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A NONOSCILLATION THEOREM FOR HALF–LINEAR DIFFERENTIAL

EQUATIONS WITH DELAY NONLINEAR PERTURBATIONS

NAOTO YAMAOKA

(Communicated by O. Došlý)

Abstract. This paper deals with the oscillation problem for nonlinear differential equations with
delay. A sufficient condition is obtained for the equation to have a nonoscillatory solution. The
main result is the best possible in a certain sense. Examples are given to illustrate the main result.

1. Introduction

We consider the nonlinear differential equation with delay

(|x′(t)|α−1x′(t))′ +
(

α
(α +1)t

)α+1

|x(t)|α−1x(t)+a(t) f (x(ct)) = 0, ′ =
d
dt

(1.1)

where α and c are constants satisfying α > 0 and 0 < c � 1, respectively; a(t) is
nonnegative, continuous and locally of bounded variation on (0,∞) ; f is continuous
on R and satisfies

y f (y) > 0 if y �= 0. (1.2)

Let t0 � 0. By a solution of (1.1) we mean a function x : [ct0,∞) → R which has the
property |x′|α−1x′ ∈ C1(t0,∞) and which satisfies (1.1) for all t ∈ [t0,∞) . A solution
x(t) of (1.1) is said to be oscillatory if there exists a sequence {tn} tending to ∞ such
that x(tn) = 0. Otherwise, it is said to be nonoscillatory.

As has already been shown in [16, Theorem 2.1], under the above assumptions, all
nontrivial solutions of (1.1) are continuable into the future. Hence, it is worthwhile to
investigate whether or not solutions of (1.1) are oscillatory.

Let c = 1 and
a(t) f (y) =

ε
tα+1 |y|α−1y,

where ε is nonnegative. Then (1.1) becomes the half-linear differential equation with-
out delay

(|x′|α−1x′)′ +
1

tα+1

{(
α

α +1

)α+1

+ ε

}
|x|α−1x = 0, (1.3)
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which is called the generalized Euler differential equation (see [4]). It is well known
that (1.3) has a nonoscillatory solution if and only if the corresponding characteristic
equation

α|z|α+1−α|z|α−1z+
(

α
α +1

)α+1

+ ε = 0

has a real root (see [1, 2, 3, 6, 7, 12, 13, 14, 16]). Thus, (1.3) has a nonoscillatory solu-
tion if ε = 0 and all nontrivial solutions of (1.3) are oscillatory if ε > 0. Hence, (1.1)
consists of the half-linear differential equation (1.3) with ε = 0 which has a nonoscil-
latory solution, and the nonlinear perturbation with delay a(t) f (x(ct)) .

Recently, the author and Sugie [16] have presented a sufficient condition for all
nontrivial solutions of (1.1) to be oscillatory.

THEOREM A. ([16, Theorem 1.1]) Assume (1.2) and suppose that a(t) satisfies

a(t) � 1

tα+1(logt)β

for t sufficiently large, and that

f (y)
|y|α−1y

� λ
(log |y|)γ

for |y| large enough, where β and γ are nonnegative constants satisfying β + γ = 2 .
If

λ >
1

2cα2/(α+1)

(
α

α+1

)α+γ
, (1.4)

then all nontrivial solutions of (1.1) are oscillatory.

It follows from Theorem A that all nontrivial solutions of (1.1) are oscillatory if
there exists λ such that (1.4) satisfies

β + γ = 2, a(t) f (y) =
λ

tα+1(log t)β (log |y|)γ |y|
α−1y

for t and |y| sufficiently large, where β and γ are nonnegative constants. However,
to show that the constant given in (1.4) is the best possible, we need a nonoscillation
theorem for (1.1). For this reason, we give a sufficient condition for (1.1) to have a
nonoscillatory solution. Our main result can be stated as follows.

THEOREM 1.1. Assume that (1.2) holds and suppose that a(t) satisfies

0 < a(t) � 1

tα+1(log t)β
(1.5)

for t sufficiently large, and that f (y) is nondecreasing for y ∈ R and satisfies

f (y)
|y|α−1y

� λ
(log |y|)γ (1.6)
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for y > 0 or y < 0 , |y| sufficiently large, where β and γ are nonnegative constants
satisfying β + γ = 2 . If

λ <
1

2cα2/(α+1)

(
α

α +1

)α+γ
, (1.7)

then (1.1) has a nonoscillatory solution.

REMARK 1.1. To prove Theorem 1.1, we need to assume that the function f (y)
is nondecreasing for y ∈ R .

REMARK 1.2. For the case of linear or half-linear differential equations without
delay, we note that, by Sturm’s separation theorem, all nontrivial solutions of (1.1) are
nonoscillatory ([5, 8, 9, 15]).

2. Preliminary

To prove Theorem 1.1, we require two lemmas. First we present the following
result concerning a positive solution of the half-linear differential equation

(|y′|α−1y′)′ +
1

tα+1

{(
α

α +1

)α+1

+
λ

(logt)2

}
|y|α−1y = 0. (2.1)

LEMMA 2.1. Suppose that (2.1) has a positive solution. Then the derivative of
the solution is nonnegative for t sufficiently large and it tends to zero as t → ∞ .

Proof. Let y(t) be a positive solution of (2.1). Then there exists T > 0 such that
y(t) > 0 for t � T , and therefore, we have

(|y′(t)|α−1y′(t))′ = − 1
tα+1

{(
α

α +1

)α+1

+
λ

(log t)2

}
|y(t)|α−1y(t) < 0. (2.2)

We first show that y′(t) � 0 for t � T . By way of contradiction, we suppose that
there exists t1 � T such that y′(t1) < 0. Integrating both sides of (2.2) from t1 to t , we
obtain

|y′(t)|α−1y′(t) � |y′(t1)|α−1y′(t1) for t � t1,

and therefore, we have y′(t) � y′(t1) for t � t1 . Hence, it follows that

y(t) < y′(t1)(t − t1)+ y(t1) →−∞ as t → ∞.

This contradicts the assumption that y(t) is positive for t � T . Thus, y′(t) � 0 for
t � T .

Next, we will show that limt→∞ y′(t) = 0. From (2.2), y′(t) is nonincreasing for
t � T . Then, there exists m � 0 such that y′(t) →m as t → ∞ . If m > 0, then we have
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y(t) � m(t−T )+y(T ) for t � T . Hence, there exists t2 � T such that y(t) � mt/2 for
t � T . Since y(t) is a solution of (2.1), we have

(|y′(t)|α−1y′(t))′ = − 1
tα+1

{(
α

α +1

)α+1

+
λ

(log t)2

}
|y(t)|α−1y(t)

� − 1
tα+1

(
α

α +1

)α+1

|y(t)|α−1y(t)

� − 1
tα+1

(
α

α +1

)α+1(m
2

)α
tα

= −
(

α
α +1

)α+1(m
2

)α 1
t

for t � t2.

Integrating this inequality from t2 to t , we obtain

|y′(t)|α−1y′(t) � −
(

α
α +1

)α+1(m
2

)α
log

t
T

+ |x′(t2)|α−1x′(t2) for t � t2.

This is a contradiction to the assumption that y′(t) � 0 for t � T . This completes the
proof of Lemma 2.1. �

We now consider the relation between (1.1) and the inequality

y′(t) �
(∫ ∞

t

{(
α

α+1

)α+1 1
sα+1 |y(s)|α−1y(s)+a(s) f (y(cs))

}
ds

)1/α

. (2.3)

LEMMA 2.2. Assume that the function f satisfies (1.2) and is nondecreasing for
x∈R . Suppose that there exists a positive function y(t) satisfying (2.3) for t sufficiently
large. Then (1.1) has a nonoscillatory solution.

Proof. Let t0 be a positive number such that y(t) > 0 and (2.3) holds for t � t0 .
We define the function sequences {xn(t)} and {wn(t)} as follows.

w1(t) = y′(t) for t � t1,

x1(t) = y(t) for t � t0,

wn+1(t) =

(∫ ∞

t

{(
α

α+1

)α+1 1
sα+1 |xn(s)|α−1xn(s)

+ a(s) f (xn(cs))
}

ds

)1/α

for t � t1,

xn+1(t) =

⎧⎪⎨
⎪⎩

y(t) for t0 � t � t1,∫ t

t1
wn+1(s)ds+ y(t1) for t > t1,
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where t1 = t0/c . We will show that, for any n ∈ N ,

0 < wn+1(t) � wn(t) for t � t1 and 0 < xn+1(t) � xn(t) for t � t0 (2.4)

by mathematical induction on n .
From condition (2.3), we obtain

w2(t) =

(∫ ∞

t

((
α

α +1

)α+1 1
sα+1 |x1(s)|α−1x1(s)+a(s) f (x1(cs))

)
ds

)1/α

=

(∫ ∞

t

((
α

α +1

)α+1 1
sα+1 |y(s)|α−1y(s)+a(s) f (y(cs))

)
ds

)1/α

�y′(t) = w1(t) for t � t1.

We also have that w2(t) > 0 for t � t1 because y(t) > 0 for t � t0 . Hence, x2(t) is
positive for t � t0 ,

x2(t) =
∫ t

t1
w2(s)ds+ y(t1)

�
∫ t

t1
w1(s)ds+ y(t1) =

∫ t

t1
y′(s)ds+ y(t1)

= y(t)− y(t1)+ y(t1) = y(t) = x1(t) for t > t1

and x2(t) = y(t) = x1(t) for t0 � t � t1 . Thus, (2.4) is true for n = 1.
Assume that condition (2.4) is satisfied with n = k . Since the function f (y) is

nondecreasing for y ∈ R , we have

wk+2(t) =

(∫ ∞

t

((
α

α +1

)α+1 1
sα+1 |xk+1(s)|α−1xk+1(s)+a(s) f (xk+1(cs))

)
ds

)1/α

�
(∫ ∞

t

((
α

α +1

)α+1 1
sα+1 |xk(s)|α−1xk(s)+a(s) f (xk(cs))

)
ds

)1/α

=wk+1(t), and that

xk+2(t) =
∫ t

t1
wk+1(s)ds+ y(t1)

�
∫ t

t1
wk(s)ds+ y(t1) = xk+1(t) for t � t1.

It is easy to check that xk+2(t) = y(t) = xk+1(t) for t0 � t � t1 , wk+2(t) � 0 for t � t1
and that xk+2(t) > 0 for t > t0 . Thus, (2.4) is true for n = k+1.

Let x(t) = limn→∞ xn(t) and w(t) = limn→∞wn(t) . Then, using the Lebesgue
monotone convergence theorem, we have

x(t) =
∫ t

t1
w(s)ds+ y(t1) for t � t1
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and

w(t) =

(∫ ∞

t

((
α

α+1

)α+1 1
sα+1 |x(s)|α−1x(s)+a(s) f (x(cs))

)
ds

)1/α

for t � t1 , respectively. Moreover, we obtain

x(t) = lim
n→∞

xn(t) � lim
n→∞

xn(t1) = y(t1) > 0 for t � t1

because x′n(t) = wn(t) > 0 for t � t1 . Thus, x(t) is a nonoscillatory solution of
(1.1). �

3. Proof of the main theorem

We deal only with the case that condition (1.6) is satisfied for y > 0 sufficiently
large, because the other case can be proved in a similar manner.

It is known that the half-linear differential equation

(|y′|α−1y′)′ +
1

tα+1

{(
α

α+1

)α+1

+
1
2

(
α

α +1

)α+1 1
(log t)2

}
|y|α−1y = 0 (3.1)

has a nonoscillatory solution y(t) satisfying

y(t) = tα/(α+1)(log t)1/(α+1)(M1 +O(1/ logt)) as t → ∞, (3.2)

where M1 �= 0 (for example, see [4, Corollary 5.2.3], [6, Corollary 1] and [10]). Since
−y(t) is also a solution of (3.1), we may assume that the constant M1 is positive. Then,
there exists T > 0 such that y(t) > 0 for t � T .

From (1.7), we can choose ε0 such that

λ � 1

2cα2/(α+1)

(
α

α +1

)α+γ(1− ε0
1+ ε0

)α
and 0 < ε0 < 1. (3.3)

By (3.2), there exists t0 > T such that y(t) satisfies∣∣∣∣ y(t)
tα/(α+1)(logt)1/(α+1) −M1

∣∣∣∣< M1ε0 for t � t0,

and therefore, we have

logt
logy(ct)

� logt

log(M1(1− ε0)(ct)α/(α+1)(log(ct))1/(α+1))

=
log t

logM1(1− ε0)+ (α/(α+1))(logc+ logt)+ log(log(ct))1/(α+1)

↗ 1
α/(α +1)

as t → ∞.
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Hence, we can find t1 > t0/c such that

1
logy(ct)

� 1
α/(α +1) logt

for t � t1. (3.4)

We also have

y(ct)
y(t)

� M1(1+ ε0)(ct)α/(α+1)(log(ct))1/(α+1)

M1(1− ε0)tα/(α+1)(log t)1/(α+1) � 1+ ε0
1− ε0

cα/(α+1) for t � t1. (3.5)

Hence, from conditions (1.5), (1.6), (3.3), (3.4) and (3.5), we have

a(t) f (y(ct)) � λ
tα+1(logt)β (logy(ct))γ

(y(ct))α

� λ
tα+1(logt)β (α/(α +1))γ(log t)γ

(
y(ct)
y(t)

)α
(y(t))α

� λ
tα+1(logt)β+γ(α/(α +1))γ

(
1+ ε0
1− ε0

)α
cα

2/(α+1)(y(t))α

� 1
2

(
α

α +1

)α 1
tα+1(log t)2 |y(t)|α−1y(t) for t � t1. (3.6)

Integrating both sides of (3.1) from t to ∞ (t � t0 ) and using Lemma 2.1, we
obtain

|y′(t)|α−1y′(t) =
∫ ∞

t

{
1

sα+1

(
α

α +1

)α+1

|y(s)|α−1y(s)

+
1
2

(
α

α +1

)α 1
sα+1(logs)2 |y(s)|α−1y(s)

}
ds for t � t0.

Hence, by (3.6), y(t) satisfies the inequality

y′(t) �
(∫ ∞

t

{
1

sα+1

(
α

α+1

)α+1

|y(s)|α−1y(s)+a(s) f (y(cs))

}
ds

)1/α

for t � t1 . Thus, from Lemma 2.2, (1.1) has a nonoscillatory solution. This completes
the proof of Theorem 1.1. �

4. Examples and Oscillation constants

To illustrate Theorem 1.1, consider the equation

(|x′(t)|α−1x′(t))′ +
(

α
(α +1)t

)α+1

|x(t)|α−1x(t)+λ a(t) f (x(ct)) = 0, (1.1)λ

where λ is a nonnegative number. We introduce the following definition. The number
λ0 is called an oscillation constant for (1.1)λ if all nontrivial solutions of (1.1)λ are
oscillatory for λ > λ0 , and there exists a nonoscillatory solution of (1.1)λ for 0 < λ <
λ0 (for example, see [4, p.238] and [15, p.52]).
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REMARK 4.1. When an oscillation constant λ0 exists for (1.1)λ , we cannot in
general decide whether or not solutions of (1.1)λ0

are oscillatory.

A typical example of (1.1)λ is the half-linear differential equation without delay
(2.1). Elbert and Schneider [6] discussed the oscillation problem for (2.1). They gave
the following oscillation constant for (2.1).

EXAMPLE 4.1. An oscillation constant for (2.1) is (α/(α +1))α /2.

Another example of (1.1)λ for which there exists an oscillation constant is the
linear differential equation with delay

x′′(t)+
1

4t2
x(t)+

λ
t2(logt)2 x(ct) = 0. (4.1)

The oscillation problem for this equation was examined by Sugie and Iwasaki [11], and
they presented the following oscillation constant.

EXAMPLE 4.2. The value 1/(4
√

c) is an oscillation constant for (4.1).

From Theorems 1.1 and A, an oscillation constant for (1.1)λ is

1

2cα2/(α+1)

(
α

α +1

)α+γ
(4.2)

when the perturbation a(t) f (y) satisfies

a(t) f (y) =
1

tα+1(log t)β (log |y|)γ |y|
α−1y (4.3)

for t and |y| sufficiently large, where β and γ are nonnegative constants satisfying
β + γ = 2. Hence, if c = 1 and γ = 0 (α = 1 and γ = 0, respectively), then (1.1)λ
with (4.3) becomes (2.1) ((4.1), respectively) and the constant (4.2) coincides with the
oscillation constant of (2.1) ((4.1), respectively). Thus, the constant (4.2) is a complete
generalization of the oscillation constants for (2.1) and (4.1).
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[2] O. DOŠLÝ, Perturbations of the half-linear Euler-Weber type differential equation, J. Math. Anal.
Appl., 323 (2006), 426–440.
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