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OPTIMIZATION OF THE FIRST EIGENVALUE IN

PROBLEMS INVOLVING THE BI–LAPLACIAN

FABRIZIO CUCCU AND GIOVANNI PORRU

(Communicated by C. Trombetti)

Abstract. This paper concerns minimization and maximization of the first eigenvalue in prob-
lems involving the bi-Laplacian under Dirichlet boundary conditions. Physically, in case of
N = 2 , our equation models the vibration of a non homogeneous plate Ω which is clamped
along the boundary. Given several materials (with different densities) of total extension |Ω| , we
investigate the location of these materials throughout Ω so to minimize or maximize the first
eigenvalue in the vibration of the clamped plate.

1. Introduction

Let Ω be a bounded smooth domain in R
N and let g0 = g0(x) be a measurable

function satisfying 0 � g0(x) � M in Ω , where M is a positive constant. Define G
as the family of all measurable functions which are rearrangements of g0 . For g ∈ G ,
consider the eigenvalue problem

Δ2u = Λgu, in Ω, u =
∂u
∂ν

= 0 on ∂Ω, (1.1)

where ν denotes the exterior normal, Λ = Λg is the first eigenvalue and u = ug(x) is
a corresponding eigenfunction. The first eigenvalue Λ of problem (1.1) is obtained by
minimizing the associate Rayleigh quotient

Λ= inf

{∫
Ω(Δw)2dx∫
Ω gw2dx

: w ∈ H2
0 (Ω), w �≡ 0

}
. (1.2)

It is well known [25] that a minimum w = ug is attained in (1.2) and satisfies (1.1) in a
weak sense. For the regularity of ug we refer to [3]. In particular, this function belongs
to H4

loc(Ω) and the equation (1.1) holds a.e. in Ω . If we multiply by u = ug in (1.1)
and we integrate over Ω we find

Λg =
∫
Ω(Δug)2dx∫
Ω gu2

gdx
.
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Furthermore, if we have

Λg =
∫
Ω(Δv)2dx∫
Ω gv2dx

for some v ∈ H2
0 (Ω) then also v satisfies problem (1.1).

We are interested in the following optimization problems

min
g∈G

Λg, max
g∈G

Λg. (1.3)

We prove existence of a minimizer in G . Furthermore, if g is a minimizer we prove
that g = φ(u2

g) , where ug is a corresponding eigenfunction and φ is some increasing
function. This representation gives some information on the minimizer, because we
know that u2

g is small close to the boundary.
The maximization problem is more difficult. We are able to prove existence of a

maximizer in G only for domains Ω such that the operator Δ2u is positive preserving
under Dirichlet homogeneous boundary conditions; we refer to [17], [18], [19], [20]
[26] for a discussion on this topic. In case Ω has this property we prove existence of a
maximizer. Furthermore, if g is a maximizer we prove that g = ψ(u2

g) , where ug is a
corresponding eigenfunction and ψ is some decreasing function.

We observe that the optimization problems in case of Navier boundary conditions
are discussed in [1] (minimization) and [14] (maximization). One difficulty that arises
in the investigation of the first eigenvalue in case of Dirichlet boundary conditions is
that the corresponding eigenfunction is not, in general, one signed [21]. In this paper
we prove that an eigenfunction cannot vanish in a set of positive measure. Probably this
result is known, but since we could not find it we include a proof in the last section of
the present paper. By using this fact we are able to prove existence and a representation
formula for a minimizer.

Let us give a motivation for the study of these problems in case of N = 2. Phys-
ically, our equation models the vibration of a non homogeneous plate Ω which is
clamped along the boundary ∂Ω . Given several materials (with different densities)
of total extension |Ω| , we investigate the location of these materials throughout Ω so
to minimize or maximize the first eigenvalue in the vibration of the plate.

The corresponding problems for second order equations have been discussed in
[5], [6], [7], [12], [11] and [13]. Related maximization problems are treated in [2] and
[15].

2. Preliminaries

Denote with |E| the Lebesgue measure of the (measurable) set E . Given a func-
tion g0(x) defined in Ω and satisfying 0 � g0(x) � M, we say that g(x) , defined in Ω ,
belongs to the class of rearrangements G = G (g0) if

|{g(x) � β}|= |{g0(x) � β}| ∀β � 0.

Here and in what follows we write {g(x) � β} instead of {x ∈ Ω : g(x) � β}. For a
general theory on rearrangements we refer to [9].
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We make use of the following results proved in [5] and [6]. For short, throughout
the paper we shall write increasing instead of non-decreasing, and decreasing instead
of non-increasing.

LEMMA 2.1. Let g : Ω→ R and w : Ω→ R be measurable functions, and sup-
pose that every level set of w has measure zero. Then there exists an increasing func-
tion φ such that φ(w) is a rearrangement of g . Furthermore, there exists a decreasing
function ψ such that ψ(w) is a rearrangement of g .

Proof. The first assertion follows from Lemma 2.9 of [6]. The second assertion
follows applying the first one to −w . �

Denote with G the weak closure of G in Lp(Ω) . It is well known that G is convex
and weakly sequentially compact (see for example [6], Lemma 2.2).

LEMMA 2.2. Let G be the set of rearrangements of a fixed function g0 ∈ Lp(Ω) ,
p � 1 , and let w ∈ Lq(Ω) , q = p/(p− 1) . If there is an increasing function φ such
that φ(w) ∈ G then ∫

Ω
gwdx �

∫
Ω
φ(w)wdx ∀g ∈ G ,

and the function φ(w) is the unique maximizer relative to G . Furthermore, if there is
a decreasing function ψ such that ψ(w) ∈ G then

∫
Ω

gwdx �
∫
Ω
ψ(w)wdx ∀g ∈ G ,

and the function ψ(w) is the unique minimizer relative to G .

Proof. The first assertion follows from Lemma 2.4 of [6]. To prove the second
assertion we put φ(t) = ψ(−t) . Since φ is increasing, applying the previous result we
have ∫

Ω
g(−w)dx �

∫
Ω
φ(−w)(−w)dx ∀g ∈ G ,

and φ(−w) = ψ(w) is the unique function satisfying the inequality. Equivalently, we
have ∫

Ω
gwdx �

∫
Ω
ψ(w)wdx ∀g ∈ G .

The lemma is proved. �

LEMMA 2.3. Let G be the set of rearrangements of a fixed function g0 ∈ Lp(Ω) ,
p � 1 , and let w ∈ Lq(Ω) , q = p/(p−1) . There are g1, g2 ∈ G such that

∫
Ω

g1 wdx �
∫
Ω

gwdx �
∫
Ω

g2 wdx ∀g ∈ G .

Proof. It follows from Lemma 2.4 of [6]. �
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LEMMA 2.4. Let Ψ : Lp(Ω) → R be a convex functional, let G denote the set of
rearrangements of g0 on Ω , and let q = p/(p−1) .

(i) Suppose that Ψ is sequentially continuous in the Lq(Ω) topology on Lp(Ω) .
Then Ψ attains a maximum value relative to G .

(ii) Suppose Ψ is strictly convex, that g∗ is a maximizer for Ψ relative to G and
that u is a member of the sub differential of Ψ at g∗ . Then g∗ = φ(u) a.e. in Ω for
some increasing function φ .

Proof. See Theorem 7 of [5]. �
We recall that the Lq(Ω) topology on Lp(Ω) is the weak topology if 1 � p < ∞ ,

or the weak* topology if p = ∞ [5].

3. Main results

In all this section, G is the class of rearrangements of a fixed function g0(x) such
that 0 � g0(x) � M , and G is the closure of G with respect to the weak* topology of
L∞(Ω) .

LEMMA 3.1. Let g ∈ G . If Λg is the first eigenvalue of problem (1.1) then the
functional

g �→ Λg

is continuous with respect to the weak* topology in L∞(Ω) .

Proof. Let gi → g in the weak* topology of L∞(Ω) . Let Λgi , Λg be the corre-
sponding eigenvalues, and let ugi , ug be corresponding eigenfunctions normalized so
that ∫

Ω
(Δugi)

2dx =
∫
Ω
(Δug)2dx = 1.

Since ‖Δw‖L2(Ω) is equivalent to the norm ‖w‖H2(Ω) in H2
0 (Ω) , a sub-sequence of ugi

(denoted again ugi ) converges weakly in u ∈ H2
0 (Ω) and strongly in L2(Ω) . We have

1
Λgi

=
∫
Ω

giu
2
gi
dx =

∫
Ω
(gi −g)u2

gi
dx+

∫
Ω

gu2
gi
dx

�
∫
Ω
(gi−g)u2

gi
dx+

∫
Ω

gu2
gdx =

∫
Ω
(gi−g)u2

gi
dx+

1
Λg

.

Since ugi converges in the L2(Ω) norm we have

limsup
i→∞

1
Λgi

� 1
Λg

. (3.1)

On the other side, we have

1
Λgi

=
∫
Ω

giu
2
gi
dx �

∫
Ω

giu
2
gdx =

∫
Ω
(gi−g)u2

gdx+
∫
Ω

g u2
gdx.
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Hence,

liminf
i→∞

1
Λgi

�
∫
Ω

g u2
gdx =

1
Λg

.

The lemma follows by (3.1) and the latter inequality. �

3.1. The minimum

THEOREM 3.2. Let 0 � g0(x) � M, and let G be the class of all rearrangements
of g0 . If Λg is the first eigenvalue of problem (1.1) then there exists g ∈ G such that

Λg = min
g∈G

Λg.

Moreover, if ug is an eigenfunction of (1.1) corresponding to g = g then g = φ(u2
g)

for some increasing functions φ .

Proof. By Lemma 3.1 the functional g → Λg is continuous with respect to the
weak* topology in L∞(Ω) . We claim that g �→ 1

Λg
is strictly convex on G . Indeed,

if g1, g2 ∈ G , if gt = tg1 +(1− t)g2 with 0 < t < 1, if Λg1 , Λg2 , Λgt are the corre-
sponding eigenvalues, and if ug1 , ug2 , ugt are corresponding eigenfunctions then we
have

1
Λgt

=

∫
Ω gt u2

gt
dx∫

Ω(Δugt )2dx
= t

∫
Ω g1 u2

gt
dx∫

Ω(Δugt )2dx
+(1− t)

∫
Ω g2 u2

gt
dx∫

Ω(Δugt )2dx

� t

∫
Ω g1 u2

g1
dx∫

Ω(Δug1)2dx
+(1− t)

∫
Ω g2 u2

g2
dx∫

Ω(Δug2)2dx
= t

1
Λg1

+(1− t)
1
Λg2

.

If equality holds in above then we must have
∫
Ω g1 u2

gt
dx∫

Ω(Δugt )2dx
=

1
Λg1

and ∫
Ω g2 u2

gt
dx∫

Ω(Δugt )2dx
=

1
Λg2

.

Then,
Δ2ugt = Λg1g1 ugt = Λg2g2 ugt a.e. in Ω.

By the unique continuation theorem (see next section) we have ugt �= 0 a.e. in Ω .
Therefore,

Λg1g1 = Λg2g2 a.e. in Ω. (3.2)

Since ∫
Ω

g1dx =
∫
Ω

g2dx,

by (3.2) we find Λg1 = Λg2 . Finally, (3.2) implies that g1 = g2 a.e. in Ω . The strict
convexity of 1

Λg
is proved.
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The existence of a maximizer of 1
Λg

(which is a minimizer of Λg ) follows by
Lemma 2.4. To prove the second statement of the theorem, we must find a sub-gradient
of 1

Λg
corresponding to a maximizer g . Let g be a maximizer, let Λg be the corre-

sponding eigenvalue and let ug be a corresponding eigenfunction normalized so that
‖Δug‖L2(Ω) = 1. Let h ∈ G , let Λh be the corresponding eigenvalue and let uh be a
corresponding eigenfunction normalized so that ‖Δuh‖L2(Ω) = 1. Then

1
Λh

=
∫
Ω

h u2
hdx �

∫
Ω

h u2
gdx =

∫
Ω

g u2
gdx+

∫
Ω
(h−g) u2

gdx =
1
Λg

+
∫
Ω
(h−g) u2

gdx.

Therefore, u2
g is a member of the sub-gradient, and by Lemma 2.4 there is an increasing

function φ such that g = φ(u2
g) . The theorem is proved. �

3.2. The maximum

Now we investigate the problem

sup
g∈G

inf
w∈H2

0 (Ω), w �=0

∫
Ω(Δw)2dx∫
Ω gw2dx

. (3.5)

We note that we cannot interchange (in general) the superior with the inferior. Follow-
ing [11] (see also [14]), we give a different formulation of the problem by using the
Auchmuty’s principle [4].

LEMMA 3.3. Let 0 � g(x) � M, g(x) �≡ 0 , and let Λg be the first eigenvalue of
problem (1.1) . If

A(g,w) =
1
2

∫
Ω
(Δw)2dx−

(∫
Ω

g w2dx
) 1

2 (3.6)

then

min
w∈H2

0 (Ω)
A(g,w) = −1

2
max

w∈H2
0 (Ω),w �≡0

∫
Ω gw2dx∫
Ω(Δw)2dx

= −1
2

1
Λg

.

The minimum of A(g,w) is attained at an eigenfunction w = ug normalized as

1
Λg

=
(∫

Ω
g u2

gdx
) 1

2 =
∫
Ω
(Δug)2dx. (3.7)

Proof. See [4] or Lemma 3.3 of [14]. �

LEMMA 3.4. If A(g,w) is defined as in (3.6) with w ∈ H2(Ω) , the function g �→
A(g,w) is quasi-concave in G .

Proof. It suffices to prove that the function g �→ (∫
Ω g w2dx

) 1
2 is quasi-convex.

Let (∫
Ω

g1w
2dx

) 1
2 � c,

(∫
Ω

g2w
2dx

) 1
2 � c.
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Then

(∫
Ω

(
tg1 +(1− t)g2

)
w2dx

) 1
2 =

(
t
∫
Ω

g1w
2dx+(1− t)

∫
Ω

g2w
2dx

) 1
2

�
(
tc2 +(1− t)c2) 1

2 = c.

The lemma is proved. �
From now on we restrict the class of domains Ω . We suppose Ω is such that the

operator Δ2u under homogeneous Dirichlet boundary conditions is positivity preserv-
ing. This means that any nontrivial solution of Δ2u � 0 in Ω with u = ∂u

∂ν = 0 on ∂Ω
satisfies u(x) > 0 in Ω . It is well known that the ball has this property; for other do-
mains which enjoy such a property we refer to [17], [18], [19], [20]. By Krein-Rutman
theorem [23], for this kind of domains Ω , the first eigenvalue of problem (1.1) is simple
and a corresponding eigenfunction is positive. By the unique continuation principle we
know that such an eigenfunction is strictly positive.

Let Ω be positivity preserving for Δ2u under homogeneous Dirichlet boundary
conditions, and let g ∈ G fixed. If ug is a positive solution of (1.1) normalized as in
(3.7) we define

Πg =
{

w ∈ H2
0 (Ω) : Λ2

g

∫
Ω

g ugw dx > 1
}
. (3.8)

LEMMA 3.5. The function w �→ A(g,w) defined in (3.6) is strictly convex on Πg .

Proof. Let w ∈Πg . For z ∈ H2
0 (Ω) define Φ(t) = A(g,w+ tz) . We find

Φ′(t) =
∫
Ω
(Δw+ tΔz)Δz dx−

(∫
Ω

g(w+ tz)2dx
)− 1

2
∫
Ω

g(w+ tz)z dx,

and

Φ′′(0) =
∫
Ω
(Δz)2dx−

(∫
Ω

g w2dx
)− 1

2
∫
Ω

g z2dx+
(∫

Ω
g w2dx

)− 3
2
(∫

Ω
g w z dx

)2
.

Since ∫
Ω
(Δz)2dx � Λg

∫
Ω

g z2dx

we have

Φ′′(0) � Λg

∫
Ω

g z2dx−
(∫

Ω
g w2dx

)− 1
2
∫
Ω

g z2dx =
[
Λg−

(∫
Ω

g w2dx
)− 1

2
]∫

Ω
g z2dx.

On the other side, using Schwarz inequality and recalling the normalization of ug given
by (3.7) we have

1 < Λ2
g

∫
Ω

g ug w dx � Λ2
g

(∫
Ω

g u2
gdx

) 1
2
(∫

Ω
g w2dx

) 1
2 = Λg

(∫
Ω

g w2
) 1

2
.

It follows that Φ′′(0) > 0. The lemma is proved. �
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As the set Πg over which w �→ A(g,w) is convex depends on g we introduce,
following [11] pag.176, the indicator function

π(g,u) =
{

0 if u ∈Πg

∞ otherwise.

LEMMA 3.6. Let u ∈ H2
0 (Ω) . The function g �→ A(g,u)+π(g,u) is weak* upper

semicontinuous over G .

Proof. Let gi → g in the weak* topology of L∞(Ω) . Since
∫
Ω giu2dx→ ∫

Ω gu2dx ,
it follows that g �→ A(g,u) is weak* upper semicontinuous over G . On the other side,
let us show that

limsup
i→∞

π(gi,u) � π(g,u) ∀u ∈ H2
0 (Ω).

This is clearly true if u �∈ Πg . Let u ∈ Πg . By Lemma 3.1 we know that Λgi → Λg .
Since Ω is positivity preserving, there is a unique positive normalized eigenfunction
ugi and a unique positive normalized eigenfunction ug . Then, by the proof of Lemma
3.1 we find that ugi → ug in Ls(Ω) for some s > 2. It follows that

Λ2
gi

∫
Ω

gi ugi u dx → Λ2
g

∫
Ω

g ug u dx.

u ∈Πg now implies that for i greater than some i0 depending only on g , u belongs to
Πgi , that is, π(gi,u) = 0 = π(g,u) . The lemma follows. �

LEMMA 3.7. Let 0 � g0(x) � M, g0(x) �≡ 0 , and let A(g,w) be defined as in
(3.6) . Then the following equality holds:

sup
g∈G

inf
w∈H2

0 (Ω)
A(g,w) = inf

w∈H2
0 (Ω)

sup
g∈G

A(g,w). (3.9)

Proof. The proof uses Lemmata 3.4, 3.5 and 3.6, and is the same as that of Propo-
sition 7.7 of [11]. �

As observed in [11], Lemma 3.7 implies that A(g,w) has a saddle point. Since
there is not an explicit proof of this fact in the cited paper, we enclose here a sim-
ple proof (see [14] for a similar proof in the corresponding case of Navier boundary
conditions).

PROPOSITION 3.8. There exists g∈ G such that the pair (g,ug) is a saddle point

for A(g,w) in (G ,H2
0 (Ω)) .

Proof. For w ∈ H2
0 (Ω) we define

B(w) = sup
g∈G

A(g,w).
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We claim that there exists u ∈ H2
0 (Ω) such that

B(u) = inf
w∈H2

0 (Ω)
B(w). (3.10)

Let uk be a minimizing sequence in H2
0 (Ω) . Since we can assume that B(uk) is de-

creasing, we have B(uk) � C1 for some positive constant. This estimate implies that

1
2

∫
Ω
(Δuk)2dx− inf

g∈G

(∫
Ω

gu2
kdx

) 1
2 � C1.

Since ‖g‖∞ � M for all g∈ G and since ‖Δw‖L2(Ω) is equivalent to the norm ‖w‖H2(Ω)

in H2
0 (Ω) we can write

1
2
‖Δuk‖2

L2(Ω) � C1 +C2‖Δuk‖L2(Ω)

for some positive constant C2 . A straightforward calculation shows that

‖Δuk‖L2(Ω) � C2 +
√

C2
2 +2C1.

Then, up to a subsequence, uk is weakly convergent in H2(Ω) and strongly in L2(Ω)
to a function u ∈ H2

0 (Ω) .
By Lemma 2.3 we find g1 ∈ G such that

inf
g∈G

(∫
Ω

gu2dx
) 1

2 =
(∫

Ω
g1u

2dx
) 1

2
. (3.11)

On the other side we have

lim
k→∞

∫
Ω

g1u
2
kdx =

∫
Ω

g1u
2dx, (3.12)

and

inf
g∈G

(∫
Ω

gu2
kdx

) 1
2 �

(∫
Ω

g1u
2
kdx

) 1
2
.

Taking the limsup in the last inequality and using (3.11) and (3.12) we find

limsup
k→∞

inf
g∈G

(∫
Ω

gu2
kdx

) 1
2 �

(∫
Ω

g1u
2dx

) 1
2

= inf
g∈G

(∫
Ω

gu2dx
) 1

2
. (3.13)

Note that the weak convergence of uk → u in the H2(Ω) norm implies

liminf
k→∞

∫
Ω
(Δuk)2dx �

∫
Ω
(Δu)2dx.

Using the latter inequality and (3.13) we find

inf
w∈H2

0 (Ω)
B(w) = lim

k→∞
B(uk) � B(u) � inf

w∈H2
0 (Ω)

B(w).
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The claim (3.10) follows.
From (3.10) we infer the existence of u ∈ H2

0 (Ω) such that

sup
g∈G

A(g,u) = inf
w∈H2

0 (Ω)
sup
g∈G

A(g,w). (3.14)

Since G is compact with respect to the weak* topology of L∞(Ω) , by using
Lemma 3.1 one finds the existence of g ∈ G such that

sup
g∈G

Λg = Λg.

Hence, in view of Lemma 3.3 we have

sup
g∈G

inf
w∈H2

0 (Ω)
A(g,w) = A(g,ug) = inf

w∈H2
0 (Ω)

A(g,w). (3.15)

By using (3.14), Lemma 3.7 and (3.15), we can write

sup
g∈G

A(g,u) = inf
w∈H2

0 (Ω)
sup
g∈G

A(g,w) = sup
g∈G

inf
w∈H2

0 (Ω)
A(g,w) = inf

w∈H2
0 (Ω)

A(g,w) � A(g,u).

Hence, for any g ∈ G we have

A(g,u) � A(g,u). (3.16)

Similarly we find

A(g,u) � sup
g∈G

A(g,u) = inf
w∈H2

0 (Ω)
sup
g∈G

A(g,w) = sup
g∈G

inf
w∈H2

0 (Ω)
A(g,w) = inf

w∈H2
0 (Ω)

A(g,w).

Therefore, for any w ∈ H2
0 (Ω) we have

A(g,u) � A(g,w). (3.17)

By (3.17) and Lemma 3.3 we must have u = ug . Hence, the proposition follows by
(3.16) and (3.17). �

THEOREM 3.9. Let Ω be positivity preserving for Δ2u under homogeneousDirich-
let boundary conditions. Let 0 � g0(x) � M, g0(x) �≡ 0 , and let G be the class of all
rearrangements of g0 . If Λg is the first eigenvalue of problem (1.1) then there exists
g ∈ G such that

Λg = max
g∈G

Λg. (3.18)

Moreover, if ug is an eigenfunction of (1.1) corresponding to g = g then g = ψ(u2
g)

for some decreasing functions ψ .
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Proof. By Proposition 3.8, there is a saddle point (g,ug) for A(g,w) in (G ,H2
0 (Ω)) .

In particular, we have
A(g,ug) � A(g,ug) ∀g ∈ G .

Recalling the definition (3.6) of A(g,w) , the latter inequality implies
∫
Ω

gu2
gdx �

∫
Ω

gu2
gdx ∀g ∈ G . (3.19)

The functions g and u = ug satisfy

Δ2u = Λg g u a.e. in Ω. (3.20)

Recall that u = ug is either strictly positive or strictly negative. Therefore, by (3.20) it
follows that the function u cannot have flat zones in the set F = {x ∈ Ω : g(x) > 0} .
If |F | = |Ω| , by Lemma 2.1 there is a decreasing function ψ(t) such that ψ(u2

g) is a

rearrangement of g0(x) on Ω . By (3.19) and Lemma 2.2 we must have g =ψ(u2
g)∈ G ,

and the theorem is proved. If |F | < |Ω| , since g ∈ G , by Lemma 2.14 of [6] we
have |F | � |{x ∈ Ω : g0(x) > 0}| . Therefore there is g1 ∈ G such that its support is
contained in F . By Lemma 2.1, there is a decreasing function ψ1(t) such that ψ1(u2

g)
is a rearrangement of g1(x) on F .

Define
α = inf

x∈Ω\F
u2

g(x).

We claim that u2
g(x) � α in F . Arguing by contradiction suppose the claim is false.

Therefore there exist a number S1 > α and a subset A of F with |A| > 0 such that
u2

g(x) > S1 a.e. on A . Now let α < S2 < S1 . We can find a set D of positive measure

contained in Ω\F such that u2
g(x) < S2 a.e. on D . We can assume |A| = |D| . Using

a measure preserving T we define a particular rearrangement of g , denoted by h , as
follows.

h(x) =

⎧⎨
⎩

g(Tx), x ∈ A
g(T−1x), x ∈ D
g(x), x ∈Ω\ (A∪D).

Thus∫
Ω

hu2
g dx−

∫
Ω

gu2
g dx =

∫
A∪D

hu2
g dx−

∫
A∪D

gu2
g dx

=
∫

A
hu2

g dx+
∫
A
gu2

g ◦T dx−
∫
A
gu2

g dx−
∫
A
hu2

g ◦T dx

=
∫

A

(
u2

g ◦T −u2
g

)
(g−h) dx < (S2−S1)

∫
A
g dx < 0.

Therefore
∫
Ω hu2

g dx <
∫
Ω gu2

g dx , which contradicts (3.19), and the claim follows.

By using equation (3.20) again we find that u2
g(x) < α a.e. in F . Now define

ψ(t) =
{
ψ1(t) if 0 � t < α
0 if t � α.
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The function ψ(t) is decreasing and ψ(u2
g) is a rearrangement of g1(x) in Ω . Indeed,

the functions g1 and ψ(u2
g) have the same rearrangement on F , and both vanish on Ω\

F . By (3.19) and Lemma 2.2 we must have g =ψ(u2
g) ∈ G . The theorem follows. �

4. Unique continuation

Let Ω be a domain in R
N and let g∈ L∞(Ω) . Consider a weak solution u∈H2(Ω)

of the equation
Δ2u = g(x)u in Ω. (4.1)

It is well known [3] that u ∈ H4
loc(Ω) .

LEMMA 4.1. Let Ω be a domain in R
N containing the origin 0 . Let u ∈H4

loc(Ω)
be a solution to (4.1) with |g(x)| � M and let for all n ∈ N

∫
|x|�r

u2 = O(rn), r → 0.

Then u is identically zero in Ω .

Proof. If follows by Theorem 1.1 of [8]. See also [10] and [24]. �

LEMMA 4.2. Let B(x0,r) and B(x0,2r) , r ∈ (0,1) , be two concentric balls con-
tained in Ω , and let u be a solution of (4.1) with |g(x)| � M. Then there exists a
constant C independent of r such that

∫
B(x0,r)

(Δu)2 � C
[ 1
r2

∫
B(x0,2r)

|∇u|2 +
1
r4

∫
B(x0,2r)

u2
]
.

Proof. Let θ ∈C∞
0 (B(x0,2r)) with 0 � θ � 1, |∇θ | � C/r and |Δθ | � C/r2 in

B(x0,2r) , and θ = 1 in B(x0,r) . Here and in what follows we denote by C a generic
positive constant, which may vary from line to line, and is independent of r .

Multiplying the equation (4.1) by θ 4u and integrating by parts on B(x0,2r) we
find ∫

B(x0,2r)
ΔuΔ(θ 4u) =

∫
B(x0,2r)

g(x)θ 4u2.

If |g(x)| � M we get
∫

B(x0,2r)
θ 4(Δu)2 +4

∫
B(x0,2r)

θ 3ΔuΔθ u

+12
∫
B(x0,2r)

θ 2|∇θ |2Δu u+8
∫
B(x0,2r)

θ 3∇θ ·∇uΔu

� M
∫

B(x0,2r)
u2. (4.2)
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Using the Schwarz inequality we find

−4
∫
B(x0,2r)

θ 3ΔuΔθ u � 1
6

∫
B(x0,2r)

θ 4(Δu)2 +24
∫
B(x0,2r)

θ 2(Δθ )2u2.

Recalling that |Δθ | � C/r2 and 0 � θ � 1 we have

−4
∫

B(x0,2r)
θ 3ΔuΔθ u � 1

6

∫
B(x0,2r)

θ 4(Δu)2 +
C
r4

∫
B(x0,2r)

u2. (4.3)

Similarly, we find

−8
∫

B(x0,2r)
θ 2|∇θ |2Δu u � 1

6

∫
B(x0,2r)

θ 4(Δu)2 +96
∫
B(x0,2r)

|∇θ |4u2.

Since |∇θ | � C/r we have

−8
∫

B(x0,2r)
θ 2|∇θ |2Δu u � 1

6

∫
B(x0,2r)

θ 4(Δu)2 +
C
r4

∫
B(x0,2r)

u2. (4.4)

Finally, we find

−8
∫
B(x0,2r)

θ 3∇θ ·∇uΔu � 1
6

∫
B(x0,2r)

θ 4(Δu)2 +96
∫
B(x0,2r)

θ 2|∇θ |2|∇u|2

� 1
6

∫
B(x0,2r)

θ 4(Δu)2 +
C
r2

∫
B(x0,2r)

|∇u|2.
(4.5)

Inserting the estimates (4.3), (4.4) and (4.5) into (4.2), after some simplification and
recalling that θ = 1 in B(x0,r) , we get the desired estimate. �

LEMMA 4.3. Let u be a solution of (4.1) with |g(x)|� M. If E = {x∈Ω : u(x) =
0} has a positive measure then there is x0 ∈Ω such that for every n ∈ N we have

∫
Br

u2 = O(rn),
∫

Br

|∇u|2 = O(rn), r → 0, (4.6)

where Br = {x ∈Ω : |x− x0| < r} .

Proof. We know that almost every point of E is a point of density. Let x0 be such
a point. This means that for a given ε > 0 there is r0 = r0(ε) such that for r < r0 we
have |Ec ∩Br|

|Br| < ε,
|E ∩Br|
|Br| > 1− ε,

where Ec denotes the complement of E . We may suppose B4r ⊂ Ω and r < 1. For
N � 3 we have

∫
Br

u2 =
∫

Br∩Ec
u2 �

(∫
Br

|u| 2N
N−2

)N−2
N |Br ∩Ec| 2

N

� C
∫

Br

[ |∇u|2 +u2]ε
2
N r2 � Cε

2
N

[
r2

∫
Br

|∇u|2 +
∫
Br

u2
]
.

(4.7)
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Let Ẽ = {x ∈ Br : ∇u(x) = 0} . Since for almost every point of E we have ∇u = 0
(see [16], Lemma 7.7), the inclusion E ⊂ Ẽ holds except possibly in a set of zero
measure. Hence, x0 is a point of density also for Ẽ . For r < r1(ε) (with r1(ε) � r0(ε))
we have ∫

Br

|∇u|2 =
∫

Br∩Ẽc
|∇u|2 �

(∫
Br

|∇u| 2N
N−2

) N−2
N |Br ∩ Ẽc| 2

N

� Cε
2
N r2

[∫
Br

|D2u|2 +u2
]
.

(4.8)

If v ∈ H2(B2r)∩H1
0 (B2r) we have ([16], Theorem 8.12)

∫
B2r

[ |D2v|2 + v2] � C
∫

B2r

[(Δv)2 + v2].

Take v = uθ with θ ∈ C∞
0 (B2r) , θ = 1 in Br , |∇θ | � C/r and |D2θ | � C/r2 in

B(x0,2r) . We find

∫
Br

[ |D2u|2 +u2] � C
[∫

B2r

(Δu)2 +
1
r2

∫
B2r

|∇u|2 +
1
r4

∫
B2r

u2
]
. (4.9)

Lemma 4.2 and inequality (4.9) yield

∫
Br

[ |D2u|2 +u2] � C
[ 1
r2

∫
B4r

|∇u|2 +
1
r4

∫
B4r

u2
]
.

From (4.8) and the latter inequality we find

r2
∫

Br

|∇u|2 � Cε
2
N

[
r2

∫
B4r

|∇u|2 +
∫

B4r

u2
]
.

Adding this inequality to (4.7) we get

r2
∫

Br

|∇u|2 +
∫
Br

u2 � Cε
2
N

[
(4r)2

∫
B4r

|∇u|2 +
∫
B4r

u2
]
. (4.10)

Let

f (r) = r2
∫

Br

|∇u|2 +
∫
Br

u2.

From (4.10) we find

f (r) � Cε
2
N f (4r).

Given n take ε small so that Cε
2
N � 4−n . Then

f (r) � 4−n f (4r) for r � r0(n).

Iterating k times we get

f (r) � 4−kn f (4kr), for 4k−1r � r0(n). (4.11)
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Given 0 < r < r0(n) choose k ∈ N such that

4−kr0 � r � 4−k+1r0.

By (4.11) we find
f (r) � 4−kn f (4kr) � 4−kn f (4r0).

Since 4−k � r/r0 we obtain

f (r) �
( r

r0

)n
f (4r0).

In particular, there is a constant C such that f (r) � Crn . Hence

r2
∫

Br

|∇u|2 +
∫

Br

u2 � Crn.

For N = 1 or N = 2, with easy changes in the proof, one finds (4.10) with εσ ,
0 < σ < 1, in place of ε

2
N . Therefore the last estimate holds for all N . The lemma

follows. �

THEOREM 4.4. Let u be a solution of (4.1) with |g(x)| � M. If the set E = {x ∈
Ω : u(x) = 0} has a positive measure then u is identically zero in Ω .

Proof. By Lemma 4.3 we have, for some x0 ∈Ω ,
∫
|x−x0|�r

u2 = O(rn), r → 0. (4.12)

If we put x− x0 = y equation (4.1) becomes

Δ2ũ = g̃(y)ũ in Ω̃,

where Ω̃ contains 0. Since |g̃(y)| � M , by (4.12) we find
∫
|y|�r

ũ2 = O(rn), r → 0.

The theorem follows now by Lemma 4.1. �
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