ifferential
quations
& Paeplications
Volume I, Number 2 (2009), 209217

A NONOSCILLATION THEOREM FOR HALF-LINEAR DIFFERENTIAL
EQUATIONS WITH DELAY NONLINEAR PERTURBATIONS

NAOTO YAMAOKA

(Communicated by O. Dosly)

Abstract. This paper deals with the oscillation problem for nonlinear differential equations with
delay. A sufficient condition is obtained for the equation to have a nonoscillatory solution. The
main result is the best possible in a certain sense. Examples are given to illustrate the main result.

1. Introduction

We consider the nonlinear differential equation with delay

o+1
“ )t) ()| x(0) +alt) fx(er)) =0, "= (L)

KO or+ (o a

where o and ¢ are constants satisfying o >0 and 0 < ¢ < 1, respectively; a(t) is
nonnegative, continuous and locally of bounded variation on (0,e0); f is continuous
on R and satisfies

yf(y)>0 if y#0. (1.2)

Let to > 0. By a solution of (1.1) we mean a function x: [cfy,e2) — R which has the
property |x'|*~'¥’ € C'(ty,) and which satisfies (1.1) for all € [tg,e). A solution
x(r) of (1.1) is said to be oscillatory if there exists a sequence {z,} tending to e such
that x(z,) = 0. Otherwise, it is said to be nonoscillatory.

As has already been shown in [16, Theorem 2.1], under the above assumptions, all
nontrivial solutions of (1.1) are continuable into the future. Hence, it is worthwhile to
investigate whether or not solutions of (1.1) are oscillatory.

Let c=1 and
£

a(t)f () = b1y,

where € is nonnegative. Then (1.1) becomes the half-linear differential equation with-
out delay

1 o o+1
roe—1_1\/ o—1
X X)) 4+ —_— +&plx x=0 (1.3)
W+ ] (557 =0,
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which is called the generalized Euler differential equation (see [4]). It is well known
that (1.3) has a nonoscillatory solution if and only if the corresponding characteristic
equation

o o+1
O!‘Z|a+1—06‘2|a71Z+ (OC—JFI) +e=0

has a real root (see [1, 2, 3, 6, 7, 12, 13, 14, 16]). Thus, (1.3) has a nonoscillatory solu-
tion if € =0 and all nontrivial solutions of (1.3) are oscillatory if € > 0. Hence, (1.1)
consists of the half-linear differential equation (1.3) with € = 0 which has a nonoscil-
latory solution, and the nonlinear perturbation with delay a(z) f(x(ct)).

Recently, the author and Sugie [16] have presented a sufficient condition for all
nontrivial solutions of (1.1) to be oscillatory.

THEOREM A. ([16, Theorem 1.1]) Assume (1.2) and suppose that a(t) satisfies
1
1) > ——
a(t) t%+1(logt)P
for t sufficiently large, and that

o) oA
y|*=ly = (log|y|)Y

Sor |y| large enough, where B and y are nonnegative constants satisfying p+y = 2.

If
1 o a+y
A>2Co¢2/(a+l) (a+1> : (1.4)

then all nontrivial solutions of (1.1) are oscillatory.

It follows from Theorem A that all nontrivial solutions of (1.1) are oscillatory if
there exists A such that (1.4) satisfies

A
(log)F (log [y])"

for ¢ and |y| sufficiently large, where B and y are nonnegative constants. However,
to show that the constant given in (1.4) is the best possible, we need a nonoscillation
theorem for (1.1). For this reason, we give a sufficient condition for (1.1) to have a
nonoscillatory solution. Our main result can be stated as follows.

y1%y

Bry=2  alf() =

THEOREM 1.1. Assume that (1.2) holds and suppose that a(t) satisfies

1

O<a(t)  —————= 1.5
a(t) t%+1(logt)P (15)
Sor t sufficiently large, and that f(y) is nondecreasing for y € R and satisfies

y|*=ly = (log|y|)Y
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for y>0 ory<0, |y| sufficiently large, where B and 'y are nonnegative constants
satisfying B+y=2. If

1 o o+y
< (a1) a7

then (1.1) has a nonoscillatory solution.

REMARK 1.1. To prove Theorem 1.1, we need to assume that the function f(y)
is nondecreasing for y € R.

REMARK 1.2. For the case of linear or half-linear differential equations without
delay, we note that, by Sturm’s separation theorem, all nontrivial solutions of (1.1) are
nonoscillatory ([5, 8, 9, 15]).

2. Preliminary

To prove Theorem 1.1, we require two lemmas. First we present the following
result concerning a positive solution of the half-linear differential equation

|o=1,y/ L LaH A a—1.,
V1% + i +(10gt)2 y|%ly=0. 2.1)

LEMMA 2.1. Suppose that (2.1) has a positive solution. Then the derivative of
the solution is nonnegative for t sufficiently large and it tends to zero as t — oo.

Proof. Let y(t) be a positive solution of (2.1). Then there exists T > 0 such that
y(t) >0 for ¢t > T, and therefore, we have

a+1
(Y01 Y (@) = *,o% { (%) + (102—;)2} y(@)|* y(r) <0.  (2.2)

We first show that y'(r) > 0 for ¢ > T'. By way of contradiction, we suppose that
there exists #; > T such that y'(f;) < 0. Integrating both sides of (2.2) from #; to ¢, we
obtain

Y (O)“ Y () <Y (@)%Y (1) fort>1,

and therefore, we have y'(¢) < y(¢;) for ¢ > ;. Hence, it follows that
y(t) <Y ()t —t1)+y(t) — —o as t — oo,

This contradicts the assumption that y(¢) is positive for £ > T. Thus, y'(t) > 0 for
t>T.

Next, we will show that lim,_...y'(r) = 0. From (2.2), y'(r) is nonincreasing for
t > T. Then, there exists m > 0 such that y'(t) — m as t — oo. If m > 0, then we have
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T . Hence, there exists #, > T such that y(¢) > mt /2 for

y(t)=m(t—T)+y(T) fort >
t > T. Since y(t) is a solution of (2.1), we have

o+1
(YOI O =~ g { (3) + (lfg‘—t)z} YOIy

Integrating this inequality from #, to 7, we obtain

o+1 o P
Oy <—(55) (5) g+ Wl W) forrn

2
This is a contradiction to the assumption that y'(r) >
proof of Lemma 2.1. [

0 for t > T. This completes the

We now consider the relation between (1.1) and the inequality

oo o+l /o
y'<’>><./, {(a%l) so%ly(S)l"‘1y(S)+a(S)f(y(cs))}ds> ey

LEMMA 2.2. Assume that the function f satisfies (1.2) and is nondecreasing for
x € R. Suppose that there exists a positive function y(t) satisfying (2.3) for t sufficiently
large. Then (1.1) has a nonoscillatory solution.

Proof. Let 1y be a positive number such that y(z) > 0 and (2.3) holds for ¢
We define the function sequences {x,(7)} and {w,(¢)} as follows

wi(t)=y'(t) fort>t,
x1(t) =y() fort>1,

o0 atl
el z{(a+1> <t ()] )

/o
+ a(s)f(x(cs)) }ds) for r > 1y,

y(t) for 1o <t <1y,

-er»l(t) = t
/ Wat1(8)ds+y(11) for t > 1,
3l
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where 71 =1p/c. We will show that, for any n € N,
0<wpi1(t) Kwy(t) fort>t and 0<x,11(t) <x,(t) fort>1 (2.4)

by mathematical induction on n.
From condition (2.3), we obtain

0o o+1 /o
w20 = (/ ((%1) (9l () +alo)f o (cs)>> ds>
oo o+1 1/a
- ( | ((a%l) B +as) f(y(cs))> ds>

<Y(t)=wi(t) fort>1.

We also have that w,(z) > 0 for ¢ > 1, because y(¢t) > 0 for t > t9. Hence, x,(¢) is
positive for ¢ > 19,

a(0) = [ wa(s)ds (1)

< [wisds+ym) = [ ¥s)ds-+y)

1

=y(@)—yt1)+yt1) =y@) =x1(t) fort>n

and xp(t) = y(¢) = x1(¢) for tp <t < t;. Thus, (2.4) is true for n = 1.
Assume that condition (2.4) is satisfied with n = k. Since the function f(y) is
nondecreasing for y € R, we have

oo o+1 /o
Wit2(t) = (/[ ((%) ﬂ%|xk+l(s)‘ailxk+l(s) +G(S)f(xk+1(cs))> ds)

oo a+1 1/a
([ ((2%5)" damre s ainge )

=wr1(¢), and that

Xer2(1) Z/t wir1(s)ds+y(tr)

51

!
</ Wk(S)dS+y(l1):xk+1(l) for t > 1;.
51
It is easy to check that xg 5 (¢) = y(r) = x311(¢) for tg <t <11, wiya(t) =0 fort > 1
and that x;,(t) > 0 for ¢ > #y. Thus, (2.4) is true for n = k+ 1.

Let x(t) = limp—exX,(¢) and w(f) = limy_wy(r). Then, using the Lebesgue
monotone convergence theorem, we have

x(1) = / "w(s)ds+y(n)  for 1>

3l
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and

oo o+1 1/a
w<r>=<[ ((a%l) o IX(s)I“1X(S)+a(s)f(X(CS))> ds>

for t > 11, respectively. Moreover, we obtain

x(t) = lim x,(¢) > lim x, (1) = y(t1) >0 fort >4
n—oo

n—oo

because x),(t) = wy,(¢r) > 0 for # >t;. Thus, x(r) is a nonoscillatory solution of
(1.1). O

3. Proof of the main theorem

We deal only with the case that condition (1.6) is satisfied for y > 0 sufficiently
large, because the other case can be proved in a similar manner.
It is known that the half-linear differential equation

1 a+1 1 a+1 1

roe—1,7\/ a o a—1

y V) + = — + = y—O 3.1
(' ) t‘”l{(aJrl) 2(a+1> (logt)2 i -1

has a nonoscillatory solution y(¢) satisfying

y(1) = 1% @D (1ogt) V(@D (M) + O(1/1ogt))  as 1 — oo, (3.2)

where M) # 0 (for example, see [4, Corollary 5.2.3], [6, Corollary 1] and [10]). Since
—y(¢) is also a solution of (3.1), we may assume that the constant M, is positive. Then,
there exists T > 0 such that y(¢) >0 for¢t > T.

From (1.7), we can choose €& such that

1 o aty 1—¢& @
<2ca2/(a+1)<a+1> <1+go> and 0<g <l (3.3)

By (3.2), there exists #y > T such that y(z) satisfies

y(t) Y

>
10/(e 1) (logz) 1/ (et 1) < Mgy fort > 1y,

and therefore, we have

logt logt
logy(cr) ~ Tog(My (1 — é0) (e) ™ @D (log(er) /@)
- logt
~ logM; (1 — &)+ (a/(a+ 1)) (loge + logr) + log(log(ct)) /(@)
1
/ m as t — oo,
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Hence, we can find #; > #y/c such that

1 1
<
logy(ct) ~ a/(o+1)logt

for t > 1. (3.4)

We also have
y(er) _ M1 + &0) (ct)*/ @D (log(cr)) /(1) < & o/
y() T Mi(1— g/ (@D (logr)/(a+) T 1 g

Hence, from conditions (1.5), (1.6), (3.3), (3.4) and (3.5), we have

A’ o
(log?)P (logy(ct))? (v(ct))

A y(ct) o o
S [ {logn)P (o) (@ + 1)) (log)7 <y<r> > o)

A T+e\* 2/ p
S @ (lognP () (a + D) (1 eo) Do)

<L) ! ()% ty(r) for 1>t (3.6)
S2\a+1) 1 (logn)2?” Y Z '

fort >1. (3.5)

al) fo(er)) <

Integrating both sides of (3.1) from ¢ to o (# > f9) and using Lemma 2.1, we
obtain

oy = (525) " by

1 (04 « 1 -
+ ) ( ) Sa+1( )2 ‘y(S)‘O‘ 1y(s)}ds for t > 1.

a+1 logs
Hence, by (3.6), y(¢) satisfies the inequality

oo o+1
y’<r>></ {%(%) y(s)“1y<s>+a<s>f<y<cs>>}ds>

for t > t;. Thus, from Lemma 2.2, (1.1) has a nonoscillatory solution. This completes
the proof of Theorem 1.1. [

1/a

4. Examples and Oscillation constants

To illustrate Theorem 1.1, consider the equation

a
(oe+ 1)t

o+1
OO+ (25) ORS00 +Aa) () =0, (1.1,
where A is a nonnegative number. We introduce the following definition. The number
Ao is called an oscillation constant for (1.1), if all nontrivial solutions of (1.1), are
oscillatory for A > Ag, and there exists a nonoscillatory solution of (1.1); for 0 <A <
Ao (for example, see [4, p.238] and [15, p.52]).
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REMARK 4.1. When an oscillation constant Ay exists for (1.1),, we cannot in
general decide whether or not solutions of (1.1);, are oscillatory.

A typical example of (1.1), is the half-linear differential equation without delay
(2.1). Elbert and Schneider [6] discussed the oscillation problem for (2.1). They gave
the following oscillation constant for (2.1).

EXAMPLE 4.1. An oscillation constant for (2.1) is (a/(a+1))* /2.

Another example of (1.1); for which there exists an oscillation constant is the
linear differential equation with delay

1 A
X(t)+ mx(l) + tz(izx(ct) =0. 4.1)

log?)

The oscillation problem for this equation was examined by Sugie and Iwasaki [11], and
they presented the following oscillation constant.

EXAMPLE 4.2. The value 1/(4+/c) is an oscillation constant for (4.1).

From Theorems 1.1 and A, an oscillation constant for (1.1), is

a+y
1 « 4.2)
2@ \ o +1

when the perturbation a(z) f(y) satisfies

|*~ly (4.3)

1
A0 = T ogn o 7

for + and |y| sufficiently large, where  and y are nonnegative constants satisfying
B+y=2. Hence,if c=1and y=0 (e =1 and y = 0, respectively), then (1.1),
with (4.3) becomes (2.1) ((4.1), respectively) and the constant (4.2) coincides with the
oscillation constant of (2.1) ((4.1), respectively). Thus, the constant (4.2) is a complete
generalization of the oscillation constants for (2.1) and (4.1).

Acknowledgements. The author thanks Professor Hideaki Matsunaga for his valu-
able suggestions that helped to improve this manuscript.
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