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CLASSICAL SOLUTIONS OF QUASILINEAR FUNCTIONAL

DIFFERENTIAL SYSTEMS ON THE HAAR PYRAMID

ELŻBIETA PUŹNIAKOWSKA

(Communicated by L. Berezansky)

Abstract. The Cauchy problem for a quasilinear functional differential system is considered. A
theorem on the existence of classical solutions defined on the Haar pyramid is proved. The theory
of bicharacteristics and the method of successive approximations are used. Differential systems
with deviated variables and differential integral systems can be obtained from a general theory
by specializing given operators.

1. Introduction

For any metric spaces X and Y we denote by C(X ,Y ) the class of all continuous
functions from X into Y . We will use vectorial inequalities with the understanding that
the same inequalities hold between their corresponding components. Let us denote by
Mk×n the set of all k× n matrices with real elements. If U ∈ Mk×n then UT denotes
the transpose matrix. Let E be the Haar pyramid

E =
{
(t,x) ∈ R

1+n : t ∈ [0,a],−b+Mt � x � b−Mt
}
,

where a > 0, M = (M1, . . . ,Mn) ∈ R
n
+ , R+ = [0,+∞) , b = (b1, . . . ,bn) and b > Ma .

Write for b0 ∈ R+
E0 = [−b0,0]× [−b,b].

For (t,x) ∈ E we define the set D[t,x] as follows

D[t,x] =
{
(τ,y) ∈ R

1+n : τ � 0,(t + τ,x+ y) ∈ E0 ∪E
}

.

It is clear that D[t,x] = D0[t,x]∪D∗[t,x] where

D0[t,x] = [−b0− t,−t]× [−b− x,b− x],
D∗[t,x] = {(τ,y) : −t � τ � 0,−b− x+M(τ+ t) � y � b− x−M(τ+ t)} .

Write B = [−b0 − a,0]× [−2b,2b] . Then we have D[t,x] ⊂ B for (t,x) ∈ E . For a
function z : E0∪E →R

k and for a point (t,x)∈ E we define a function z(t,x) : D[t,x]→
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R
k as follows: z(t,x)(τ,y) = z(t + τ,x+ y) , (τ,y) ∈ D[t,x] . Then z(t,x) is the restriction

of z to set (E0∪E)∩(
[−b0,t]×R

n
)

and this restriction is shifted to the set D[t,x] . Put
Ω= E ×C(B,Rk) and suppose that

f : Ω→ Mk×n, f = [ fi j ]i=1,...,k, j=1,...,n,

G : Ω→ R
k, G = (G1, . . . ,Gk),

ϕ : E0 → R
k, ϕ = (ϕ1, . . . ,ϕk),

ψ0 : [0,a] → R, ψ ′ : E → R
n, ψ ′ = (ψ1, . . . ,ψn)

are given function. We assume that 0 �ψ0(t) � t for t ∈ [0,a] and that (ψ0(t),ψ ′(t,x))
∈ E for (t,x) ∈ E . Write ψ(t,x) = (ψ0(t),ψ ′(t,x)) on E . We will say that the func-
tions f and G satisfy the condition (V ) if for each (t,x) ∈ E and for w, w̃ ∈C(B,Rk)
such that w(τ,y) = w̃(τ,y) for (τ,y) ∈ D[ψ(t,x)] we have f (t,x,w) = f (t,x, w̃) and
G(t,x,w) = G(t,x, w̃) . Then the condition (V ) means that the values of f and G at
the point (t,x,w) ∈Ω depend on (t,x) and on the restriction of w to the set D[ψ(t,x)]
only.

Let z = (z1, . . . ,zk) be an unknown function of the variables (t,x) = (t,x1, . . . ,xn) .
We consider the system of differential functional equations

∂t zi(t,x)+
n

∑
j=1

fi j(t,x,zψ(t,x))∂x j zi(t,x) = Gi(t,x,zψ(t,x)), i = 1, . . . ,k, (1)

with the initial condition
z(t,x) = ϕ(t,x) on E0. (2)

We assume that f and G satisfy the condition (V ) and we consider classical solutions
of (1), (2).

If D[t,x] = {(t,x)} and ψ(t,x) = (t,x) for (t,x) ∈ E then (1), (2) reduces to
a classical Cauchy problem for a weakly coupled differential system. Such systems
and more general quasilinear hyperbolic systems in the Schauder canonic form have
been studied in a large number of papers by various authors. Sufficient conditions for
the existence and uniqueness of Carathéodory solutions of initial or boundary value
problems can be found in [2], [5].

The papers [1], [13], [14] initiated investigations of first order partial differential
functional equations. Mixed problems for almost linear or quasilinear systems in two
independent variables were considered and existence results on continuous generalized
solutions were obtained. A continuous function is a solution of mixed problem if it sat-
isfies integral functional differential system arising from a original system by integrat-
ing along bicharacteristics. Results on the existence and uniqueness of Carathéodory
solutions for a general class of quasilinear hyperbolic systems with initial conditions
which are global with respect to spatial variables can be found in [7]. The papers [8],
[9] concern mixed problems and nonlocal boundary value problems for weakly coupled
quasilinear systems.

Until now there have not been any results on the existence of classical solutions of
initial problems on the Haar pyramid. The aim of this paper is to prove a theorem on
the local existence of classical solutions to (1), (2).
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Note that different models of the functional dependence in partial equations are
used in literature. The first group of results is connected with initial problems for system

∂t zi(t,x) = Gi(t,x,z,∂xzi(t,x)), i = 1, . . . ,k, (3)

where the variable z represents the functional variable. Existence results for (3) can
be characterized as follows: theorems have simple assumptions and their proofs are
very natural [15], [16]. Unfortunately, a small class of differential functional equations
is covered by this theory. It is easy to see that results given in the above papers are
not applicable to differential integral systems of the Volterra type and to systems with
deviated variables.

There are papers concerning initial value problems for systems

∂t zi(t,x) = Hi(t,x,(Vz)(t,x),∂xzi(t,x)), i = 1, . . . ,k, (4)

where V is an operator of the Volterra type and the function (H1, . . . ,Hk) is defined on
finite-dimentional Euclidean space. The main assumptions in existence theorems for
(4) concern the operator V . They are formulated in a form of inequalities for norms in
some functional spaces [3], [6], [10]. These inequalities are linear and it is the main
shortcoming of this theory.

A new model of a functional dependence in partial differential equations is pro-
posed in [11]. It is based on the following idea. Let B = [−r0,0]× [−r,r]⊂R

1+n . For a
function z : [−r0,a]×R

k , a > 0 and for a point (t,x) ∈ [0,a]×R
n we define a function

z(t,x) : B → R
k in the following way:

z(t,x)(τ,y) = z(t + τ,x+ y), (τ,y) ∈ B. (5)

Then z(t,x) is the restriction of z to the set [t− r0,t]× [x− r,x+ r] and this restriction is
shifted to the set B . If r 	= (0, . . . ,0)∈R

n then there is (t,x)∈ E such that the formula-
tion (5) is not suitable for the local Cauchy problem and consequently, the results given
in [4] are not applicable to local Cauchy problems. For bibliography on hyperbolic
functional differential equations and their applications see the monograph [12].

In the paper we propose a new method of the functional dependence in quasilinear
systems considered on the Haar pyramid.

We prove that under natural assumptions on given functions there exists exactly
one solution of (1), (2). The method used in this paper is based on the bicharacteristics
theory and on the method of successive approximations.

We give examples of quasilinear systems which can be obtained from (1) by spe-
cializing f and G .

EXAMPLE 1.1. Suppose that

G̃ = (G̃1, . . . ,G̃k) : E ×R
k → R

k, f̃ = [ fi j]i=1,...,k, j=1,...,n : E ×R
k → Mk×n

is a given function. Set f (t,x,w) = f̃ (t,x,w(0,θ )) and G(t,x,w) = G̃(t,x,w(0,θ ))
where θ = (0, . . . ,0) ∈ R

n . Then (1) becomes the system of equations with deviated
variables

∂t zi(t,x)+
n

∑
j=1

f̃i j(t,x,z(ψ(t,x)))∂x j zi(t,x) = G̃i(t,x,z(ψ(t,x))), i = 1, . . . ,k.
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EXAMPLE 1.2. Suppose that ψ(t,x) = (t,x) . For the above G̃ , f̃ we put

f (t,x,w) = f̃ (t,x,
∫

D[t,x]
w(τ,y)dτdy), G(t,x,w) = G̃(t,x,

∫
D[t,x]

w(τ,y)dτdy).

Then (1) is equivalent to the system of differential integral equations

∂t zi(t,x)+
n

∑
j=1

f̃i j(t,x,
∫

D[t,x]
z(t,x)(τ,y)dτdy)∂x j zi(t,x)

= G̃i(t,x,
∫

D[t,x]
z(t,x)(τ,y)dτdy), i = 1, . . . ,k.

It is clear that more complicated examples of differential systems with deviated vari-
ables and differential integral systems can be obtained from (1) by suitable definitions
of f and G .

2. Integral functional equations

For x ∈ R
n , p ∈ R

k , X ∈ Mk×n where x = (x1, . . . ,xn) , p = (p1, . . . , pk) , X =
[xi j ]i=1,...,k, j=1,...,n we define the norms

||x|| = |x1|+ . . .+ |xn|, ||p||∞ = max{|pi| : 1 � i � k},

||X || = max{
n

∑
j=1

|xi j| : 1 � i � k}.

The scalar product in R
n will be denoted by ” ◦ ”. Write Et = (E0∪E)∩([−b0,t]×R

n)
where 0 � t � a . For functions z ∈C(E0∪E,Rk) , z = (z1, . . . ,zk) , v ∈C(E0∪E,Rn) ,
v = (v1, . . . ,vn) , we define the seminorms:

||zi ||t = max{|zi(τ,y)| : (τ,y) ∈ Et}, i = 1, . . . ,k,

||z ||(t,Rk) = max{||z(τ,y)||∞ : (τ,y) ∈ Et},
||v ||(t,Rn) = max{||v(τ,y)|| : (τ,y) ∈ Et},

where 0 � t � a . The norm in the space C(B,Rk) is given by

||w ||B = max{||w(τ,y)||∞ : (τ,y) ∈ B}.
We denote by LC(B,R) the set of all linear and continuous real functions defined by
C(B,R) . Let || · ||∗ be the norm in LC(B,R) generated by the maximum norm in the
space C(B,R) . For W = [wi j ]i, j=1,...,k, and wi j ∈ LC(B,R) we write

||W ||∗,∞ = max{
k

∑
j=1

||wi j||∗ : 1 � i � k}.

Given c̃ = (c0,c1,c2) ∈ R
3
+ . We denote by Φ the class of all ϕ ∈ C(E0,R

k) , ϕ =
(ϕ1, . . . ,ϕk) , such that



CLASSICAL SOLUTIONS OF QUASILINEAR FUNCTIONAL DIFFERENTIAL SYSTEMS 183

(i) the derivatives ∂xϕi = (∂x1ϕi, . . . ,∂xnϕi) exist on E0 and ∂xϕi ∈C(E0,R
n) for i =

1, . . . ,k ,

(ii) the estimates

||∂xϕi(t,x)|| � c0,

||∂xϕi(t,x)− ∂xϕi( t , x)|| � c1|t − t |+ c2||x− x||

are satisfied on E0 for 1 � i � k .

Let ϕ ∈ Φ be given and 0 < c � a . Suppose that d ∈ R+ and d � c0 . We denote by
Cϕ.c[d] the class of all z ∈C(Ec,R

k) such that z(t,x) = ϕ(t,x) on E0 and

||z(t,x)− z(t, x)||∞ � d||x− x|| on Ec.

Assume that s = (s0,s1,s2) ∈ R
3
+ and s � c̃ . Let C∂ϕi.c[s] be the class of all v ∈

C(Ec,R
n) such that v(t,x) = ∂xϕi on E0 and

||v(t,x)|| � s0,

||v(t,x)− v( t , x)|| � s1|t − t |+ s2||x− x || on Ec.

We put i = 1, . . . ,k in the above definitions.
Now we formulate assumptions on ψ and f , G .

Assumption H[ψ ] The functions ψ0 : [0,a] → R , ψ ′ : E → R
n are continuous and

1) 0 � ψ0(t) � t for t ∈ [0,a] and ψ(t,x) = (ψ0(t),ψ ′(t,x)) ∈ E for (t,x) ∈ E ,

2) there exist the partial derivatives ∂xψ ′(t,x) =
[
∂x jψi(t,x)

]
i, j=1,...,n

and

∂xψ ′ ∈C(E,Mn×n) ,

3) there is Q̃ ∈ R+ such that

||∂xψ ′(t,x)− ∂xψ ′(t, x)|| � Q̃||x− x|| on E.

For f : Ω→ Mk×n , f = [ fi j ]i=1,...,k, j=1,...,n we write f[i] = ( fi1, . . . , fin) , 1 � i � k .

Assumption H[ f ] The function f : Ω→ Mk×n of the variables (t,x,w) ,
w = (w1, . . . ,wk) , is continuous and

1) f satisfies the condition (V ) and for (t,x,w) ∈Ω we have

(| fi1(t,x,w)|, . . . , | fin(t,x,w)|) � (M1, . . . ,Mn), i = 1, . . . ,k,

2) the derivatives
∂x f[i] =

[
∂xν fiμ

]
μ,ν=1,...,n

exist on Ω and ∂x f[i] ∈C(Ω,Mn×n) for i = 1, . . . ,k ,
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3) there exist the Fréchet derivatives

∂w f[i](P) =
[
∂wν fiμ(P)

]
μ=1,...,n,ν=1,...,k , P = (t,x,w) ∈Ω,

and ∂wν fiμ(P) ∈ LC(B,R) where P ∈Ω , μ = 1, . . . ,n , ν = 1, . . . ,k ,

4) there are A,C ∈ R+ such that

||∂x f[i](t,x,w)|| � A, ||∂w f[i](t,x,w)||∗,∞ � A,

||∂x f[i](t,x,w)− ∂x f[i](t, x,w)|| � C
[||x− x ||+ ||w−w||B

]
,

||∂w f[i](t,x,w)− ∂w f[i](t, x ,w)||∗,∞ � C
[||x− x ||+ ||w−w||B

]
,

where (t,x,w), (t, x ,w) ∈Ω , i = 1, . . . ,k .

Assumption H[G ] The function G : Ω→ R
k of the variables (t,x,w) is continuous,

it satisfies the condition (V ) and

1) the derivatives
∂xG =

[
∂x jGi

]
i=1,...,k, j=1,...,n

exist on Ω and ∂xG ∈C(Ω,Mk×n) ,

2) the Fréchet derivatives

∂wG(P) =
[
∂wνGμ(P)

]
μ,ν=1,...,k

exist for P = (t,x,w) ∈Ω and ∂wνGμ(P)∈ LC(B,R) for P∈Ω , μ ,ν = 1, . . . ,k ,

3) the estimates

||∂xG(t,x,w)|| � A, ||∂wG(t,x,w)||∗,∞ � A,

||∂xG(t,x,w)− ∂xG(t, x,w)|| � C
[||x− x ||+ ||w−w||B

]
,

||∂wG(t,x,w)− ∂wG(t, x ,w)||∗,∞ � C
[||x− x ||+ ||w−w||B

]
,

are satisfied on Ω .

LEMMA 2.1. Suppose that Λ : Ω→ R
n is continuous and

1) ψ = (ψ0,ψ ′) satisfies conditions 1) , 2) of Assumption H[ψ ] and
Q0 = max{||∂xψ ′(t,x)|| : (t,x) ∈ E} ,

2) there is λ ∈ R+ such that

||Λ(t,x,w)−Λ(t, x ,w)|| � λ [||x− x||+ ||w−w||B] on Ω

and Λ satisfies the condition (V ) ,

3) ϕ ∈Φ and z ∈Cϕ.c[d] .
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Then
||Λ(t,x,zψ(t,x))−Λ(t, x ,zψ(t,x))|| � λ (1+dQ0)||x− x||.

Proof. Note that the functions zψ(t,x) and zψ(t,x) have different domains. Then we
need the following construction. There is z̃ : R

1+n → R
k such that

(i) z̃(t,x) = z(t,x) on E0∪E and z̃ ∈C(R1+n,Rk) ,

(ii) max{||z(t,x)||∞ : (t,x) ∈ E0 ∪E} = sup{||z̃(t,x)||∞ : (t,x) ∈ R
1+n} and

||z̃(t,x)− z̃(t, x)||∞ � d||x− x || on R
1+n.

Let w,w : B → R
k be defined by

w(τ,y) = z̃ψ(t,x)(τ,y) = z̃(ψ(t,x)+ (τ,y)), (τ,y) ∈ B,

w(τ,y) = z̃ψ(t,x)(τ,y) = z̃(ψ(t, x)+ (τ,y)), (τ,y) ∈ B.

Then we have

||Λ(t,x,zψ(t,x))−Λ(t, x,zψ(t,x))|| = ||Λ(t,x,w)−Λ(t, x ,w)||
� λ [||x− x ||+ ||w−w||B] = λ

[||x− x ||+ ||z̃ψ(t,x)− z̃ψ(t,x)||B
]

� λ (1+dQ0)||x− x ||.
This completes the proof.

Suppose that Assumptions H[ f ] , H[ψ ] are satisfied and ϕ ∈ Φ , z ∈ Cϕ.c[d] ,
1 � i � k . Let us denote by gi[z]( ·,t,x) the solution of the Cauchy problem

η ′(τ) = f[i](τ,η(τ),zψ(τ,η(τ))), η(t) = x, (6)

where (t,x) ∈ Ec . The function gi[z]( ·,t,x) is the i-th bicharacteristic of (1) corre-
sponding to z . The main properties of the bicharacteristic are presented in the following
lemma.

LEMMA 2.2. Suppose that Assumption H[ f ] is satisfied and ϕ , ϕ̃ ∈Φ , z∈Cϕ.c[d] ,
z̃ ∈Cϕ̃ .c[d] where 0 < c � a. Then the bicharacteristics gi[z]( ·,t,x) and gi[z̃]( ·, t,x) ,
1 � i � k , exist on intervals [0,κi(t,x)] and [0, κ̃i(t,x)] such that

(κi(t,x),gi[z](κi(t,x),t,x)) ∈ ∂Ec and (κ̃i(t,x),gi[z](κ̃i(t,x),t,x)) ∈ ∂Ec,

where ∂Ec is the boundary of Ec . Solutions of (6) are unique and we have the estimates

||gi[z](τ,t,x)−gi[z](τ, t , x)|| � L
[|t− t |+ ||x− x||] (7)

where τ ∈ [0,min{κi(t,x), κi( t , x)}] , L = max{1, ||M||,C}eCa(1+dQ0) , and

||gi[z](τ,t,x)−gi[z̃](τ,t,x)|| � L
∣∣∫ τ

t
||z− z̃||(ξ ,Rk)dξ

∣∣ (8)

where τ ∈ [0,min{κ(t,x), κ̃(t,x)}] .
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Proof. The existence and uniqueness of the solution of (6) follows from classical
theorems. We prove that the bicharacteristic gi[z]( · ,t,x) exists on [0,κ(t,x) ] . Suppose
that [ t0, t ] is the interval on which the bicharacteristic gi[z]( · , t,x) is defined. Then we
have

−M � d
dτ

gi[z](τ,t,x) � M for τ ∈ [t0,t ],

and consequently

−b+Mτ � gi[z](τ,t,x) � b−Mτ for τ ∈ [t0,t ].

This gives that (τ,gi[z](τ,t,x)) ∈ E for τ ∈ [t0,t ] and the assertion follows.
We conclude from (6) and from Lemma 2.1 that

||gi[z](τ,t,x)−gi[z](τ, t , x)|| � ||x− x||+ ||M|| |t− t |

+C(1+dQ0)
∣∣∫ min{t,t }

τ
||gi[z](ξ ,t,x)−gi[z](ξ , t , x)||dξ ∣∣.

From the Gronwall inequality we obtain (7). For z ∈Cϕ.c[d] , z̃ ∈Cϕ̃.c[d] we have the
integral inequality

||gi[z](τ,t,x)−gi[z̃](τ,t,x)||

� C(1+dQ0)
∣∣∫ t

0
||gi[z](τ,t,x)−gi[z̃](τ,t,x)||dξ

∣∣+C
∣∣∫ t

τ
||z− z̃||(ξ ,Rk)dξ

∣∣,
where τ ∈ [0,min{κ(t,x), κ̃(t,x)}] . From the Gronwall inequality we obtain (8). This
completes the proof.

We formulate integral equations corresponding to (1), (2). Let us denote by z and
u unknown functions of the variables (t,x) where

z = (z1, . . . ,zk), u = [ui j ]i=1,...,k, j=1,...,n

and

u[i] = (ui1, . . . ,uin), (u[i])(t,x) =
(
(ui1)(t,x), . . . ,(uin)(t,x)

)
, 1 � i � k.

Let (
u[ j]

)
ψ(t,x) ∂xψ ′(t,x) : D[ψ(t,x)] → R

n

be the function defined by

(
u[ j]

)
ψ(t,x) ∂xψ ′(t,x) =

( n

∑
ν=1

∂x1ψν(t,x)(u jν)ψ(t,x), . . . ,
n

∑
ν=1

∂xnψν(t,x)(u jν )ψ(t,x)
)
.

For ω = (ω1, . . . ,ωn) ∈C(B,Rn) we write

∂wj fiμ(P)ω =
(
∂wj fiμ(P)ω1, . . . ,∂wj fiμ(P)ωn

)
,

∂wjGi(P)ω =
(
∂wjGi(P)ω1, . . . ,∂wj Gi(P)ωn

)
,
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and

∂wGi(P)∗ω =
k

∑
ν=1

∂wνGi(P)ων ,

where P = (t,x,w) ∈ Ω , i, j = 1, . . . ,k , μ = 1, . . . ,n . Let us denote by V[iμ][z,u] ,
W[i][z,u] , i = 1, . . . ,k , μ = 1, . . . ,n the functions defined by

V[iμ][z,u](t,x) = ∂x fiμ(t,x,zψ(t,x))+
k

∑
j=1

∂wj fiμ(t,x,zψ(t,x))(u[ j])ψ(t,x)∂xψ ′(t,x),

and

W[i][z,u](t,x) = ∂xGi(t,x,zψ(t,x))+
k

∑
j=1

∂wjGi(t,x,zψ(t,x))(u[ j])ψ(t,x)∂xψ ′(t,x).

We consider the following system of functional integral equations

zi(t,x) = ϕi(0,gi[z](0,t,x))+
∫ t

0
Gi(τ,gi[z](τ,t,x),zψ(τ,gi [z](τ,t,x)))dτ, (9)

u[i](t,x) = ∂xϕi(0,gi[z](0,t,x))

−
n

∑
μ=1

∫ t

0
V[iμ][z,u](τ,gi[z](τ,t,x))uiμ(τ,gi[z](τ,t,x))dτ

+
∫ t

0
W[i][z,u](τ,gi[z](τ,t,x))dτ, (10)

where i = 1, . . . ,k and

zi(t,x) = ϕ(t,x), u[i](t,x) = ∂xϕi(t,x) on E0 for i = 1, . . . ,k. (11)

We prove that for sufficiently small c ∈ (0,a ] there exist a solution (z̃i, ũ[i]) : Ec →
R×R

n , i = 1, . . . ,k , of above system of integral functional equations and (z̃1, . . . , z̃k)
is a solution of (1), (2) and ∂xz̃i = ũi for i = 1, . . . ,k .

3. Successive approximations for functional integral equations

The proof of the existence of the solutions of (9) - (11) is based on the follow-
ing method of successive approximations. Suppose that ϕ ∈ Φ and that Assumptions
H[ f ] , H[G ] , H[ψ ] are satisfied. We consider sequences {z(m)} , {u(m)} where:

z(m) = (z(m)
1 , . . . ,z(m)

k ), u(m) = [u(m)
i j ]i=1,...k, j=1,...,n,

u(m)
[i] = (u(m)

i1 , . . . ,u(m)
in ), i = 1, . . . ,k,

defined in the following way. Write

z(0)
i (t,x) = ϕi(t,x) on E0, z(0)

i (t,x) = ϕi(0,x) for (t,x) ∈ Ec\E0 (12)
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and

u(0)
[i] (t,x) = ∂ϕi(t,x) on E0, u(0)

[i] (t,x) = ∂xϕi(0,x) for (t,x) ∈ Ec\E0. (13)

Suppose that z(m) : Ec → R
k , u(m) : Ec → Mk×n are known functions. Then u(m+1)

[i] is a
solution of the equation

u[i](t,x) = T (m)
[i] [u[i]](t,x) (14)

where for (t,x) ∈ Ec\E0 ,

T (m)
[i] [u[i]](t,x) = ∂xϕi(0,gi[z(m)](0,t,x))

+
∫ t

0
W[i][z

(m),u(m)](τ,gi[z(m)](τ,t,x))dτ

−
n

∑
μ=1

∫ t

0
V[iμ][z

(m),u(m)](τ,gi[z(m)](τ,t,x))uiμ(τ,gi[z(m)](τ,t,x))dτ, (15)

and for (t,x) ∈ E0 ,

T (m)
[i] [u[i]](t,x) = ∂xϕi(t,x). (16)

The function z(m+1) is given on Ec\E0 by

z(m+1)
i (t,x) = ϕi(0,gi[z(m)](0,t,x))+

∫ t

0
Gi(τ,gi[z(m)](τ,t,x),z(m)

ψ(ξ ,gi [z(m)](τ,t,x))
)dτ

(17)
and on E0 by

z(m+1)
i (t,x) = ϕi(t,x). (18)

REMARK 3.1. The sequences
{

z(m)
}

,
{

u(m)
}

are obtained in the following way.

Suppose that z(m) : Ec → R
k and u(m) : Ec → Mk×n are known functions. We consider

classical solutions of the Cauchy problems

∂t zi(t,x)+ f[i](t,x,(z
(m))ψ(t,x))◦ ∂xzi(t,x) = Gi(t,x,(z(m))ψ(t,x)), (19)

zi(0,x) = ϕi(0,x) for x ∈ [−b,b], (20)

where i = 1, . . . ,k . Note that we have obtained separate initial problems for linear
equations. We introduce an additional unknown function u[i] = ∂xzi in (19). Then we
obtain the following differential equations for u[i] :

∂t u[i](t,x)+ f[i](t,x,(z
(m))ψ(t,x))◦ [∂xu[i](t,x)]

T

= W[i][z
(m),u(m)](t,x)−

n

∑
μ=1

V[iμ][z
(m),u(m)](t,x)uiμ(t,x). (21)
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It is natural to consider the following initial condition for (21):

u[i](0,x) = ∂xϕi(0,x) for x ∈ [−b,b]. (22)

We put i = 1, . . . ,k in (21), (22).
Note that differential equations of i-th bicharacteristics for (19) and (21) are the

same and they have the form

η ′(τ) = f[i](τ,η(τ),(z(m))ψ(τ,η(τ))).

Then we integrate (19) and (21) along the bicharacteristics gi[z(m)]( · , t,x) and we ob-

tain the system of integral equations (14) for u(m+1)
[i] and z(m+1)

i is given by (17), (18).
We put i = 1, . . . ,k in these considerations.

Assumption H[c ] The constants d ∈ R+ , s = (s0,s1,s2) ∈ R
3
+ , c ∈ (0,a ] satisfy the

conditions

s0 � c0 + cA(1+ s0Q)(1+ s0),
s1 � L(c2 + cL̃),
s2 � L(c2 + cL̃)+A(1+ s0)(1+ s0Q),
d � L(c0 + cA(1+dQ)),

where

L = C(1+dQ)(1+ s0Q)+AQ(s0 +Qs2),

L̃ = L(1+ s0)+As2(1+ s0Q).

REMARK 3.2. If we assume that s0 > c0 , s1 > Lc2 , s2 >Lc2 +A(1+c0)(1+c0Q)
and d > Lc0 then there is c ∈ (0,a] such that Assumption H[c ] is satisfied.

THEOREM 3.3. If ϕ ∈ Φ and Assumptions H[ f ] ,H[G ], H[ψ ] , H[c ] are satis-
fied then for any m � 0 we have

(Im) z(m) and u(m) are defined on Ec and z(m) ∈Cϕ.c[d] , u(m)
[i] ∈C∂ϕi.c[s] for m ∈ N ,

i = 1, . . . ,k ,

(IIm) for i = 1, . . . ,k we have ∂xz
(m)
i = u(m)

[i] on Ec .

Proof. We prove (Im) and (IIm) by induction. It follows from (13), (18) that
conditions (I0) and (II0) are satisfied. Suppose that conditions (Im) and (IIm) hold

for a given m � 0. We first prove that there are u(m+1)
[i] : Ec → R

n where 1 � i � k .
Suppose that 1 � i � k is fixed. We claim that

T (m)
[i] : C∂ϕi.c[s] →C∂ϕi.c[s]. (23)
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It follows from Assumptions H[ f ] ,H[G ], H[ψ ] that

||W[i][z
(m),u(m)](t,x)|| � A(1+ s0Q),

||V[iμ][z
(m),u(m)](t,x)|| � A(1+ s0Q), μ = 1, . . . ,n

and consequently

||T (m)
[i] [u[i]](t,x)|| � c0 + cA(1+ s0Q)(1+ s0). (24)

It follows from Assumptions H[ f ] ,H[G ], H[ψ ] that

||W[i][z
(m),u(m)](t,x)−W[i][z

(m),u(m)](t, x)|| � L||x− x ||
and

||V[iμ][z
(m),u(m)](t,x)−V[iμ][z

(m),u(m)](t, x)|| � L||x− x||, μ = 1, . . . ,n.

We thus get

||T (m)
[i] [u[i]](t,x)−T (m)

[i] [u[i]]( t , x)||
� L(c2 + cL̃)(|t − t |+ ||x− x ||)+A(1+ s0Q)(1+ s0)|t − t |, (25)

where u[i] ∈ C∂ϕi.c[s] . We conclude from (24), (25) and from Assumption H[c ] that
condition (23) is satisfied. Write

[|u[i]− u[i]|
]
= max{||(u[i]− u[i])(t,x)||e−2A(1+s0Q)t : (t,x) ∈ Ec}, i = 1, . . . ,k.

Then

||T (m)
[i] [u(m+1)

[i] ](t,x)−T (m)
[i] [u(m+1)

[i] ](t,x)||

� A(1+ s0Q)
∣∣∣∣
∫ t

0
||(u(m+1)

[i] − u(m+1)
[i] )(τ,x)||e−2A(1+s0Q)τe2A(1+s0Q)τdτ

∣∣∣∣
�

[
|u(m+1)

[i] − u(m+1)
[i] |

]∫ t

0
A(1+ s0Q)e2A(1+s0Q)τdτ

�
[
|u(m+1)

[i] − u(m+1)
[i] |

] e2A(1+s0Q)t

2
.

Finally we have that

[∣∣∣T (m)
[i] [u(m+1)

[i] ]−T (m)
[i] [u(m+1)

[i] ]
∣∣∣] � 1

2

[∣∣∣u(m+1)
[i] − u(m+1)

[i]

∣∣∣] .

From Banach fixed point theorem we have that u(m+1)
[i] exists on E0∪Ec and is unique.

The existence of z(m+1) on E0∪Ec goes from the definition. We have for z(m) ∈Cϕ.c[d]
the estimation

||z(m+1)
i (t,x)− z(m+1)

i (t, x)|| � L0(c0 + cC(1+dQ))||x− x||
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so z(m+1) ∈Cϕ.c[d] . From the principle of induction we have that (Im) is fulfilled for
every m ∈ N . Now we will show the (IIm+1) . That means that we will prove that for

every m ∈ N we have ∂xz
(m+1)
i (t,x) = u(m+1)

[i] (t,x) for (t,x) ∈ E0∪Ec and i = 1, . . . ,k .
Write

U(t,x, x) = z(m+1)
i (t, x)− z(m+1)

i (t,x)−u(m+1)
[i] (t,x)◦ (x− x)

where 1 � i � k is fixed. We will prove that there is K > 0 such that

|U(t,x, x)| � K||x− x ||2 for (t,x), (t, x) ∈ Ec. (26)

For m ∈ N denote

g(m)
i (τ,t,x) = gi[z(m)](τ,t,x),

P(m)(τ,t,x) =
(
τ,g(m)

i (τ,t,x),z(m)

ψ(τ,g(m)
i (τ,t,x))

)
.

Then we have that

U(t,x, x) = ϕi(0,g(m)
i (0,t, x))−ϕi(0,g(m)

i (0,t,x))− ∂xϕi(0,g(m)
i (0, t,x))◦ (x− x)

+
∫ t

0

[
Gi(P(m)(τ,t, x))−Gi(P(m)(τ,t,x))

]
dτ

−
∫ t

0
W[i][z

(m),u(m)](τ,g(m)
i (τ,t,x))dτ ◦ (x − x)

+
n

∑
j=1

∫ t

0
V[i j][z

(m),u(m)](τ,g(m)
i (τ,t,x))u(m+1)

i j (τ,g(m)
i (τ,t,x))dτ ◦ (x − x).

Write

Q(m)(τ, t,x, x,ξ ) = ξP(m)(τ,t, x)+ (1− ξ )P(m)(τ,t,x), 0 � ξ � 1.

Note that z(m)
ψ(t,x) and z(m)

ψ(t,x) have different domains. We will need the following con-
struction. There are

Z(m) : R
1+n → R

k, U (m)
[i] : R

1+n → R
n, i = 1, . . . ,k

such that

(i) Z(m) ∈C(R1+n,Rk) , Z(m) = (Z(m)
1 , . . . ,Z(m)

k ) , Z(m)(t,x) = z(m)(t,x) on E0∪Ec and

sup{||Z(m)(t,x)||∞ : (t,x) ∈ R
1+n} = max{||z(m)(t,x)||∞ : (t,x) ∈ E0∪Ec},

(ii) for i = 1, . . . ,k we have:

U (m)
[i] ∈C(R1+n,Rn), U (m)

[i] = (U (m)
i1 , . . . ,U (m)

in ),

U (m)
[i] (t,x) = u(m)

[i] (t,x) on E0 ∪Ec,

and

sup{||U (m)
[i] (t,x)|| : (t,x) ∈ R

1+n} = max{||u(m)
[i] (t,x)|| : (t,x) ∈ E0∪Ec},
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(iii) ∂xZ(m) = U (m)
[i] on R

1+n for i = 1, . . . ,k.

Then the functions (Z(m))(t,x) , (U (m)
[i] )(t,x) , (t,x) ∈ Ec are defined on B in the following

way

(Z(m))(t,x)(τ,y) = (Z(m))(t + τ,x+ y),

(U (m)
[i] )(t,x)(τ,y) = (U (m)

[i] )(t + τ,x+ y), (τ,y) ∈ B, i = 1, . . . ,k.

From Hadamard mean value theorem we have

U(t,x, x) = ϕi(0,g(m)
i (0,t, x))−ϕi(0,g(m)

i (0,t,x))− ∂xϕi(0,g(m)
i (0,t,x))(x − x)

+
∫ t

0

∫ 1

0
∂xGi(Q(m)(τ,t,x, x,ξ ))dξ ◦

[
g(m)

i (τ,t, x)−g(m)
i (τ,t,x)

]
dτ

+
∫ t

0

∫ 1

0
∂wGi(Q(m)(τ,t,x, x ,ξ ))dξ ∗

[(
Z(m)

)
ψ(τ,g(m)

i (τ,t,x))
−

(
Z(m)

)
ψ(τ,g(m)

i (τ,t,x))

]
dτ

−
∫ t

0
W[i][z

(m),u(m)](τ,g(m)
i (τ,t,x))dτ ◦ (x− x)

+
n

∑
j=1

∫ t

0
V[i j][z

(m),u(m)](τ,g(m)
i (τ,t,x))u(m+1)

i j (τ,g(m)
i (τ,t,x))dτ ◦ (x − x).

For simplicity of formulation of the next properties of the function U we write

Uϕ(t,x, x) = ϕi(0,g(m)
i (0,t, x))−ϕi(0,g(m)

i (0,t,x))

− ∂xϕi(0,g(m)
i (0,t,x))◦

[
g(m)

i (0,t, x)−g(m)
i (0,t,x)

]
,

and

U(t,x, x) =
∫ t

0

∫ 1

0

[
∂xGi(Q(m)(τ,t,x, x,ξ ))− ∂xGi(P(m)(τ,t,x))

]
dξ

◦
[
g(m)

i (τ,t, x)−g(m)
i (τ,t,x)

]
dτ

+
∫ t

0

∫ 1

0

[
∂wGi(Q(m)(τ,t,x, x ,ξ ))− ∂wGi(P(m)(τ,t,x))

]
dξ

∗
[
(Z(m))

ψ(τ,g(m)
i (τ,t,x))

− (Z(m))
ψ(τ,g(m)

i (τ,t,x))

]
dτ.

Moreover we put

U∗(t,x, x) =
∫ t

0
∂xGi(P(m)(τ,t,x))◦

[
g(m)

i (τ,t, x)−g(m)
i (τ,t,x)

]
dτ

+
∫ t

0
∂wGi(P(m)(τ,t,x))∗

[
(Z(m))

ψ(τ,g(m)
i (τ,t,x))

− (Z(m))
ψ(τ,g(m)

i (τ,t,x))

]
dτ

−
∫ t

0
W[i][z

(m),u(m)](τ,g(m)
i (τ,t,x))◦

[
g(m)

i (τ,t, x)−g(m)
i (τ, t,x)

]
dτ,
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Γ(t,x, x) = −∂xϕi(0,g(m)
i (0,t,x))◦

∫ t

0

[
f[i](P

(m)(ξ ,t, x))− f[i](P
(m)(ξ , t,x))

]
dξ

−
∫ t

0
W[i][z

(m),u(m)](τ,g(m)
i (τ,t,x))◦

∫ t

τ

[
f[i](P

(m)(ξ , t, x))− f[i](P
(m)(ξ , t,x))

]
dξdτ

+
n

∑
j=1

∫ t

0
u(m+1)

i j (τ,g(m)
i (τ,t,x))V[i j][z

(m),u(m)](τ,g(m)
i (τ,t,x))

◦
∫ t

τ

[
f[i](P

(m)(ξ ,t, x))− f[i](P
(m)(ξ ,t,x))

]
dξdτ.

It follows from (6) that the bicharacteristics satisfy the condition

g(m)
i (τ, t, x)−g(m)

i (τ,t,x) = x − x+
∫ τ

t

[
f[i](P

(m)(ξ ,t, x))− f[i](P
(m)(ξ ,t,x))

]
dξ .

Then we have

U(t,x, x) = Uϕ(t,x, x)+U(t,x, x)+U∗(t,x, x)+Γ(t,x, x)

+
n

∑
j=1

∫ t

0
u(m+1)

i j (τ,g(m)
i (τ,t,x))V[i j][z

(m),u(m)](τ,g(m)
i (τ, t,x))

◦
[
g(m)

i (τ,t, x)−g(m)
i (τ,t,x)

]
dτ.

We conclude from Assumptions H[G ] , H[ψ ] and from Lemma 2.2 that there is C̃ > 0
such that

|Uϕ(t,x, x)|+ |U(t,x, x)| � C̃||x− x||2, (t,x), (t, x) ∈ Ec. (27)

It follows from Lemma 2.2 that the bicharacteristics satisfy the condition

g(m)
i (τ,ξ ,g(m)

i (ξ ,t,x)) = g(m)
i (τ,t,x), (t,x) ∈ Ec, τ,ξ ∈ [0,κi(t,x) ].

The above relations and (14), (15) imply

u(m+1)
[i] (ξ ,g(m)

i (ξ , t,x)) = ∂xϕi(0,g(m)
i (0,t,x))+

∫ ξ

0
W[i][z

(m),u(m)](τ,g(m)
i (τ,t,x))dτ

−
n

∑
j=1

∫ ξ

0
V[i j][z

(m),u(m)](τ,g(m)
i (τ,t,x))u(m+1)

i j (τ,g(m)
i (τ,t,x))dτ.

Then we have that

Γ(t,x, x) = −
∫ t

0

[
f[i](P

(m)(ξ ,t, x))− f[i](P
(m)(ξ ,t,x))

]
◦ u(m+1)

[i] (ξ ,g(m)
i (ξ ,t,x))dξ .

Write

U∗(t,x, x) =
n

∑
j=1

∫ t

0
u(m+1)

i j (τ,g(m)
i (τ,t,x))V[i j][z

(m),u(m)](τ,g(m)
i (τ,t,x))

◦
[
g(m)

i (τ, t, x)−g(m)
i (τ,t,x)

]
dτ

−
∫ t

0

[
f[i](P

(m)(ξ ,t, x))− f[i](P
(m)(ξ ,t,x))

]
◦ u(m+1)

[i] (ξ ,g(m)
i (ξ , t,x))dξ .
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Then we have

U(t,x, x) = Uϕ(t,x, x)+U(t,x, x)+U∗(t,x, x)+U∗(t,x, x).

It follows that

U∗(t,x, x) = −
n

∑
j=1

∫ t

0
u(m+1)

i j (τ,gm
i (τ,t,x)){ fi j(P(m)(τ,t, x))

− fi j(P(m)(τ, t,x))−V[i j][z
(m),u(m)](τ,g(m)

i (τ,t,x))◦ [g(m)
i (τ,t, x)−g(m)

i (τ, t,x)]}dτ
and

U∗(t,x, x) =
∫ t

0

k

∑
j=1

∂wjGi(P(m)(τ,t,x))(ΔZ(m)
j )(τ,t,x)dτ,

where
(ΔZ(m)

j )(τ,t,x) = (Z(m)
j )

ψ(τ,g(m)
i (τ,t,x))

− (Z(m)
j )

ψ(τ,g(m)
i (τ,t,x))

−
n

∑
ν=1

n

∑
μ=1

∂xμ ψν(τ,g
(m)
i (τ,t,x))[g(m)

iμ (τ,t, x)−g(m)
iμ (τ,t,x)](U (m)

jν )
ψ(τ,g(m)

i (τ,t,x))
.

It follows from the definitions of V[i j] and from (IIm) that there is K > 0 such that

|U∗(t,x, x)|+ |U∗(t,x, x)| � K||x− x||2 for (t,x),(t, x) ∈ Ec.

The above inequality and (27) imply (26). Then ∂xz
(m+1)
i = u(m+1)

[i] on Ec for i =
1, . . . ,k . This completes the proof.

Now we formulate a theorem on the existence of classical solutions of (1), (2).

THEOREM 3.4. If Assumptions H[ f ] , H[G ] , H[ψ ] , H[c ] are satisfied, and ϕ ∈
Φ then there is a classical solutions z : E0∪Ec → R

k of (1), (2). If ϕ̃ : E0 → R is such
that ϕ̃ ∈Φ and z̃ : E0 ∪Ec → R is a classical solution of (1) with the initial condition
z̃(t,x) = ϕ̃(t,x) on E0 then there is 0 � A∗ such that for t ∈ [0,c] and i = 1, . . . ,k ,

||z i − z̃i||t + ||∂x z i − ∂xz̃i||(t,Rn)

� eA∗t
[

max
1� j�k

||ϕ j − ϕ̃ j||0 + max
1� j�k

||∂xϕ j − ∂xϕ̃ j||(0,Rn)

]
. (28)

Proof. We first prove that the sequences {z(m)
i } , {u(m)

[i] } are uniformly convergent
on E0∪Ec for i = 1, . . . ,k . Write

Λ(m)
i (t) = ||z(m)

i − z(m−1)
i ||t , Λ̃(m)

i (t) = ||u(m)
[i] −u(m−1)

[i] ||(t,Rn)

where i = 1, . . . ,k and

Λ(m)(t) = max{Λ(m)
i (t) : 1 � i � k}, Λ̃(m)(t) = max{Λ̃(m)

i (t) : 1 � i � k}.
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It follows from Assumptions H[ f ] , H[G ] and from (14) - (18) that there is K̃ > 0 such
that

Λ̃(m+1)
i (t) � K̃

[
Λ(m)(t)+ Λ̃(m)(t)+

∫ t

0
Λ̃(m+1)(s)ds

]
, i = 1, . . . ,k.

We conclude from the above inequalities and from the Gronwall inequality that

Λ̃(m+1)
i (t) � K̃eK̃c

∫ t

0

[
Λ(m)(τ)+ Λ̃(m)(τ)

]
dτ, i = 1, . . . ,k, t ∈ [0,c].

There is K > 0 such that

Λ(m+1)(t) � K
∫ t

0
Λ(m)(τ)dτ, t ∈ [0,c].

There is K > 0 such that

Λ(m+1)(t)+ Λ̃(m+1)(t) � K
∫ t

0

[
Λ(m)(s)+ Λ̃(m)(s)

]
ds, t ∈ [0,c]. (29)

Write
Q(m)(t) = max{[Λ(m)(τ)+ Λ̃(m)(τ)]e−2Kτ : τ ∈ [0,c]}.

We conclude from (29) that

Λ(m+1)(t)+ Λ̃(m+1)(t) � 1
2
Q(m)(t)e2Kt , t ∈ [0,c]

and consequently

Q(m+1)(t) � 1
2
Q(m)(t), t ∈ [0,c].

There is C0 ∈ R+ such that Q(1)(t) � C0 for t ∈ [0,c] . We thus get

lim
m→∞

Q(m)(t) = 0 uniformly on [0,c]

and there are z ∈Cϕi.c[d] and u[i] = (ui1, . . . , uin) ∈C∂ϕi.c[s] such that

z i(t,x) = lim
m→∞

z(m)
i (t,x), u[i](t,x) = lim

m→∞
u(m)

[i] (t,x) uniformly on Ec.

It follows from Theorem 3.3 that ∂t z i and ∂x z i exist on Ec and ∂x z i = u[i] . Further-
more, we have that u[i] = T[i][u[i]](t,x) and

z i(t,x) = ϕi(0,gi[z ](0,t,x))+
∫ t

0
Gi(τ,gi[z ](τ, t,x),z

(m)
ψ(ξ ,gi [z](τ,t,x))

)dτ, (30)

where (t,x) ∈ Ec . For a given (t,x) ∈ Ec let us put y = gi[z ](0,t,x) . It follows
that gi[z ](τ, t,x) = gi[z ](τ,0,y) for τ ∈ [0,κi(t,x)] where [0,κi(t,x)] is a domain of
gi[z ]( · , t,x) . Then the relation (30) imply

z i(t,gi[z ](t,0,y)) = ϕi(0,y)+
∫ t

0
Gi(τ,gi[z ](τ,0,y), zψ(τ,gi[z](τ,0,y)))dτ. (31)
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The relations y = gi[z ](0,t,x) and x = gi[z ](t,0,y) are equivalent. By differentiating
(31) with respect to t and by putting again x = gi[z ](t,0,y) we obtain that z i satisfies
(1) on Ec . Now we prove (28). There is A∗ � 0 such that

||z i − z̃i||t + ||∂x z i − ∂xz̃i||(t,Rn) � ||ϕi − ϕ̃i||0 + ||∂xϕi − ∂xϕ̃i||(0,Rn)

+A∗
∫ t

0

[
max
1� j�k

||z j − z̃ j||τ + max
1� j�k

||∂x z j − ∂xz̃ j||(τ,Rn)

]
dτ

� max
1� j�k

||ϕ j − ϕ̃ j||0 + max
1� j�k

||∂xϕ j − ∂xϕ̃ j||(0,Rn)

+A∗
∫ t

0

[
max
1� j�k

||z j − z̃ j||τ + max
1� j�k

||∂x z j − ∂xz̃ j||(τ,Rn)

]
dτ, t ∈ (0,c].

Then we obtain (28) from Gronwall inequality and from the properities of the function
maximum. This completes proof.

REMARK 3.5. Let z and z be the solutions of the Cauchy problem (1) with the
initial condition (2). Then from the Theorem 3 we have that the solutions z and z are
the same on the whole domain.
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