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CHEBYSHEV’S DIFFERENTIAL EQUATION

AND ITS HYERS–ULAM STABILITY

SOON-MO JUNG AND BYUNGBAE KIM

(Communicated by M. Pašić)

Abstract. We solve the inhomogeneous Chebyshev’s differential equation and apply this result
to obtain a partial solution to the Hyers-Ulam stability problem for the Chebyshev’s differential
equation.

1. Introduction

Let X be a normed space over a scalar field K and let I ⊂ R be an open interval,
where K denotes either R or C . Assume that a0, a1, . . . , an : I → K and g : I → X are
given continuous functions, and that y : I → X is an n times continuously differentiable
function satisfying the inequality

‖an(t)y(n)(t)+an−1(t)y(n−1)(t)+ · · ·+a1(t)y′(t)+a0(t)y(t)+g(t)‖� ε

for all t ∈ I and for a given ε > 0. If there exists an n times continuously differentiable
function y0 : I → X satisfying

an(t)y(n)
0 (t)+an−1(t)y(n−1)

0 (t)+ · · ·+a1(t)y′0(t)+a0(t)y0(t)+g(t) = 0

and ‖y(t)− y0(t)‖ � K(ε) for any t ∈ I , where K(ε) is an expression of ε with
limε→0 K(ε) = 0, then we say that the above differential equation has the Hyers-Ulam
stability. For more detailed definitions of the Hyers-Ulam stability, we refer the reader
to [2, 3, 4, 5, 6, 18, 20].

Alsina and Ger first investigated the Hyers-Ulam stability of differential equations
(see [1]): They proved that if a differentiable function f : I → R satisfies the inequality
|y′(t)− y(t)| � ε , where I is an open subinterval of R , then there exists a solution
f0 : I → R of the differential equation y′(t) = y(t) such that | f (t)− f0(t)| � 3ε for
any t ∈ I . Their result was generalized by Takahasi, Miura and Miyajima: Indeed, it
was proved in [19] that the Hyers-Ulam stability holds true for the Banach space valued
differential equation y′(t) = λy(t) (see also [14, 15]).
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Moreover, Miura, Miyajima and Takahasi [16] investigated the Hyers-Ulam stabil-
ity of n -th order linear differential equation with complex coefficients. They [17] also
proved the Hyers-Ulam stability of linear differential equations of first order, y′(t)+
g(t)y(t) = 0, where g(t) is a continuous function.

Jung also proved the Hyers-Ulam stability of various linear differential equations
of first order (ref. [7, 8, 9, 10]). Moreover, he could successfully apply the power series
method to the study of the Hyers-Ulam stability of Legendre’s differential equation (see
[11]). Subsequently, the authors [13] investigated the Hyers-Ulam stability problem for
Bessel’s differential equation by applying the same method.

In §2 of this paper, by using the ideas from [11, 12, 13], we investigate the general
solution of the inhomogeneous Chebyshev’s differential equation of the form

(1− x2)y′′(x)− xy′(x)+n2y(x) =
∞

∑
m=0

amxm, (1)

where n is a given positive integer. §3 will be devoted to a partial solution of the Hyers-
Ulam stability problem for the Chebyshev’s differential equation (2) in a subclass of
analytic functions.

2. Inhomogeneous Chebyshev’s equation

A function is called a Chebyshev function if it satisfies the Chebyshev’s differential
equation

(1− x2)y′′(x)− xy′(x)+n2y(x) = 0. (2)

The Chebyshev’s equation plays a great role in physics and engineering. In par-
ticular, this equation is most useful for treating the boundary value problems exhibiting
certain symmetries.

In this section, we define c0 = c1 = 0 and for m � 2,

cm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−2
2

∑
i=0

(2i)!
m!

a2i

m−2

∏
j = 2i+2

j even

( j2 −n2) for m even,

m−3
2

∑
i=0

(2i+1)!
m!

a2i+1

m−2

∏
j = 2i+3

j odd

( j2 −n2) for m odd,

(3)

where we refer to (1) for the am ’s. Here we have the convention ∏m−2
j=m( j2 − n2) = 1.

We can easily check that cm ’s satisfy the following

(m+2)(m+1)cm+2− (m2−n2)cm = am (4)

for any m ∈ {0,1,2, . . .} .



CHEBYSHEV’S DIFFERENTIAL EQUATION 201

LEMMA 1. (a) If the power series ∑∞
m=0 amxm converges for all x ∈ (−ρ ,ρ) with

ρ > 1 , then the power series ∑∞
m=2 cmxm with cm ’s given in (3) satisfies the inequality

|∑∞
m=2 cmxm| � C1

1−|x| for some positive constant C1 and for any x ∈ (−1,1) .

(b) If the power series ∑∞
m=0 amxm converges for all x ∈ (−ρ ,ρ) with ρ � 1 , then

for any positive ρ0 < ρ the power series ∑∞
m=2 cmxm with cm ’s given in (3) satisfies the

inequality |∑∞
m=2 cmxm| � C2 for any x ∈ [−ρ0,ρ0] and for some positive constant C2

which depends on ρ0 . Since ρ0 is arbitrarily close to ρ , this means that ∑∞
m=2 cmxm is

convergent for all x ∈ (−ρ ,ρ) .

Proof. (a) Since the power series ∑∞
m=0 amxm is absolutely convergent on its inter-

val of convergence, with x = 1, ∑∞
m=0 am converges absolutely, i.e., ∑∞

m=0 |am| < M1

by some number M1 . Now, if m is an even integer not less than 2, then it follows from
(3) that

|cm| �
m−2

2

∑
i=0

(2i)!
m!

|a2i|
m−2

∏
j = 2i+2

j even

| j2 −n2|

=

m−2
2

∑
i=0

|a2i| 1m
|(m−2)2−n2|
(m−1)(m−2)

|(m−4)2−n2|
(m−3)(m−4)

· · · |(2i+2)2−n2|
(2i+3)(2i+2)

1
(2i+1)

,

where each factor | j2−n2|
( j+1) j (with j even) is either less than 1 if j � n or is less than n2

if j � n . Therefore, the whole summand is less than |a2i|(n2)n/2 = |a2i|nn because j
can run through even integers at most from 2 to n . Hence

|cm| �
m−2

2

∑
i=0

|a2i|nn � M1n
n ≡C1

and this holds similarly for cm with m odd. Therefore we have

∣∣∣∣∣
∞

∑
m=0

cmxm

∣∣∣∣∣ �
∞

∑
m=0

|cm||xm| � C1

∞

∑
m=0

|x|m � C1

1−|x|

for every x ∈ (−1,1) .
(b) The power series ∑∞

m=0 amxm is absolutely convergent on its interval of conver-
gence, and therefore for any given ρ0 < ρ � 1, the series ∑∞

m=0 |amxm| is convergent
on [−ρ0,ρ0] and

∞

∑
m=0

|am||x|m �
∞

∑
m=0

|am|ρm
0 ≡ M2 (5)



202 SOON-MO JUNG AND BYUNGBAE KIM

for any x ∈ [−ρ0,ρ0] . It now follows from (3) that∣∣∣∣∣
∞

∑
m=2

cmxm

∣∣∣∣∣ �
∞

∑
m = 2
m even

|cm|ρm
0 +

∞

∑
m = 3
m odd

|cm|ρm
0

�
∞

∑
m = 2
m even

ρm
0

m−2
2

∑
i=0

(2i)!
m!

|a2i|
m−2

∏
j = 2i+2

j even

| j2 −n2|

+
∞

∑
m = 3
m odd

ρm
0

m−3
2

∑
i=0

(2i+1)!
m!

|a2i+1|
m−2

∏
j = 2i+3

j odd

| j2 −n2| (6)

�
∞

∑
m = 2
m even

m−2
2

∑
i=0

|a2i|ρ2i
0

ρ2
0

m(m−1)

m−2

∏
j = 2i+2

j even

| j2 −n2|ρ2
0

j( j−1)

+
∞

∑
m = 3
m odd

m−3
2

∑
i=0

|a2i+1|ρ2i+1
0

ρ2
0

m(m−1)

m−2

∏
j = 2i+3

j odd

| j2 −n2|ρ2
0

j( j−1)
.

Choose a positive integer j1 > n such that j1
j1−1 < 1

ρ2
0
. This means that for any

j > j1 , j
j−1 < j1

j1−1 < 1
ρ2

0
. If j > j1 > n , then

| j2 −n2|ρ2
0

j( j−1)
<

j
j−1

ρ2
0 <

j1
j1 −1

ρ2
0 < 1

and for j � j1 , since j � 2, ρ0 < ρ � 1, and
ρ2

0
j−1 < 1

j , we get

| j2 −n2|ρ2
0

j( j−1)
< max{ j2,n2}.

Thus, if m is an even integer not less than 2, then we have

m−2

∏
j = 2i+2

j even

| j2 −n2|ρ2
0

j( j−1)
=

⎛
⎜⎝ m−2

∏
j > j1
j even

| j2 −n2|ρ2
0

j( j−1)

⎞
⎟⎠

⎛
⎜⎝

j1

∏
j = 2i+2

j even

| j2 −n2|ρ2
0

j( j−1)

⎞
⎟⎠

<
j1

∏
j = 2i+2

j even

| j2 −n2|ρ2
0

j( j−1)
(7)

=

⎛
⎜⎝

j1

∏
j > n
j even

| j2 −n2|ρ2
0

j( j−1)

⎞
⎟⎠

⎛
⎜⎝ n

∏
j = 2i+2

j even

| j2 −n2|ρ2
0

j( j−1)

⎞
⎟⎠

< ( j1!)2(n2)n/2
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and similarly if m is an odd integer not less than 3, then we obtain

m−2

∏
j = 2i+3

j odd

| j2 −n2|ρ2
0

j( j−1)
< ( j1!)2nn. (8)

Hence, it follows from (5), (6), (7) and (8) that

∣∣∣∣∣
∞

∑
m=2

cmxm

∣∣∣∣∣ �
∞

∑
m = 2
m even

m−2
2

∑
i=0

|a2i|ρ2i
0

ρ2
0

m(m−1)
( j1!)2nn

+
∞

∑
m = 3
m odd

m−3
2

∑
i=0

|a2i+1|ρ2i+1
0

ρ2
0

m(m−1)
( j1!)2nn

�
∞

∑
m=2

ρ2
0

m(m−1)
M2( j1!)2nn

�
∞

∑
m=2

(
1

m−1
− 1

m

)
ρ2

0M2( j1!)2nn

� ρ2
0M2( j1!)2nn ≡ C2

for any x ∈ [−ρ0,ρ0] . �

LEMMA 2. Suppose that the power series ∑∞
m=0 amxm converges for all x∈ (−ρ ,ρ)

with some positive ρ . Let ρ1 = min{1,ρ} . Then the power series ∑∞
m=2 cmxm with

cm ’s given in (3) is convergent for all x ∈ (−ρ1,ρ1) . Further for any positive ρ0 < ρ1 ,
|∑∞

m=2 cmxm|�C for any x∈ [−ρ0,ρ0] and for some positive constant C which depends
on ρ0 .

Proof. The first statement follows from the second one. Therefore, let us prove
the second statement. If ρ � 1, then ρ1 = ρ . By Lemma 1 (b), for any positive
ρ0 < ρ = ρ1 , |∑∞

m=2 cmxm| � C2 for each x ∈ [−ρ0,ρ0] and for some positive constant
C2 which depends on ρ0 .

If ρ > 1, then by Lemma 1 (a), for any positive ρ0 < 1 = ρ1 , we get
∣∣∣∣∣
∞

∑
m=2

cmxm

∣∣∣∣∣ � C1

1−|x| � C1

1−ρ0
≡C

for x ∈ [−ρ0,ρ0] and for some positive constant C which depends on ρ0 . �

Using these definitions and the lemmas above, we will show that ∑∞
m=2 cmxm is a

particular solution of the inhomogeneous Chebyshev’s equation (1).
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THEOREM 3. Assume that n is a given positive integer and the radius of con-
vergence of the power series ∑∞

m=0 amxm is ρ > 0 . Let ρ1 = min{1,ρ} . Then, every
solution y : (−ρ1,ρ1)→C of the Chebyshev’s differential equation (1) can be expressed
by

y(x) = yh(x)+
∞

∑
m=2

cmxm,

where yh(x) is a Chebyshev function and cm ’s are given by (3).

Proof. We show that ∑∞
m=2 cmxm satisfies the equation (1). By Lemma 2, the power

series ∑∞
m=2 cmxm is convergent for each x ∈ (−ρ1,ρ1) .

Substituting ∑∞
m=2 cmxm for y(x) in (1) and collecting like powers together, it fol-

lows from (3) and (4) that

(1− x2)y′′(x)− xy′(x)+n2y(x)

= 2c2 +6c3x+
∞

∑
m=2

[
(m+2)(m+1)cm+2− (m2−n2)cm

]
xm

= a0 +a1x+
∞

∑
m=2

amxm

=
∞

∑
m=0

amxm

for all x ∈ (−ρ1,ρ1) .
Therefore, every solution y : (−ρ1,ρ1) → C of the inhomogeneous Chebyshev’s

differential equation (1) can be expressed by

y(x) = yh(x)+
∞

∑
m=2

cmxm,

where yh(x) is a Chebyshev function. �

3. Partial solution to Hyers-Ulam stability problem

In this section, we will investigate a property of the Chebyshev’s differential equa-
tion (2) concerning the Hyers-Ulam stability problem. That is, we will try to answer the
question, whether there exists a Chebyshev function near any approximate Chebyshev
function.

THEOREM 4. Let y : (−ρ ,ρ) → C be a given analytic function which can be
represented by a power series ∑∞

m=0 bmxm whose radius of convergence is at least ρ >
0 . Suppose there exists a constant ε > 0 such that

∣∣(1− x2)y′′(x)− xy′(x)+n2y(x)
∣∣ � ε (9)
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for all x ∈ (−ρ ,ρ) and for some positive integer n. Let ρ1 = min{1,ρ} . Let am be a
sequence such that (1− x2)y′′(x)− xy′(x)+n2y(x) = ∑∞

m=0 amxm and

∞

∑
m=0

|amxm| � K

∣∣∣∣∣
∞

∑
m=0

amxm

∣∣∣∣∣
for all x ∈ (−ρ ,ρ) and for some constant K . Then there exists a Chebyshev function
yh : (−ρ1,ρ1) → C such that

|y(x)− yh(x)| � Cε

for all x ∈ [−ρ0,ρ0] , where ρ0 < ρ1 is any positive number and C is some constant
which depends on ρ0 .

Proof. We assumed that y(x) can be represented by a power series and

(1− x2)y′′(x)− xy′(x)+n2y(x) =
∞

∑
m=0

amxm

also satisfies
∞

∑
m=0

|amxm| � K

∣∣∣∣∣
∞

∑
m=0

amxm

∣∣∣∣∣ � Kε

for all x ∈ (−ρ ,ρ) from (9).
According to Theorem 3, y(x) can be written as yh(x) +∑∞

m=2 cmxm for all x ∈
(−ρ1,ρ1) , where yh is some Chebyshev function and cm ’s are given by (3). Then by
Lemmas 1 and 2 and their proofs (replace M1 and M2 with Kε in Lemma 1), we obtain

|y(x)− yh(x)| =
∣∣∣∣∣
∞

∑
m=2

cmxm

∣∣∣∣∣ � Cε

for all x ∈ [−ρ0,ρ0] , where ρ0 < ρ1 is any positive number and C is some constant
which depends on ρ0 . This completes the proof of our theorem. �

4. Example

In this section, we show that there certainly exist functions y(x) which satisfy all
the conditions given in Theorem 4. We introduce an example related to the Chebyshev’s
differential equation (1) for n = 1.

EXAMPLE. Let yh(x) be a Chebyshev function and let y : (−1,1) → R be an
analytic function given by

y(x) = yh(x)+
450
509

ε
∞

∑
m=0

x2m

102m , (10)
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where ε is a positive constant. Then, we have

(1− x2)y′′(x)− xy′(x)+ y(x) =
∞

∑
m=0

amxm,

where

am =

⎧⎪⎨
⎪⎩

450
509

· −396m2 +6m+102
102m+2 ε for m ∈ {0,2,4, . . .},

0 for m ∈ {1,3,5, . . .}.
It is obvious that a0 = 450

509
102
100ε , am � 0, and |a2m| < 450

509
1

10m ε for any m � 1.
Thus, for each x ∈ (−1,1) , we have

|(1− x2)y′′(x)− xy′(x)+ y(x)| =

∣∣∣∣∣
∞

∑
m=0

amxm

∣∣∣∣∣ <
∞

∑
m=0

|am|

<
450
509

ε
(

102
100

+
1
9

)
= ε.

Moreover, for x ∈ (−1,1) , it follows from the last inequality that

∞

∑
m=0

|amxm| <
∞

∑
m=0

|am| < ε.

On the other hand, we obtain∣∣∣∣∣
∞

∑
m=0

amxm

∣∣∣∣∣ =

∣∣∣∣∣a0 +
∞

∑
m=1

a2mx2m

∣∣∣∣∣ � a0 +
∞

∑
m=1

a2m

� 450
509

102
100

ε− 450
509

∞

∑
m=1

1
10m ε =

450
509

ε
(

102
100

− 1
9

)

=
409
509

ε.

Therefore, we get
∞

∑
m=0

|amxm| � 509
409

∣∣∣∣∣
∞

∑
m=0

amxm

∣∣∣∣∣
for all x ∈ (−1,1) . (That is, the constant K in Theorem 4 is given by 509

409 .)
Further, it follows from (10) that

|y(x)− yh(x)| = 450
509

ε

∣∣∣∣∣
∞

∑
m=0

x2m

102m

∣∣∣∣∣ <
450
509

ε
∞

∑
m=0

1
102m <

9
10

ε

for all x ∈ [−ρ0,ρ0] , 0 < ρ0 < 1, which is consistent with the result of Theorem 4 if
we set ρ1 = ρ = 1 and n = 1.
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