .,uλ )

]
= [Hλ (uλ )]

is called the generalized operator associated to the family
(
Fμ(λ )

)
λ .

DEFINITION 7. Let F ∈ C∞(R3,R) and
(
fμ(λ )

)
μ(λ ) ∈ (C∞(R))Λ1 , we define

Fμ(λ )(x,y,z) = F(x,y,z fμ(λ )(z)).

The family
(
Fμ(λ )

)
λ is called the family associated to F via the family

(
fμ(λ )

)
μ(λ ) . If

A (R2) is stable under
(
Fμ(λ )

)
λ , the operator

F : A (R2) → A (R2), u = [uλ ] �→ [
Fμ(λ )(., .,uλ )

]
= [Hλ (uλ )]

is called the generalized operator associated to F via the family
(
fμ(λ )

)
μ(λ ) .
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2.4.2. Generalized restriction mappings

Set g ∈ C∞ (R) . We define Lg by

C∞ (
R

2) �→ C∞ (R)
f �→ (y �→ f (g(y),y))

and Rg by

C∞ (
R

2) �→ C∞ (R)
f �→ (x �→ f (x,g(x))) .

DEFINITION 8. The smooth function g is compatible with first side restriction
(resp. second side restriction) if

∀(uλ )λ ∈X (R2), (uλ (g(·), ·))λ ∈X (R); ∀(iλ )λ ∈N (R2), (iλ (g(·), ·))λ ∈N (R),

(resp.

∀(uλ )λ ∈X (R2), (uλ (·,g(·)))λ ∈X (R); ∀(iλ )λ ∈N (R2), (iλ (·,g(·)))λ ∈N (R)).

Clearly, if u = [uλ ] ∈ A (R2) then [uλ (g(·), ·)] (resp. [uλ (·,g(·))]) is a well de-
fined element of A (R) (i.e. not depending on the representative of u ). This leads to
the following:

DEFINITION 9. If the smooth function g is compatible with first side restriction
(resp. second side restriction), the mapping

Lg : A (R2) → A (R) , u = [uλ ] �→ [uλ (g(·), ·)] = [Lg (uλ )]

(resp. Rg : A
(
R

2)→ A (R) , u = [uλ ] �→ [uλ (·,g(·))] = [Rg (uλ )] )

is called the generalized first side restriction (resp. second side restriction) mapping
associated to the function g .

PROPOSITION 2. If function g is c-bounded for each K � R it exists K′ � R

such that g(K) ⊂ K′ ) then the function g is compatible with first side restriction (resp.
second side restriction).

Proof. Take (uλ )λ (resp. (iλ )λ ) in X (R2) (resp. N (R2)) and set vλ (y) =
uλ (g(y),y) . We have

pK,0 (vλ ) � pK′×K,0 (uλ )
PK,1 (vλ ) � pK′×K,(1,0) (uλ ) pK,1 (g)+ pK′×K,(0,1) (uλ ) .

By induction we can see that for each K � R , and each l ∈ N , pK,l (vλ ) is estimated
by sums or products of terms like pK′×K,(n,m) (uλ ) for n+m � l , or pK,k (g) for k � l ,
then pK,l (vλ ) is in |A| . Similarly, setting jλ (t) = iλ (g(y),y) leads to pK,l ( jλ ) ∈ |IA| .
Then (uλ (g(·), ·))λ (resp. iλ (g(·), ·)) belongs to X (R) (resp. N (R)).
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3. A non Lipschitz Goursat problem

We study the differential Goursat problem formally written as

(
Pform

)
⎧⎪⎪⎨⎪⎪⎩

∂ 2

∂x∂y
u = F(·, ·,u),

u|(Ox) = s,
u|γ = t

where F , a nonlinear function of its arguments, may be non Lipschitz (in u ), γ is the
monotonic curve of equation x = g(y) , the data s , t may be as irregular as distributions.
We don’t have a classical surrounding in which we can pose (and a fortiori solve) the
problem.

We treat in details the case of irregular data given along the characteristic curve
C = (Ox) and along the curve γ , we add some remarks for the case of regular data.

3.1. Cut off procedure

Let (rε )ε be in R
(0,1]
∗ such that rε > 0 and lim

ε→0
rε = +∞ . Set Lε = [−rε ,rε ] .

Consider a family of smooth one-variable functions ( fε )ε such that

sup
z∈Lε

| fε (z)| = 1, fε (z) =

⎧⎨⎩0 if |z| � rε ,

1 if − rε +1 � z � rε −1,
(H1)

and
∂ n fε
∂ zn is bounded on Lε for any integer n , n > 0. Set

sup
z∈Lε

∣∣∣∣∂ n fε
∂ zn (z)

∣∣∣∣= Mn.

Let φε (z) = z fε (z) . We approximate the function F by the family of functions (Fε)ε =(
Fμ(λ )

)
μ(λ ) defined by

Fε(x,y,z) = F(x,y,φε (z)).

3.2. Construction of A
(
R2
)

We recall that λ = (μ (λ ) ,ν (λ )) = (ε,ρ)∈Λ1×Λ2 =Λ , Λ1 =Λ2 = (0,1] where
the parameter ρ is used to regularize the distributions s and t , the more general case.
Consider the previous family (rε )ε . We take{

C = A/IA the ring overgenerated by the following elements of R
(0,1]×(0,1]
∗

(μ (λ ))λ ,(ν (λ ))λ ,
(
rμ(λ )

)
λ ,(erμ(λ) )λ .

(H2)

Then A (R2) = X (R2)/N (R2) is built on the ring C of generalized constants with

(E ,P) =
(
C∞(R2),

(
PK,l
)
K�R2,l∈N

)
. In the same way A (R) = X (R)/N (R) is

built on C with (E ,P) =
(
C∞(R),

(
PK,l
)
K�R,l∈N

)
.
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3.3. Stability of A (R2)

PROPOSITION 3. Set Sn =
{
α ∈ N3 : |α| = n

}
when n∈N∗ . Let F ∈C∞(R3,R) ,

Fε defined as above in Section 3.1. Assume that

∀ε ∈ (0,1] ,∀(x,y) ∈ R
2,Fε(x,y,0) = 0, (H3)

∃p > 0,∀n ∈ N,∃ cn > 0,∀ε ∈ (0,1] ,∀K � R
2,

sup
(x,y)∈K; z∈R;α∈Sn

|DαFε(x,y,z)| � cnr
p
ε , (H4)

then A
(
R2
)

is stable under the family
(
Fμ(λ )

)
λ .

We refer the reader to [10] for a detailed proof.

COROLLARY 4. Set F (x,y,z) = G(z) = zp , Gε(z) = Fε(x,y,z) , then A (R2) is
stable under

(
Gμ(λ )

)
λ .

Proof. We have |Gε(z)|=
∣∣zp f p

ε (z)
∣∣� rp

ε , then sup
(x,y)∈R;z∈R

|Gε (z)|� rp
ε . As φε(z)=

z fε (z) , we obtain
∂ nφε
∂ zn (z) = z

∂ n fε
∂ zn (z)+n

∂ n−1 fε
∂ zn−1 (z).

Thus ∣∣∣∣∂ nφε
∂ zn (z)

∣∣∣∣� rεMn +nMn−1 � αnrε ,

where αn = 2max(Mn;nMn−1) . Set w(z) = zp , then
∂mw
∂ zm (z) =

(
∏i=m−1

i=0 (p− i)
)
zp−m

for 1 � m � p . According Francesco Faà di Bruno’s formula, the nth order derivative
of Gε = w◦φε can be written

∂ nGε
∂ zn =

n
∑

m=1
∑

i1�...�im
i1+...+im=n

ti1,...,imw(m) ◦φε
m
∏
k=1

φ (ik)
ε ,

where the coefficients ti1,...,im are integers. Then we get∣∣∣∣∂ nGε
∂ zn (z)

∣∣∣∣� p
∑

m=1
∑

i1�...�im
i1+...+im=n

ti1,...,im(∏i=m−1
i=0 (p− i))rp−m

ε
m
∏
k=1

αik rε � cnr
p
ε

where cn is independent of ε . Then assumptions (H3 ), (H4 ) are fulfilled.

3.4. A generalized differential problem associated to the formal one

Our goal is to give a meaning to the differential Goursat problem formally written
as
(
Pform

)
.
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As the data s and t are as irregular as distributions, we set

ϕρ = s∗θρ and ϕ =
[
ϕρ
]
, (d1)

ψρ = t ∗θρ and ψ =
[
ψρ
]
, (d2)

where
(
θρ
)
ρ is a chosen family of mollifiers. Then the data ϕ , ψ belong to A (R)

and u is searched in the algebra A
(
R2
)
.

Let ( fε )ε ∈ (C∞(R))Λ1 and F the generalized operator associated to F via the
family ( fε )ε in Definition 7. Let Rθ and Lg given by Definition 9 with θ (x) = 0.

The problem associated to
(
Pform

)
can be written as the well formulated one:

(Pgen)

⎧⎪⎪⎨⎪⎪⎩
∂ 2u
∂x∂y

= F (u),

Rθ (u) = ϕ ,
Lg (u) = ψ .

In terms of representatives, and thanks to the stability and restriction hypothesis,
solving (Pgen) leads to find a family (uλ )λ ∈ X (R2) such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ 2uλ
∂x∂y

(x,y)−Fμ(λ )(x,y,uλ (x,y)) = iλ (x,y) ,

uλ (x,0)−ϕν(λ ) (x) = jν(λ ) (x) ,

uλ (g(y),y)−ψν(λ ) (y) = lν(λ ) (y) ,

where (iλ )λ ∈ N
(
R2
)
,
(
jν(λ )

)
λ ,
(
lν(λ )

)
λ ∈ N (R) . Suppose we can find uλ ∈

C∞ (
R

2
)

verifying

(Pλ )

⎧⎪⎪⎨⎪⎪⎩
∂ 2uλ
∂x∂y

(x,y) = Fμ(λ )(x,y,uλ (x,y)),

uλ (x,0) = ϕν(λ )(x),
uλ ((g(y) ,y)) = ψν(λ )(y).

(1)

Then, if we can prove that (uλ )λ ∈ X (R2) , u = [uλ ] is a solution of (Pgen) .

REMARK 4. Uniqueness in the algebra A (R2) . Let v = [vλ ] another solution to
(Pgen) . There are (iλ )λ ∈ N

(
R2
)
,
(
αν(λ )

)
λ ,
(
βν(λ )

)
λ ∈ N (R) , such that⎧⎪⎪⎨⎪⎪⎩

∂ 2vλ
∂x∂y

(x,y) = Fμ(λ )(x,y,vλ (x,y))+ iλ (x,y),

vλ (x,0) = ϕν(λ )(x)+αν(λ )(x),
vλ (g(y),y) = ψν(λ )(y)+βν(λ )(y).

The uniqueness of the solution to (Pgen) will be the consequence of (wλ )λ = (vλ −uλ )λ ∈
N (R2) .
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REMARK 5. Dependence on some regularizing family. The problem (Pgen) itself,
so a solution of it, a priori depends on the family of cutoff functions and, in the case of
irregular data, on the family of mollifiers. If

(
θρ
)
ρ∈Λ2

and
(
τρ
)
ρ∈Λ2

are families of

mollifiers in D (R) and T ∈D ′ (R) , it is well known that generally
[
T ∗θρ

] �= [T ∗ τρ
]

in the Colombeau simplified algebra even if
[
θρ
]
=
[
τρ
]

in these algebra. Therefore,
in the case of irregular data the solution of problem (Pgen) in some Colombeau algebra
depends on the family of mollifiers

(
θρ
)
ρ but not on a class of that family. We have as-

sociated the generalized operator F to F via the family ( fε )ε . Let (hε)ε ∈ (C∞(R))Λ1

another family representative of the class [ fε ] = f in a meaning specified in Section 5
and leading to another generalized operator H associated to F . We can prove that
in fact H = F , that is to say problem (Pgen) only depends on the class f of cutoff
functions.

3.5. Estimates for a parametrized regular problem

To solve the problem (Pgen) associated to
(
Pform

)
we can consider (as it is done

in Subsection 3.4) the family of problems (Pλ )λ . First we are going to prove that (Pλ )
has a unique smooth solution under the following assumption⎧⎪⎨⎪⎩

a) g ∈ C∞(R), g′ � 0, g(R) = R

b) Fε ∈ C∞(R3,R), ∀K � R2, sup
(x,y)∈K;z∈R

|∂zFε(x,y,z)| = mK,ε < +∞

c) ϕρ and ψρ ∈ C∞(R), ψρ (0) = ϕρ(g(0)).

(H)

Following [8], one can prove that (Pλ ) is equivalent to the integral formulation(
P′
λ
)

: uλ (x,y) = u0,λ (x,y)+
∫∫

D(x,y,gη )
Fμ(λ )(ξ ,ζ ,uλ (ξ ,ζ ))dξdζ (2)

where u0,λ (x,y) = ψν(λ )(y)+ϕν(λ )(x)−ϕν(λ )(g(y)) , with

D(x,y,g) =

⎧⎪⎪⎨⎪⎪⎩
{(ξ ,η) : g(y) � ξ � x, 0 � η � y} if g(y) � x and 0 � y,
{(ξ ,η) : x � ξ � g(y), 0 � η � y} if g(y) � x and 0 � y,
{(ξ ,η) : x � ξ � g(y), y � η � 0} if g(y) � x and y � 0,
{(ξ ,η) : g(y) � ξ � x, y � η � 0} if g(y) � x and y � 0.

THEOREM 5. Under Assumption (H ), problem (Pλ ) has a unique solution in
C∞(R2) .

We refer the reader to [8], [10] for a detailed proof. The main idea consists in a
Picard’s procedure to define a sequence of successive approximations.

un,λ (x,y) = u0,λ (x,y)+
∫∫

D(x,y,g)
Fμ(λ )(ξ ,ζ ,un−1,λ (ξ ,ζ ))dξdζ .

From the assumptions, putting vn,λ = un,λ −un−1,λ , we can prove that

∥∥vn,λ
∥∥
∞,Ka,η

�
Φa,λ

ma,μ(λ )

[ma,μ(λ ) (g(a)−g(−a))a)]n

n!
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when Ka = [g(−a),g(a)]× [−a,a] , with

mKa,μ(λ ) = ma,μ(λ ) = sup
(x,y)∈Ka; t∈R

∣∣∣∣∂Fμ(λ )

∂ z
(x,y,t)

∣∣∣∣
and

Φa,λ =
∥∥Fμ(λ )(·, ·,0)

∥∥
∞,Ka

+ma,μ(λ )
∥∥u0,λ

∥∥
∞,Ka

.

Finally the sequence un,λ converges uniformly on any compact set to

uλ = u0,λ + ∑
n�1

vn,λ

which verifies
(
P′
λ
)
. Gronwall’s lemma gives the uniqueness of uλ . Moreover, we

have the estimate

‖uλ‖∞,K � ‖uλ‖∞,Ka
�
∥∥u0,λ

∥∥
∞,Ka,

+
Φa,λ

ma,μ(λ )
exp[ma,μ(λ ) (g(a)−g(−a))a)]. (3)

PROPOSITION 6. If F (x,y,z) = G(z) = zp then problem (Pλ ) has a unique solu-
tion in C∞(R2) .

Proof. We have

Fμ(λ )(x,y,uλ (x,y)) = Gμ(λ )(uλ (x,y)) =
(
φμ(λ )(uλ (x,y))

)p
.

We compute
∂Gμ(λ )

∂ z
(z) = pφ p−1

μ(λ )(z)φ
′
μ(λ )(z) . Thus∣∣∣∣∂Gμ(λ )

∂ z
(z)
∣∣∣∣� prp−1

μ(λ )

∣∣∣ fμ(λ )(z)+ z f ′μ(λ )(z)
∣∣∣� prp−1

μ(λ )

∣∣1+ rμ(λ )M1
∣∣� c1r

p
μ(λ )

and c1 = 2pmax(M1,1) is independent of μ (λ ) . Then assumption (H ) is verified and
problem (Pλ ) has a unique solution in C∞(R2) .

4. Solution to (Pgen)

THEOREM 7. With the previous Assumptions (H ), (H3 ), (H4 ), if uλ is the solu-
tion to problem (Pλ ) then problem (Pgen) admits u = [uλ ]A (R2) as solution.

Proof. According to [8], u = [uλ ] is solution to (Pgen) if (uλ )λ ∈ X (R2) . Then
we shall prove that

∀K � R
2,∀l ∈ N,

(
PK,l(uλ )

)
λ ∈ A.

We proceed by induction. We have: ∀K � R2
, ∃ Ka � R2

, K ⊂ Ka,

‖uλ‖∞,K � ‖uλ‖∞,Ka
�
∥∥u0,λ

∥∥
∞,Ka

+
Φa,λ
ma,λ

exp[ma,μ(λ ) (g(a)−g(−a))a]

�
∥∥u0,λ

∥∥
∞,Ka

(
1+ exp[ac1r

p
μ(λ ) (g(a)−g(−a))]

)
.
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As
(∥∥u0,λ

∥∥
∞,Ka

)
λ
∈ A we have(∥∥u0,λ
∥∥
∞,Ka

(1+ exp[ac1r
p
μ(λ ) (g(a)−g(−a))])

)
λ
∈ A.

As A is stable, we deduce (PK,0 (uλ ))λ ∈ A , then the 0th order estimate is verified.
We have

∂uλ
∂x

(x,y) =
∂u0,λ
∂x

(x,y)+
∫ y

0
Fμ(λ )(x,ζ ,uλ (x,ζ ))dζ ,

hence

PK,(1,0)(uλ ) � sup
K

∣∣∣∣∂u0,λ

∂x
(x,y)

∣∣∣∣+a
(
sup
Ka

∣∣Fμ(λ )(x,ζ ,uλ (x,ζ ))
∣∣).

Moreover

PKa,(0,0)(Fμ(λ )(·, ·,uλ )) � PKa,0(Fμ(λ )(·, ·,uλ )) � μ0r
p
μ(λ ),

then

PK,(1,0)(uλ ) �
∥∥∥∥∂u0,λ

∂x

∥∥∥∥
∞,K

+ c0r
p
μ(λ )a.

As A is stable, we get
(
PK,(1,0) (uλ )

)
λ ∈ A . We have

∂u
∂y

(x,y) =
∂u0,λ
∂y

(x,y)

+
∫ x

g(y)
Fμ(λ )(ξ ,y,uλ (ξ ,y))dξ −g′(y)

∫ y

0
Fμ(λ )(g(y),ζ ,uλ (g(y),ζ ))dζ ,

thus

PK,(0,1)(uλ ) � sup
K

∣∣∣∣∂u0,λ

∂y
(x,y)

∣∣∣∣+ ((g(a)−g(−a))+ag′(y)
)
sup
Ka

∣∣Fμ(λ )(x,y,uλ (x,y))
∣∣ .

Hence

PK,(0,1)(uλ ) �
∥∥∥∥∂u0,λ

∂y

∥∥∥∥
∞,K

+ c0r
p
μ(λ )

(
g(a)−g(−a)+ag′(y)

)
and, as previously,

(
PK,(0,1)(uλ )

)
λ ∈ A . Finally

(PK,1(uλ ))λ ∈ A.

Assume that
(
PK,l(uλ )

)
λ ∈ A for any l � n . In fact we have

PK,n+1 = max(PK,n,P1,n,P2,n,P3,n,P4,n)

with

P1,n = PK,(n+1,0) ; P2,n = PK,(0,n+1)K,(0,n+1)

P3,n = sup
α+β=n;β�1

PK,(α+1,β ) ; P4,n = sup
α+β=n;α�1

PK,(α ,β+1).
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For n � 1, we have by successive derivations

∂ n+1uλ
∂xn+1 (x,y) =

∂ n+1u0,λ
∂xn+1 (x,y)+

∫ y

0

∂ n

∂xn Fμ(λ )(x,ζ ,uλ (x,ζ ))dζ .

As K ⊂ Ka , we can write

sup
(x,y)∈K

∣∣∣∣∂ n+1uλ
∂xn+1 (x,y)

∣∣∣∣�
∥∥∥∥∥∂ n+1u0,λ

∂xn+1

∥∥∥∥∥
∞,K

+a

(
sup

(x,y)∈K

∣∣∣∣ ∂ n

∂xn Fμ(λ )(x,y,uλ (x,y))
∣∣∣∣
)

.

We have

sup
(x,y)∈K

∣∣∣∣ ∂ n

∂xn Fμ(λ )(x,y,uλ (x,y))
∣∣∣∣� PK,n(Fμ(λ )(·, ·,uλ )).

Moreover ⎛⎝∥∥∥∥∥∂ n+1u0,λ

∂xn+1

∥∥∥∥∥
∞,K

⎞⎠
λ

∈ A.

According to the stability hypothesis, a simple calculation shows that for any K � R2 ,(
PK,(n+1,0) (uλ )

)
λ ∈ A , then (P1,n(uλ ))λ ∈ A . Let us show that (P2,n(uλ ))λ ∈ A for

every n ∈ N . We have by successive derivations, for n � 1,

∂ n+1uλ
∂yn+1 (x,y) =

∂ n+1u0,λ
∂yn+1 (x,y)

−∑n−1
j=0C

j
ng

(n− j)(y)
∂ j

∂y j Fμ(λ )(g(y),y,ψν(λ )(y))−
∫ g(y)

x

∂ n

∂yn Fμ(λ )(ξ ,y,uλ (ξ ,y))dξ

−∑n−1
j=0C

j+1
n g(n− j)(y)

∂ j

∂y j Fμ(λ )(g(y),y,ψν(λ )(y))

−g(n+1)(y)
∫ y

0
Fμ(λ )(g(y),ζ ,uλ (g(y),ζ ))dζ .

As K ⊂ Ka , we can write

sup
(x,y)∈K

∣∣∣∣∂ n+1uλ
∂yn+1 (x,y)

∣∣∣∣� sup
y∈[−a,a]

∑n−1
j=0C

j+1
n+1

∣∣∣g(n− j)(y)
∣∣∣ ∣∣∣∣ ∂ j

∂y j Fμ(λ )(g(y),y,ψν(λ )(y))
∣∣∣∣

+(g(a)−g(a)) sup
(x,y)∈K

∣∣∣∣ ∂ n

∂yn Fμ(λ )(x,y,uλ (x,y))
∣∣∣∣

+ag(n+1)(y) sup
(x,y)∈K

∣∣Fμ(λ )(x,y,uλ (x,y))
∣∣+PK,(0,n+1)

(
u0,λ
)
.

For any K � R
2 , we have

sup
(x,y)∈K

∣∣∣∣ ∂ i

∂yi F(x,y,uλ (x,y))
∣∣∣∣� PK,n(F(·, ·,uλ ).
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Then, for any n ∈ N ,
(
PK,(0,n+1) (uλ )

)
λ ∈ A . We deduce that (P2,n(uλ ))λ ∈ A .

For α +β = n and β � 1, we have now

PK,(α+1,β )(uλ ) = sup
(x,y)∈K

∣∣∣D(α ,β−1)D(1,1)uλ (x,y)
∣∣∣

= sup
(x,y)∈K

∣∣∣D(α ,β−1)Fμ(λ )(x,y,uλ (x,y))
∣∣∣� PK,n(Fμ(λ )(·, ·,uλ )).

We finally obtain

P3,n(uλ ) = sup
α+β=n;β�1

PK,(α+1,β )(uλ ) � PK,n(Fμ(λ )(·, ·,uλ ))

and the stability hypothesis implies (P3,n(uλ ))λ ∈ A . In the same way for α +β = n
and α � 1, we have

PK,(α ,β+1)(uλ ) = sup
(x,y)∈K

∣∣∣D(α−1,β )Fμ(λ )(x,y,uλ (x,y))
∣∣∣� PK,n(Fμ(λ )(·, ·,uλ )).

We deduce

P4,n(uλ ) = sup
α+β=n;α�1

PK,(α ,β+1)(uλ ) � PK,n(Fμ(λ )(·, ·,uλ ))

and the stability hypothesis implies (P4,n(uλ ))λ ∈ A . Finally, we have (PK,n+1(uλ ))λ ∈
A .

THEOREM 8. problem (Pgen) has a unique solution in the algebra A
(
R2
)
.

Proof. Let u = [uλ ]A (R2) the solution to (Pgen) obtain in Theorem 7. Let v = [vλ ]

another solution to (Pgen) . There are (iλ )λ ∈N
(
R2
)
,
(
αν(λ )

)
λ ∈N (R) ,

(
βν(λ )

)
λ ∈

N (R) , such that ⎧⎪⎪⎨⎪⎪⎩
∂ 2vλ
∂x∂y

(x,y) = Fμ(λ )(x,y,vλ (x,y))+ iλ (x,y),

vλ (x,0) = ϕν(λ )(x)+αν(λ )(x),
vλ (g(y) ,y) = ψν(λ )(y)+βν(λ )(y).

It is easy to see that(
(x,y) �→

∫∫
D(x,y, f )

iλ (ξ ,ζ ))dξdζ
)
λ
∈ N

(
R

2) .
Then there is ( jλ )λ ∈ N

(
R2
)

such that

vλ (x,y) = v0,λ (x,y)+
∫∫

D(x,y,g)
Fμ(λ )(ξ ,ζ ,vλ (ξ ,ζ ))dξdζ + jλ (x,y),
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with v0,λ (x,y) = u0,λ (x,y)+θλ (x,y) , where

u0,λ (x,y) = ψν(λ )(y)+ϕν(λ )(x)−ϕν(λ )(g(y)),

θλ (x,y) = βν(λ )(y)+αν(λ )(x)−βν(λ )(g(y)).

Then (θλ )λ belongs to N (R2) . So there is (σλ )λ ∈ N
(
R2
)

such that

vλ (x,y) = u0,λ (x,y)+
∫∫

D(x,y,g)
Fμ(λ )(ξ ,ζ ,uλ (ξ ,ζ ))dξdζ +σλ (x,y). (4)

The uniqueness of the solution to (Pgen) will be the consequence of

(wλ )λ = (vλ −uλ )λ ∈ N (R2).

First, we will prove that ∀K � R2,(PK,0(wλ ))λ ∈ |IA| . We have

wλ (x,y) = σλ (x,y)+
∫∫

D(x,y,g)

(
Fμ(λ )(ξ ,ζ ,vλ (ξ ,ζ ))−Fμ(λ )(ξ ,ζ ,uλ (ξ ,ζ ))

)
dξdζ .

However

Fμ(λ )(ξ ,ζ ,vλ (ξ ,ζ ))−Fμ(λ )(ξ ,ζ ,uλ (ξ ,ζ ))

= wλ (ξ ,ζ )
∫ 1

0

∂Fμ(λ )

∂ z
(ξ ,ζ ,uλ (ξ ,ζ )+η(vλ (ξ ,ζ )−uλ (ξ ,ζ )))dη ,

then we get

wλ (x,y) = σλ (x,y)

+
∫∫

D(x,y, f )
wλ (ξ ,ζ )

(∫ 1

0

∂Fμ(λ )

∂ z
(ξ ,ζ ,uλ (ξ ,ζ )+η(wλ (ξ ,ζ )))dη

)
dξdζ .

Let (x,y) ∈ K , we have D(x,y,g) ⊂ Ka . If g(y) � x , then

|wλ (x,y)| � ma,μ(λ )

∫ x

g(y)

∫ y

0
|wλ (ξ ,ζ )|dξdζ +‖σλ‖∞,Ka

� ma,μ(λ )

∫ +g(a)

−g(a)

∫ y

0
|wλ (ξ ,ζ )|dξdζ +‖σλ‖∞,Ka

.

Take eλ (y) = sup
ξ∈[g(−a);g(a)]

|wλ (ξ ,y)| , 2a′ = (g(a)−g(−a)), then

|wλ (x,y)| � ma,μ(λ )2a′
∫ y

0
eλ (ζ )dζ +‖σλ‖∞,Ka

.

We deduce that eλ (y) � ma,μ(λ )2a′
∫ y
0 eλ (ζ )dζ + ‖σλ‖∞,Ka

for any y ∈ [0,a] . Thus
according to the Gronwall’s lemma

eλ (y) � ‖σλ‖∞,Ka
exp(

∫ y

0
ma,μ(λ )2a′dζ ).
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Then
eλ (y) � ‖σλ‖∞,Ka

exp(ma,μ(λ )2a′y) � ‖σλ‖∞,Ka
exp(ma,μ(λ )2a′a).

We obtain the same result in the other cases, hence

∀y ∈ [−a,a] , eλ (y) � ‖σλ‖∞,Ka
exp(ma,μ(λ )2a′a),

consequently
‖wε‖∞,Ka

� ‖σλ‖∞,Ka
exp(ma,μ(λ )2a′a).

As (σλ )λ ∈ N (R2) then
(
‖σλ‖∞,Ka

)
λ
∈ |IA| . Moreover ‖σλ‖∞,Ka

exp(ma,μ(λ )2a′a)

is a constant, consequently
(
‖wλ‖∞,Ka

)
λ
∈ |IA| . Which implies the 0th order estimate.

According to Proposition 1, we deduce (wλ )λ ∈ N (R2) ; then u is the unique
solution to (Pgen) for the family

(
Fμ(λ )

)
λ .

EXAMPLE 3. A degenerate Goursat problem in (C ,E ,P)-algebras. We study
the Goursat problem in the case where ϕ and ψ are one-variable generalized functions,
γ = (Oy) . (We take g = 0). To solve the problem (Pgen) associated to

(
Pform

)
we can

consider, as previously, the family of problems

(Pλ )

⎧⎪⎪⎨⎪⎪⎩
∂ 2uλ
∂x∂y

(x,y) = Fμ(λ )(x,y,uλ (x,y)),

uλ (x,0) = ϕν(λ )(x),
uλ (0,y)) = ψν(λ )(y),

where
(
ϕν(λ )

)
ν(λ ) and

(
ψν(λ )

)
ν(λ ) are representatives of ϕ and ψ in A (R) . If uλ is

the solution to problem
(
P(λ )
)

then problem (Pgen) admits u = [uλ ]A (R2) as solution.
Moreover

uλ (x,y) = u0,λ (x,y)+
∫∫

D(x,y,0)
Fμ(λ )(ξ ,η ,uλ (ξ ,η))dξdη

= u0,λ (x,y)+
∫ x

0

(∫ y

0
Fμ(λ )(ξ ,η ,uλ (ξ ,η))dη

)
dξ

with
u0,λ (x,y) = ψν(λ )(y)+ϕν(λ )(x)−ϕν(λ ) (0) .

The case of the degenerate Goursat problem solved in [16] is a particular case of our
study. If Λ=Λ1×Λ2 = (0,1]×(0,1] , if F = 0 and ϕ =ψ = δ then u =

[
u0,λ
]
= u1 +

u2 where u1 ∼ 1x ⊗δy +δx ⊗1y but u2 cannot be associated with a distribution. Thus,
even in the linear case, the Goursat problem with distribution data has a generalized
solution which is not (associated to) a distribution.

REMARK 6. Construction of A (R2) in the case of regular data. If the data s and t
are smooth, we take Λ=Λ1 =(0,1] , and μ (λ )=λ = ε . Let (rε)ε be in (R+∗ )(0,1] such
that lim

ε→0
rε = +∞ . We take C = A/IA the ring overgenerated by (λ )λ ,(rλ )λ ,(erλ )λ ,
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elements of (R+∗ )(0,1] . Then A
(
R2
)

= X (R2)/N (R2) is built on the ring C of

generalized constants with (E ,P) =
(
C∞(R2),

(
PK,l
)
K�R2,l∈N

)
and, in the same way,

A (R) = X (R)/N (R) is built on C with

(E ,P) =
(
C∞(R),

(
PK,l
)
K�R,l∈N

)
.

Nonetheless, the algebra A (R2) is not the same in the two cases, regular data and
irregular data. We set ϕ = s and ψ = t , elements of C∞(R) canonically embedded in
A (R) . If α ∈ A (R) we take αν(λ ) = α , if α ∈ N (R) we take αν(λ ) = 0. Then
we can rewrite this section and we get similar results. We have the same definitions as
previously and we obtain the same theorems, the same proofs replacing ϕν(λ ) by ϕ and
ψν(λ ) by ψ . As previously (Theorem 7 and Theorem 8), we can prove that problem
(Pgen) has a unique generalized solution u = [uλ ] in the algebra A (R2) .

5. Independence of the generalized solution from the class of cut off functions

Recall that Λ1 = (0,1] , set

X1(R) = {( fε)ε ∈ [C∞(R)]Λ1 : ∀K � R, ∀l ∈ N,
(
PK,l( fε )

)
ε ∈ |A|},

N1(R) = {( fε)ε ∈ [C∞(R)]Λ1 : ∀K � R, ∀l ∈ N,
(
PK,l( fε )

)
ε ∈ |IA|},

A1(R) = X1(R)/N1(R).

Consider T (R) the set of families of smooth one-variable functions (hε)ε∈Λ1
∈X1(R) ,

verifying the following assumptions

∃(sε)ε ∈ R
(0,1]
∗ : sup

z∈[−sε ,sε ]
|hε(z)| = 1, (5)

hε(z) =

⎧⎨⎩0 if |z| � sε ,

1 if − sε +1 � z � sε −1,

∃ q ∈ N
∗,∀(hε)ε ∈ T (R),∀ε,sε � rq

ε . (6)

Moreover assume that
∂ nhε
∂ zn is bounded on Jε = [−sε ,sε ] for any integer n , n > 0.

We have ( fε )ε∈Λ1
∈ T (R) . Recall that φε(z) = z fε (z) for z ∈ R , Fε(x,y,z) =

F(x,y,φε (z)) for (x,y,z) ∈ R3 and

sup
z∈[−rε ,rε ]

∣∣∣∣∂ n fε
∂ zn (z)

∣∣∣∣= Mn.

Let f ∈ T (R)/N1(R) be the class of ( fε )ε . Take (hε)ε another representative of f ,
that is to say (hε)ε ∈ T (R) and

( fε −hε)ε ∈ N1(R). (7)
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Set σε(z) = zhε(z) for z ∈ R , Hε(x,y,z) = F(x,y,σε (z)) for (x,y,z) ∈ R3 and

sup
z∈[−sε ,sε ]

∣∣∣∣∂ nhε
∂ z

(z)
∣∣∣∣= M′

n.

Our choice is made such that (supp(hε))ε have the same growth as (supp( fε ))ε with
respect to the scale

(
rq
ε
)
ε , in this way the corresponding solutions are lying in the same

algebra A (R2) .

PROPOSITION 9. Set F ∈ C∞(R3,R) , φ ∈ C∞(R,R) , F(x,y,z) = F(x,y,φ (z)) .
For any α = (α1,α2,α3) , α1 � 0 , α2 � 0 , α3 � 0 with |α| = α1 +α2 +α3 = n �= 0 ,
we have

∂ nF

∂xα1∂yα2∂ zα3
(x,y) = ∑

1�|β |�n

(
DβF

)
(x,y,φ (z))

n

∑
i=1

∑
pi(α ,β )

di,α ,β

i

∏
j=1

(
∂ l j

∂ z
l j
φ (z)

)k j

where β ∈ N3 . The set pi(α,β ) mentioned in the inner sum consists of all nonzero
multi-indices (k1, ...,ki, l1, ..., li) ∈ (N)2i , such that

0 < l1 < ... < li,
i

∑
j=1

k j = β3,
i

∑
j=1

k jl j = α3.

The proof uses the Multivariate Faà di Bruno’s formula [2].

COROLLARY 10. Set F ∈ C∞(R3,R) , σε (z) = zhε(z) with (hε)ε ∈ T (R) ,

Hε(x,y,z) = F(x,y,σε (z)),

α = (α1,α2,α3) , α1 � 0 , α2 � 0 , α3 � 0 with |α| = α1 +α2 +α3 = n �= 0 . Then,
for β ∈N3 , 1 � |β |� n, there exist constants C|β | which no depend of F and φε , such
that ∀K � R2 , ∀(x,y) ∈ K, ∀z ∈ [−sε,sε ] ,∣∣∣∣ ∂ nHε

∂xα1∂yα2∂ zα3
(x,y,z)

∣∣∣∣ � ∑
1�|β |�n

PK,|β | (F)C|β |s
α3
ε .

Proof. We have

∂ nσε
∂ zn (z) = z

∂ nhε
∂ zn (z)+n

∂ n−1hε
∂ zn−1 (z).

Thus ∣∣∣∣∂ nσε
∂ zn (z)

∣∣∣∣� sεM
′
n +nM′

n−1 � αnsε � αnr
q
ε ,

where αn = 2max(M′
n;nM′

n−1) . Thus we deduce the formula. Moreover, according to
(5), we have sε � rq

ε , then∣∣∣∣ ∂ nHε
∂xα1∂yα2∂ zα3

(x,y,z)
∣∣∣∣ � ∑

1�|β |�n

PK,|β | (F)C|β |r
qα3
ε .
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COROLLARY 11. Set Sn =
{
α ∈ N3 : |α| = n

}
when n∈N∗ . Let F ∈C∞(R3,R) ,

Hε defined by
Hε(x,y,z) = F(x,y,σε (z)).

Assume that
∀(x,y) ∈ R

2,F(x,y,0) = 0 ,

∃p0 > 0,∀α ∈ N
3, |α| = n > p0,D

αF(x,y,z) = 0,

∀n ∈ N,n � p0,∃dn > 0,∀ε ∈ (0,1] ,∀K � R
2, sup

(x,y)∈K; z∈Jε ;α∈Sn
|DαF(x,y,z)| � dnr

p0
ε ,

(8)
then A (R2) is stable under the family

(
Hμ(λ )

)
λ .

Proof. Indeed, we have ∀K � R
2 , ∀(x,y) ∈ K , ∀z ∈ Jμ(λ ) , ∀α ∈ N

3,∣∣∣∣ ∂ nHε
∂xα1∂α2y∂ zα3

(x,y,z)
∣∣∣∣� ∑

1�|β |�n

PK,|β | (F)C|β |r
qα3
ε � ∑

1�|β |�p

d|β |r
p0
ε C|β |r

qp0
ε

� cnr
p0(1+q)
ε

where cn no depends to ε and rε . As σε(z) = 0 if z /∈ Jε , we have

sup
(x,y)∈K; z∈R;α∈Sn

|DαHε(x,y,z)| � cnr
p0(1+q)
ε ,

and, according to Proposition 3, A
(
R2
)

is stable under the family
(
Hμ(λ )

)
λ .

THEOREM 12. Assume that p = p0(1+q) . Under the same hypotheses as Corol-
lary 11, problem (Pgen) , a fortiori its solution, does not depend of the choice of the
representative ( fε )ε∈Λ1

of the class f ∈ T (R)/N1(R) .

Proof. We have associated the generalized operator F to F via the family ( fε )ε .
Let (hε)ε ∈ (C∞(R))Λ1 another family representative of the class [ fε ] = f and leading
to another generalized operator H associated to F . We have to prove that H = F ,
that is to say H (u) = F (u) for any u ∈ A (R2) . Then, in terms of representatives,
we have to prove that, if (uλ )λ , (vλ )λ ∈ X (R2) and (wλ )λ = (vλ −uλ )λ ∈ N (R2) ,
then (

F(·, ·,σμ(λ ) (vλ ))−F(·, ·,φμ(λ ) (uλ ))
)
λ ∈ N (R2).

Let
Δλ (x,y) = σμ(λ ) (vλ (x,y))−φμ(λ ) (uλ (x,y)) .

We have ∀K � R
2 , ∀(x,y) ∈ K ,

Δλ (x,y) = vλ (x,y)hμ(λ ) (vλ (x,y))−uλ (x,y) fμ(λ ) (uλ (x,y)) ,

thus

Δλ (x,y) = wλ (x,y)hμ(λ ) (vλ (x,y))+uλ (x,y)
(
hμ(λ ) (vλ (x,y))− fμ(λ ) (uλ (x,y))

)
, (9)
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moreover

hμ(λ ) ◦ vλ − fμ(λ ) ◦ uλ =
(
hμ(λ ) ◦ vλ −hμ(λ ) ◦ uλ

)
+
(
hμ(λ ) ◦ uλ − fμ(λ ) ◦ uλ

)
.

As

hμ(λ ) (vλ (x,y))−hμ(λ ) (uλ (x,y))

= (vλ (x,y)−uλ (x,y))
∫ 1

0

∂hμ(λ )

∂ z
(uλ (x,y)+η (vλ (x,y)−uλ (x,y)))dη , (10)

we have

hμ(λ ) (vλ (x,y))− fμ(λ ) (uλ (x,y))

= wλ (x,y)
∫ 1

0

∂hμ(λ )

∂ z
(uλ (x,y)+ηwλ (x,y))dη +

(
hμ(λ )− fμ(λ )

)
(uλ (x,y)) . (11)

We deduce that ∀(x,y) ∈ K,

∣∣hμ(λ ) (vλ (x,y))− fμ(λ ) (uλ (x,y))
∣∣� |wλ (x,y)|

∫ 1

0
M′

1dη +
∣∣(hμ(λ )− fμ(λ )

)
(uλ (x,y))

∣∣
� |wλ (x,y)|M′

1 + pJμ(λ),1(hμ(λ )− fμ(λ )).

where Jμ(λ ) =
[−sμ(λ ),sμ(λ )

]
. Then

|Δλ (x,y)| � |wλ (x,y)|+ |uλ (x,y)|
(
|wλ (x,y)|M′

1 + pJμ(λ),1(hμ(λ )− fμ(λ ))
)

� |wλ (x,y)|(1+ |uλ (x,y)|M′
1

)
+ |uλ (x,y)| pJμ(λ),1(hμ(λ )− fμ(λ )).

Consequently,

|Δλ (x,y)| � ‖wλ‖∞,K

(
1+‖uλ‖∞,K M′

1

)
+‖uλ‖∞,K pJμ(λ),1(hμ(λ )− fμ(λ )).

Let

dλ = PK,0 (wλ )
(
1+PK,0 (uλ )M′

1

)
+PK,0 (uλ ) pJμ(λ),1(hμ(λ )− fμ(λ )).

According to (7), we have
(

pJμ(λ),1(hμ(λ )− fμ(λ ))
)
μ(λ )

∈ |IA| , moreover (wλ )λ ∈
N (R2) , then we have (PK,0 (wλ ))λ ∈ |IA| and (dλ )λ ∈ |IA| . As

F(x,y,σμ(λ ) (vλ (x,y)))−F(x,y,φμ(λ ) (uλ (x,y)))

= Δλ (x,y)
(∫ 1

0

∂F
∂ z

(x,y,φμ(λ ) (uλ (x,y)))+η(σμ(λ ) (vλ (x,y))−φμ(λ ) (uλ (x,y)))dη
)

= Δλ (x,y)
(∫ 1

0

∂F
∂ z

(x,y,φμ(λ ) (u(x,y)))+ηΔλ (x,y))dη
)

, (12)
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we get ∣∣F(x,y,σμ(λ ) (vλ (x,y)))−F(x,y,φμ(λ ) (uλ (x,y)))
∣∣

� d1r
p0
μ(λ ) |Δλ (x,y)| � d1r

p0
μ(λ )dλ .

Then we have (
PK,0

(
F(·, ·,σμ(λ ) (vλ ))−F(·, ·,φμ(λ ) (uλ ))

))
λ ∈ |IA| .

It implies the 0th order estimate. According to Proposition 1, we deduce(
F(·, ·,σμ(λ ) (vλ ))−F(·, ·,φμ(λ ) (uλ ))

)
λ ∈ N (R2).

REMARK 7. In the case of regular data, we can show analogously that the solution
to problem (Pgen) does not depend of the choice of the representative ( fε )ε of the class
f ∈ T (R)/N1(R) , as in Theorem 12.

6. Comparison with classical solutions

Even if the data are as irregular as distributions, it may happen that the initial
formal ill-posed problem

(
Pform

)
has nonetheless a local smooth solution as it will be

seen in the example 4. We are going to prove that this solution is exactly the restriction
(according to the sheaf theory sense) of the generalized one.

The generalized solution to problem (Pgen) is defined from the integral represen-
tation (2). Thus, we are going to study the relationship between this generalized func-
tion and the classical solutions to

(
Pform

)
(when they exist) on a domain Ω such that

∀(x,y) ∈ Ω , D(x,y,g) ⊂ Ω . This justified to choose Ω = (g(μ),g(ν))× (μ ,ν) when
(μ ,ν) ∈ R2 with μ < 0 < ν .

REMARK 8. If the non regularized problem
(
Pform

)
has a smooth solution v on

Ω then, necessarily we have Ω⊂ R2\singsupp(u) .

Recall that there exists a canonical sheaf embedding of C∞(·) into A (·) , through
the morphism of algebra

σO : C∞ (O) → A (O) , f �→ [ fλ ] (where O is any open subset of R
2and fλ = f ).

The presheaf A allows to restriction and as usually we denote by u|O the restriction
on O of u ∈ A

(
R2
)
.

THEOREM 13. Let u = [uλ ] be the solution to problem (Pgen) given in Theo-
rem 7. Let Ω be an open subset of R2 such that Ω ⊂ R2\singsupp(u) . Assume
that Ω =

⋃
ε∈Λ1

Ωε with (Ωε)ε is an increasing family of open subsets of R2 such that

Ωε = (g(aε),g(bε))× (aε ,bε) when (aε ,bε) ∈ R2 with aε < 0 < bε . Assume that
problem

(
Pform

)
has a smooth solution v on Ω such that sup

(x,y)∈Ωε

|v(x,y)| < rε −1 for

any ε . Then v (element of C∞ (Ω) canonically embedded in A (Ω)) is the restriction
(according to the sheaf theory sense) of u to Ω , v = u|Ω .
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Proof. We clearly have ∀(x,y) ∈ Ω,∃ε0,∀ε � ε0,(x,y) ∈ Ωε . Then D(x,y,g) ⊂
Ωε ⊂Ω and following [8], [9],

v(x,y) = v0(x,y)+
∫∫

D(x,y,g)
F(ξ ,ζ ,v(ξ ,ζ ))dξdζ .

We take as representative of u the family (uλ )λ given by Theorem 7, we have

∀(x,y) ∈Ω, uλ (x,y) = u0,λ (x,y)+
∫∫

D(x,y,g)
Fμ(λ )(ξ ,ζ ,uλ (ξ ,ζ ))dξdζ

and v0(x,y) = u0,λ (x,y) . Set (wλ )λ = (uλ |Ω− v)λ and take K � Ω . There exists
ε1 such that, for all ε < ε1 , K � Ωε . According the definition of Ωε , there exists
a , 0 < a < (bε −aε)/2, such that K ⊂ Qa ⊂ Ω with Qa = [g(aε +a),g(bε −a)]×
[aε +a,bε −a] . Take (x,y) ∈ K , then D(x,y,g) ⊂ Qa . Note that, for (ξ ,ς ,z) ∈ Ωε ×
(−rε +1,rε−1) , we have F(ξ ,ς ,z) = Fε(ξ ,ς ,z) by construction of Fε . Thus v , which
values are in (−rε + 1,rε − 1) , and uλ are solutions of the same integral equation,
which admits a unique solution since Fε is a smooth function of its arguments. Thus,
for all ε = μ (λ ) � ε1 , v and uλ are equal on Ωε . Then (PK,n(v))λ ∈ A for any
K � Ω and n ∈ N . Then v (identified with [(v)λ ] ) belongs to A (Ω) . Moreover, for
all ε = μ (λ ) � ε1 , sup(x,y)∈Qa

|wλ (x,y)| = 0, hence (PK,l(wλ ))λ ∈ |IA| for any l ∈ N

as wλ vanishes on K . Thus (wλ )λ ∈ N (Ω) and v = u|Ω as claimed.

EXAMPLE 4. Assume that λ = (μ (λ ) ,ν (λ )) = (ε,ρ) ∈ Λ1 ×Λ2 = Λ , Λ1 =
Λ2 = (0,1] . Consider the problem

(
Pform

)
⎧⎪⎪⎨⎪⎪⎩

∂ 2u
∂x∂y

= u2,

u|(Ox) = vp( 1
1−x ),

u|(Oy) = vp( 1
1−y ).

This problem is classically highly ill-posed. Let be (Pgen) the generalized associated
problem as it is done in Subsection 3.4.

(Pgen)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ 2u
∂x∂y

= F (u),

Rθ (u) = ϕ ,

Lg (u) = ψ ,

where F is associated to F = u2 via the family ( fε)ε given in Subsection 3.1, by
Definition 7. The generalized functions ϕ =

[
ϕρ
] ∈ A (R) and ψ =

[
ψρ
] ∈ A (R)

are constructed from

ϕρ(x) =
(
θρ ∗ vp(

1
1−·)

)
(x) = 〈vp(

1
1− z

),z �→ θρ (x− z)〉 = lim
ε→0

∫
|1−z|>ε

θρ (x− z)
1− z

dz

ψρ(y) =
(
θρ ∗ vp(

1
1−·)

)
(y) = 〈vp(

1
1− z

),z �→ θρ (y− z)〉 = lim
ε→0

∫
|1−z|>ε

θρ (y− z)
1− z

dz
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where
(
θρ
)
ρ is a chosen family of mollifiers. Then ϕρ (resp. ψρ ) regularize vp( 1

1−x )

(resp. vp( 1
1−y )). To solve the problem (Pgen) associate to

(
Pform

)
we can consider (as

it is done in Subsection 3.4) the family of problems

(Pλ )

⎧⎪⎪⎨⎪⎪⎩
∂ 2

∂x∂y
uλ (x,y) =

(
uλ (x,y)) fμ(λ )(uλ (x,y))

)2
,

uλ (x,0) = ϕν(λ )(x),
uλ (0,y) = ψν(λ ) (y) .

If uλ is a solution to (Pλ ) then u = [uλ ] is solution to (Pgen) . We have the restrictions

vp(
1

1− x
)
∣∣∣∣
(Ox)

=
(

x �→ 1
1− x

)
; vp(

1
1− y

)
∣∣∣∣
(Oy)

=
(

y �→ 1
1− y

)
.

Then
(
Pform

)
has the classical solution v in C∞(Ω) where Ω= (−∞,1)× (−∞,1) ,

v(x,y) =
1

(1− x)(1− y)
,

and Theorem 13 shows that the restriction of u∈A
(
R2
)

to Ω is precisely v . The local
classical solution v which blows-up for x = 1, y = 1, extends to a global generalized
solution u which absorbs this blow-up.

REMARK 9. In the case of regular data, whenever problem (Pgen) admits a classi-
cal smooth function v on some open subset Ω , we can show that v (element of C∞(Ω)
canonically embedded in A (Ω)) is the restriction (according to the sheaf theory sense)
of u to Ω as it is described in Theorem 13.
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