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ASYMPTOTIC BEHAVIOR OF RADIAL MINIMIZERS

OF A p–ENERGY FUNCTIONAL WITH

NONVANISHING DIRICHLET BOUNDARY CONDITION
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Abstract. This paper is concerned with a p -energy functional with nonvanishing Dirichlet bound-
ary condition. The authors prove the W 1,p

loc convergence of the radial minimizer, and discuss the
location of the zeros of this minimizer. In addition, an estimate of the convergence rate of the
minimizer is given by means of the iterative approach.

1. Introduction

Let B = {x ∈ Rn : |x| < 1} . Denote

Sn−1 = {x ∈ Rn+1 : x2
1 + x2

2 + ...+ x2
n = 1,xn+1 = 0},

Sn = {x ∈ Rn+1 : x2
1 + x2

2 + ...+ x2
n + x2

n+1 = 1}.

Let g(x) = (M x
|x| ,

√
1−M2) where x ∈ ∂B,M ∈ (0,1) . We are concerned with the

minimizer of a p -energy functional

Eε(u,B) =
1
p

∫
B
|∇u|pdx+

1
2ε p

∫
B
u2

n+1dx

in the function class W = {u(x) = ( x
|x| sin f (r),cos f (r)) ∈W 1,p(B,Sn) : u|∂B = g,r =

|x|} . Sometimes we write uε(x) = (u′ε(x),un+1(x)) . By the direct method in the calcu-
lus of variations, the minimizer uε exists and is often called the radial minimizer.

When p = 2, the functional Eε(u,B) was introduced in the study of some simpli-
fied model of high-energy physics, which controls the statics of planar ferromagnets and
antiferromagnets (see [6] and [10]). The asymptotic behavior of minimizer of Eε(u,B)
has been considered in [3].

If the term
u2
n+1
ε p is replaced by (1−|u|2)2

2ε p , the functional is the well-knownGinzburg-
Landau functional. When n � 3, the problem on the asymptotic behavior of minimiz-
ers was introduced in [1], which was studied in [2] and [5] independently. The paper
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[9] studied the asymptotic behavior of the radial minimizer when p ∈ (n−1,n) . Their
work shows that the study of minimizers of n -Ginzburg-Landau functional is connected
tightly with the corresponding properties of the n -harmonic map.

In this paper, we always assume n > 2 and p ∈ (n−1,n) . We are interested in the
asymptotic behavior of minimizer of p -energy functional with nonvanishing Dirich-
let boundary condition as ε → 0. Based on this result, we will establish the relation
between the radial minimizer and the map x/|x| .

If we denote

V = { f ∈W 1,p
loc (0,1] : r(n−1)/p fr,r

(n−1−p)/p sin f ∈ Lp(0,1), f (r) � 0, f (1) = arcsinM}

then
V = { f (r) : u(x) = (

x
|x| sin f (r),cos f (r)) ∈W}

and it is a subset of C[0,1] . Substituting u(x) = ( x
|x| sin f (r),cos f (r)) into Eε(u,B) ,

we obtain Eε(u,B) = |Sn−1|Eε( f , [0,1]) , where

Eε( f , [0,1]) =
1
p

∫ 1

0

(
f 2
r +(n−1)r−2 sin2 f

)p/2
rn−1dr+

1
2ε p

∫ 1

0
rn−1 cos2 f dr.

This shows that uε(x) = ( x
|x| sin fε (r),cos fε(r)) ∈ W is the minimizer of Eε(u,B) if

and only if fε(r) ∈ V is the minimizer of Eε( f , [0,1]) . Inspecting the expression of
Eε( f , [0,1]) , we may assume 0 � f � π/2. We will prove the following results in this
paper.

THEOREM 1.1. (W 1,p convergence) Let uε(x) be a radial minimizer of Eε(u,B) .
Then as ε → 0 ,

uε → (
x
|x| ,0) in W 1,p

loc (B,Sn).

THEOREM 1.2. (Location of zeros) Let uε(x) be a radial minimizer of Eε(u,B) .
If we denote uε = (u′ε ,uεn+1) , then as ε → 0 , the zeros of u′ε(x) are located near the
origin 0 and the boundary ∂B.

THEOREM 1.3. (Convergence rate) Assume that uε(x) is a radial minimizer of
Eε(u,B) . Then for any T ∈ (0,1/4) ,there exists a positive constant C which is inde-
pendent of ε ∈ (0,1) , such that

∫ 1−T

T
rn−1[( f ′ε )

p +
1
ε p cos2 fε ]dr � Cε p.

2. W 1,p convergence

Assume uε be a radial minimizer of Eε(u,B) . Theorem 1.1 can be proved by
setting up several propositions as follows.

By the direct method in the calculus of variations, it is not difficult to prove
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PROPOSITION 2.1. The minimizer uε satisfies

−div(|∇u|p−2∇u) = u|∇u|p +
1
ε p (uu2

n+1−un+1en+1), (2.1)

where en+1 = (0,0, · · · ,0,1) .

PROPOSITION 2.2. Assume that uε satisfies (2.1). For any R > 0 , there exists a
constant C(R) > 0 which is independent of ε ∈ (0,1) , such that for any x0 ∈ B,

‖∇u‖L∞(B(x0,Rε)) � C(R)ε−1.

Proof. Without loss of generality, assume that x0 = 0. Let y = xε−1 and v(y) =
u(x) in (2.1), we can derive

−div(|∇v|p−2∇v)n = v|∇v|p +(v2
n+1v− vn+1en+1).

By the Theorem 2.2 in [8], we have∫
B(0,2R)

|∇v|pdx � C(R).

Applying the same idea of §3 in [4], we also have

‖∇v‖L∞(B(0,R)) � C(R).

Since v(y) = v(xε−1) = u(x) , we obtain

‖∇u‖L∞(B(0,Rε)) � C(R)ε−1.

If x0 �= 0, moving the coordinate center to x0 and using the same method, we can also
complete the proof.

PROPOSITION 2.3. Let uε ∈ W be a radial minimizer of Eε(u,B) . Then there
exists a positive constant C which is independent of ε ∈ (0,1) such that

Eε(u,B) � Cε1−p. (2.2)

Proof. Suppose that f5 is a function such that ( y
|y| sin f5(s),cos f5(s)) is the mini-

mizer of the functional

F(u,B) =
1
p

∫
B
|∇u|pdy+

1
2

∫
B
u2

n+1dy

in the class Y = {( y
|y| sin f (s),cos f (s)) ∈W 1,p(B) : u|∂B = g,s = |y|} . Define

f1(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

arcsinM, r ∈ [1− ε,1];

π
2 − 1

ε [r− (1−2ε)](π2 − arcsinM), r ∈ [1−2ε,1− ε];
π
2 , r ∈ [ε,1−2ε];

f5(r), r ∈ [0,ε].
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Let x = yε , then f5(r) = f5(sε) . Thus

Eε((
x
|x| sin f1(r),cos f1(r)),B(0,ε))

= F((
y
|y| sin f5(s),cos f5(s)),B)εn−p � Cεn−p, (2.3)

while we also have

Eε( f1, [ε,1−2ε]) =
(n−1)p/2

p

∫ 1−2ε

ε
rn−1−pdr � C. (2.4)

When r ∈ [1−2ε,1− ε] ,

Eε((
x
|x| sin f1(r),cos f1(r)),B(0,1− ε)\B(0,1−2ε))

=
|Sn−1|

p

∫ 1−ε

1−2ε

[ 1
ε2 (

π
2
− arcsinM)2 +(n−1)r−2 sin2 f1

]p/2
rn−1dr

+
|Sn−1|
2ε p

∫ 1−ε

1−2ε
rn−1 cos f1dr � Cε−p

∫ 1−ε

1−2ε
rn−1dr+C

∫ 1−ε

1−2ε
rn−1−pdr

� Cε1−p +Cε � Cε1−p, (2.5)

and when r ∈ [1− ε,1] , it is also easy to obtain

Eε( f1, [1− ε,1]) =
1
p

∫ 1

1−ε
(n−1)p/2Mprn−1−pdr+

1
2ε p

∫ 1

1−ε
(1−M2)rn−1dr

� Cε +Cε1−p � Cε1−p.

Since uε is a radial minimizer, it is not difficult to deduce from the result above and
(2.3)-(2.5) that

Eε(uε ,B) � Eε((
x
|x| sin f1,cos f1),B) � Cε1−p.

Thus the proposition is proved.

REMARK 2.4. From (2.2) it follows that for some R > 0, there exists C =C(R) >
0 (independent of ε ∈ (0,1)) such that∫ 1

R
| f ′ε |pdr � Cε1−p.

Combining this with fε � π/2 on [R,1] yields ‖ fε‖W1,p(R,1) � Cε(1−p)/p . Using the
embedding theorem, we see that for any r ∈ [R,1] ,

| fε (r)− fε(1)| � Cε(1−p)/p|r−1|1−1/p.

Thus

| fε(r)| � arcsinM−Cρ1−1/p =
1
2

arcsinM, r ∈ (1−ρε,1), (2.6)

where ρ = ( arcsinM
2C )p/(p−1) .
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PROPOSITION 2.5. Let uε be a radial minimizer of Eε(u,B) . Then for any ζ ∈
(0,1/3) , there exists constant C > 0 which is independent of ε ∈ (0,1) , such that

Eε(uε ,B(0,1− ζ )) � C. (2.7)

Proof. We will prove that, for any ζ ∈ (0,1/3) , there exists ξi ∈ (ζ/3,ζ/2) such
that

Eε( fε , [0,1− ξi]) � C(ε + εn−p + ε i−p)+
(n−1)p/2

p

∫ 1−ξi−ε

ε
rn−1−pdr (2.8)

for i � n . Obviously, (2.8) with i = 1 holds by virtue of Proposition 2.3. Suppose that
(2.8) holds for i = k < n , namely

Eε( fε , [0,1− ξk]) � C(ε + εn−p + εk−p)+
(n−1)p/2

p

∫ 1−ξk−ε

ε
rn−1−pdr. (2.9)

We will prove (2.8) still true when i = k+1.
By (2.9) and the mean value theorem, there exists ξk+1 ∈ (ξk,ζ/2) ⊂ (ζ/3,ζ/2) ,

such that
Eε(uε ,∂B(0,1− ξk+1)) � CEε(uε ,B) � Cεk−p, (2.10)

where C > 0 only depends on ξ ,ρ . Write f = fε , and define

f2(r) = f (r), r ∈ [1− ξk+1,1];

f2(r) = π
2 − 1

ε [r− (1− ξk+1− ε)](π2 − f (1− ξk+1)), r ∈ [1− ξk+1− ε,1− ξk+1];

f2(r) = π
2 r ∈ [ε,1− ξk+1− ε];

f2(r) = f5(r) r ∈ [0,ε].

Here f5 is the function in the proof of Proposition 2.3. If x = yε , then f5(r) = f5(sε) .
Similar to the prove of Proposition 2.3, it is easy to obtain

Eε((
x
|x| sin f2(r),cos f2(r)),B(0,ε) � Cεn−p. (2.11)

where C dose not depend on ε .
In addition, we also have

Eε((
x
|x| sin f2,cos f2),B(0,1− ξk+1− ε)\B(0,ε))

=
(n−1)p/2|Sn−1|

p

∫ 1−ξk+1−ε

ε
rn−1−pdr. (2.12)

From (2.10), we obtain
1
ε p cos2 f (1− ξk+1) � Cεk−p, (2.13)
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and hence
1
ε p sin2[

π
2
− f (1− ξk+1)] � Cεk−p. (2.14)

On the other hand, we have

cos{π
2
− 1
ε
[r− (1− ξk+1− ε)][

π
2
− f (1− ξk+1)]}

� sin[
π
2
− f (1− ξk+1)] = cos f (1− ξk+1). (2.15)

Applying the mean value theorem, from (2.14) we can deduce that

sin[
π
2
− f (1− ξk+1)] � 2

π
[
π
2
− f (1− ξk+1)],

as long as ε is sufficiently small. Combining this with (2.14) yields

1
ε p [

π
2
− f (1− ξk+1)]2 � π

2
1
ε p sin2[

π
2
− f (1− ξk+1)] � Cεk−p. (2.16)

Therefore, when r ∈ [1− ξk+1− ε,1− ξk+1] , using (2.13)-(2.16), we can deduce

Eε((
x
|x| sin f2,cos f2),B(0,1− ξk+1)\B(0,1− ξk+1− ε))

=
|Sn−1|

p

∫ 1−ξk+1

1−ξk+1−ε
[
( f ′2)

2 +(n−1)r−2 sin2 f2
]p/2

rn−1dr

+
|Sn−1|
2ε p

∫ 1−ξk+1

1−ξk+1−ε
rn−1 cos2 f2dr

� C
p

∫ 1−ξk+1

1−ξk+1−ε
1
ε p

[π
2
− f (1− ξk+1)

]p
rn−1dr+

C
p

∫ 1−ξk+1

1−ξk+1−ε
rn−1−pdr

+C
∫ 1−ξk+1

1−ξk+1−ε
rn−1 cos2 f (1− ξk+1)

ε p dr � C(ε + εk+1−p). (2.17)

Since uε is the radial minimizer, we have

Eε(uε ,B) � Eε((
x
|x| sin f2,cos f2),B). (2.18)

Substituting (2.11), (2.12) and (2.17) into (2.18) yields

Eε(uε ,B) � C(ε + εn−p + εk+1−p)

+
(n−1)p/2|Sn−1|

p

∫ 1−ξk+1−ε

ε
rn−1−pdr+Eε(uε ,B\B(0,1− ξk+1)).

This means that (2.8) holds for i = k+1. In particular, the conclusion is true for i = n
by induction. Noticing

Eε(uε ,B\B(0,1− ξn)) � Eε(uε ,B\B(0,1− ζ )),
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we can derive the conclusion at last.

Proof of Theorem 1.1. Assume that K is a compact subset of B . By Proposition
2.4, there exists a subsequence uεk of uε and a function u∗ ∈W 1,p(K,Sn) , such that

lim
εk→0

uεk = u∗ weakly in W 1,p(K,Sn); (2.19)

lim
εk→0

uεk = u∗ in Lp(K,Sn). (2.20)

When ε → 0, un+1 → 0 in Lp(K) . In addition,

uε(x) = (
x
|x| sin fε (r),cos fε (r)) and |u′ε(x)| = sin fε (r) → 1 in Lp(K) ,

as ε → 0. Hence, u′∗ = x/|x| , that is to say u∗ = (x/|x|,0) a.e. on K.
Since each subsequence of uε has a convergent subsequence and the limit is al-

ways u∗ , we know that (2.19) and (2.20) are still true not only for a subsequence,
but also for uε itself. Thus, (2.8), together with (2.19) and the weakly lower semi-
continuity of

∫
K |∇uε |p , implies∫

K

∣∣∇ x
|x|

∣∣p
dx � limε→0

∫
K
|∇uε |pdx � limε→0

∫
K
|∇uε |pdx

� C(ε + εn−p)+ (n−1)p/2|Sn−1|
∫ 1−ξn−ε

ε
rn−1−pdr.

It is easy to see
∫

K

∣∣∇ x
|x|

∣∣p
dx = (n−1)p/2|Sn−1|

∫ 1−ξn

0
rn−1−pdr.

Then we have
lim
ε→0

∫
K
|∇uε |pdx =

∫
K

∣∣∇ x
|x|

∣∣p
dx.

Combining this with (2.19) and (2.20), we complete the proof.

PROPOSITION 2.6. Assume that uε = ( x
|x| sin fε (r),cos fε (r)) is a radial mini-

mizer of Eε(u,B) . Then for any R ∈ [0,1/4] , there holds

lim
ε→0

fε (r) =
π
2

uniformly in (R,1−R).

Proof. Write f = fε . Using the mean value theorem ,we can derive that, for any
r0 ∈ (R,1−R) ,

|cos f (r)− cos f (r0)| � |sinξ || f (r)− f (r0)|, (2.21)

where ξ is a function which value is between f (r) and f (r0) . Applying Proposition
2.2, we have

| f (r)− f (r0)| � Cε−1|r− r0| � Cε−1 1
N
ε =

C
N

, r ∈ [r0 − 1
N
ε,r0]
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where N is a sufficiently large positive integer. Therefore, by (2.21), there exists a
sufficiently large number N = N0 such that

|cos f (r)| � |cos f (r0)|− |sinξ || f (r)− f (r0)| � 1
2

cos f (r0).

By (2.7), we also have

C′ε
nN0

1
4

cos2 f (r0) �
∫ r

r− ε
N0

rn−1 cos2 f (r)dr � Cεn

where C′ is a positive constant. So we obtain

cos2 f (r0) � Cεn−1.

Obviously, when ε → 0, cos2 f (r0) → 0, hence we have f (r0) → π/2. Since r0 is
arbitrary in (R,1−R) , thus the proposition is complete.

3. Location of zeros

To discuss the location of zeros, we will first establish the definition of bad ball
and good ball.

PROPOSITION 3.1. Let uε be a radial minimizer of Eε(u,B) . For any given η ∈
(0,1) , there exist the positive constants λ ,μ independent of ε ∈ (0,1) , such that if

1
εn

∫
A∩B2lε

u2
n+1dx � μ ,

where A = B(0,1− ζ ) , and B2lε is some ball of radius 2lε with l � λ , then

|u′ε(x)| � 1−η , ∀x ∈ A∩Blε .

Proof. By Proposition 2.2 and using the same argument of Proposition 2.4 in [7],
it is not difficult to prove this proposition.

Let λ ,μ be constants in Proposition 3.1. If

1
εn

∫
B(xε ,2λε)∩A

u2
n+1dx � μ ,

then B(xε ,λε) is called a good ball. Otherwise B(xε ,λε) is called a bad ball.
Now suppose that {B(xεi ,λε), i ∈ I} is a family of balls satisfying

(i) xεi ∈ A, i ∈ I; (ii) A ⊂ ∪i∈IB(xεi ,λε);
(iii) B(xεi ,λε/4)∩B(xεj ,λε/4) = φ , i �= j. (3.1)
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PROPOSITION 3.2. Let uε be a radial minimizer of Eε(u,B) . Then there exist a
sufficiently small constant ε0 > 0 , and a positive constant C independent of ε ∈ (0,ε0) ,
such that

1
εn

∫
B(0,1−ζ )

u2
n+1dx � C.

Proof. Substituting (2.11) and (2.17) with ξn = ζ into (2.18) yields

Eε(uε ,B(0,1− ζ )) � C(εn−p + ε)+Eε(
x
|x| sin f2,cos f2),B(0,1− ζ − ε)\B(0,ε)).

In view of p > n−1, we have ε � εn−p . Therefore

Eε(uε ,B(0,1− ζ )) � Cεn−p +
1
p

∫
B(0,1−ζ−ε)\B(0,ε)

|∇ x
|x| |

pdx.

Noting ∫
B(0,1−ζ )

|∇u|pdx � (n−1)p/2|Sn−1|
∫ 1−ζ

ε
rn−1−p sinp fεdr,

we have that, for any δ ∈ (0,1) ,

1
2ε p

∫ 1−ζ

0
rn−1 cos2 fεdr

� Cεn−p +
(n−1)p/2

p

∫ 1−ζ−ε

ε
rn−1−p(1− sinp fε )dr

� Cεn−p +C
∫ 1−ζ−ε

ε
rn−1−p(1− sin2 fε )dr

� Cεn−p +C(δ )ε p
∫ 1−ζ

ε
rn−1−2pdr+ δε−p

∫ 1−ζ

ε
rn−1(1− sin2 fε )2dr

� Cεn−p +C(δ )εn−p + δε−p
∫ 1−ζ

0
rn−1 cos2 fεdr.

Choosing δ sufficiently small yields

1
2ε p

∫ 1−ζ

0
rn−1 cos2 fεdr � Cεn−p.

Thus we may obtain the conclusion by multiplying with ε p−n .

Similar to the prove of Proposition 2.5 in [7], applying Proposition 3.2 and the
definition of bad balls, we can derive

PROPOSITION 3.3. Write Jε = {i ∈ I;B(xεi ,λε) is a bad ball } . There exists a
positive integer N0 which is independent of ε ∈ (0,ε0) , such that the number of bad
balls Card Jε � N0 .
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Based on this proposition, and by an analogous argument of Theorem IV.1 in [1],
we also have the following consequence.

PROPOSITION 3.4. Let λ be the constant in Proposition 3.1. Then there exist a
subset J ⊂ Jε and a constant h ∈ [λ ,λ9N0 ] such that

∪i∈Jε B(xεi ,λε) ⊂ ∪i∈JB(xεj ,hε), |xεi − xεj | > 8hε, i, j ∈ J, i �= j.

Applying Proposition 3.4, we may modify the family of bad balls, such that the
new one, denoted by {B(xεi ,hε); i ∈ J} , satisfies

∪i∈JεB(xεi ,λε) ⊂ ∪i∈JB(xεi ,hε), λ � h, CardJ � CardJε ;

|xεi − xεj | > 8hε, i, j ∈ J, i �= j.

The last condition above implies that every two balls in the new family are disjoint.

PROPOSITION 3.5. Let uε be a radial minimizer of Eε(u,B) . Then for any η ∈
(0,1) , there is a constant h= h(η) , such that the set {x∈A; |u′ε(x)|< 1−η}⊂B(0,hε)
as ε ∈ (0,ε0) .

Proof. Suppose there exists a point x0 ∈ A\B(0,hε) such that |u′ε(x0)| < 1−η .
Then all points on the set S0 = {x ∈ A\B(0,hε); x = |x0|} satisfy |u′ε(x)| < 1−η and
hence by virtue of Proposition 3.1, all points on S0 are contained in bad discs. On the
other hand, if |x|> hε , S0 cannot be covered by a single bad disc, i.e., S0 is covered by
at least two bad discs (they are not intersected). However, this is impossible. It implies
our conclusion.

Proof of Theorem 1.2. Proposition 3.5 implies that |u′ε(x)| � 1−η , as x ∈ A \
B(0,hε). Combining this with (2.6), we can see

{x ∈ B; |u′ε(x)| < min(2M
√

1−M2,1−η)} ⊂ B(0,hε)∪ [B(0,1−ρε)\B(0,1− ζ )].

Thus, the zeros of uε are located near 0 and ∂B when ε → 0.

4. Estimate of the convergence rate

Proposition 3.2 shows a convergence rate of fε to π/2 as ε → 0∫
K

rn−1 cos2 fεdr � Cεn. (4.1)

Obviously, the estimate of Theorem 1.3 is better than (4.1) when ε → 0. To prove
Theorem 1.3, some propositions will be given.

PROPOSITION 4.1. For any T ∈ (0,1/4) , there is C > 0 such that

Eε(uε ,B(0,1−T)\B(0,T)) � Cεn−p +
1
p

∫
B(0,1−T)\B(0,T)

|∇ x
|x| |

pdx.
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Proof. By the mean value theorem and Proposition 2.4, for any T ∈ (0,1/4) , there
exists T i ∈ (0,T )(i = 1,2) such that

1
ε p [cos2 f (T 1)+ cos2 f (1−T2)] � C.

Define new function f3 by the following

f3(r) = f (r) r ∈ [0,T 1]∪ [1−T2,1];

f3(r) =
π
2
− 1
ε
[
π
2
− f (1−T2)][r− (1−T2 − ε)] r ∈ [1−T2− ε,1−T2];

f3(r) =
π
2

r ∈ [T 1 + ε,1−T2 − ε];

f3(r) =
π
2
− 1
ε
[
π
2
− f (T 1)][(T 1 + ε)− r] r ∈ [T 1,T 1 + ε].

We can obtain

Eε(uε ,B(0,1−T2)\B(0,T1)) � C(ε + εn−p)+
(n−1)p/2|Sn−1|

p

∫ 1−T 2

T 1
rn−1−pdr.

(4.2)
Proposition 4.1 is completed if we notice T � T i .

It follows from Jensen′s inequality that

E( fε , [T,1−T ]) � 1
p

∫ 1−T

T
( f ′ε )

prn−1dr

+
1

2ε p

∫ 1−T

T
rn−1 cos2 fεdr+

1
p

∫ 1−T

T

(n−1)p/2

rp−n+1 sinp fεdr.

Combining this with (4.1) and (4.2), we obtain

1
p

∫ 1−T

T
( f ′ε )

prn−1dr+
1

2ε p

∫ 1−T

T
rn−1 cos2 fεdr

� 1
p

∫ 1−T

T

(n−1)p/2

rp (1− sinp fε )rn−1dr+Cεn−p

� Cεn +Cεn−p � Cεn−p. (4.3)

Applying the integral mean value theorem and (4.3), we can find T i
1 ∈ (0,T ] (i = 1,2)

such that
1
ε p [cos2 fε (T 1

1 )+ cos2 fε (1−T2
1 )] � Cεn−p. (4.4)

Consider the functional

E(ρ , [T 1
1 ,1−T2

1 ]) =
1
p

∫ 1−T2
1

T 1
1

(ρ2
r +1)p/2dr+

1
2ε p

∫ 1−T2
1

T 1
1

cos2ρdr.

Clearly, the minimizer ρ1 of E(ρ , [T 1
1 ,1−T2

1 ]) in W 1,p
fε

([T 1
1 ,1−T2

1 ],R+∪{0}) exists.
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PROPOSITION 4.2. Write ρ = ρ1 and ρ1 is the minimizer of E(ρ , [T 1
1 ,1−T 2

1 ]) .
Thus ∫ 1−T2

1

T 1
1

(ρ2
r +1)(p−2)/2ρ2

r dr+
1
ε p

∫ 1−T2
1

T 1
1

cos2ρdr � Cεn/2.

Proof. Step 1. Obviously, the minimizer ρ1 solves the classical problem

−(w(p−2)/2ρr)r =
1
ε p cosρ sinρ on [T 1

1 ,1−T2
1 ], (4.5)

ρ(T 1
1 ) = fε (T 1

1 ), ρ(1−T2
1 ) = fε (1−T2

1 ), (4.6)

where w = ρ2
r +1. Using the maximum value principle, we can see ρ � π/2. In view

of (2.6) and Proposition 3.4, we can obtain

sinρ(r) � min(sinρ(T 1
1 ),

sinρ(1−T2
1 )) = min(sin fε (T 1

1 ),

sin fε (1−T2
1 )) � min(1−η ,2M

√
1−M2) := C1 > 0. (4.7)

Since ρ1 is a minimizer, it is led from Proposition 2.4 that

E(ρ1, [T 1
1 ,1−T2

1 ]) � E( fε , [T 1
1 ,1−T2

1 ]) � CEε( fε , [T 1
1 ,1−T2

1 ]) � C. (4.8)

Step 2. Take the function ζ ∈C∞((0,1]; [0,1]) such that:

ζ = 1 on (0,T 1
1 ], ζ = 0 in [1−T2

1 ,1], |ζr| � C(T 1
1 ,T 2

1 ).

Multiplying (4.5) with ζρr and integrating over [T 1
1 ,1−T2

1 ] , we have

w(p−2)/2ρ2
r |r=T 1

1
+

∫ 1−T 2
1

T 1
1

w(p−2)/2ρr(ζrρr + ζρrr)dr =
1
ε p

∫ 1−T2
1

T 1
1

ζρr cosρ sinρdr.

(4.9)
First we will estimate the second term on the left-hand side

∣∣∣∫ 1−T2
1

T 1
1

w(p−2)/2ρr(ζrρr + ζρrr)dr
∣∣∣

�
∫ 1−T2

1

T1
1

w(p−2)/2|ζr|ρ2
r dr+

1
p

∣∣∣∫ 1−T 2
1

T 1
1

[(wp/2ζ )r−wp/2ζr]dr
∣∣∣

� C
∫ 1−T2

1

T 1
1

wp/2dr+
1
p
wp/2

∣∣∣
r=T 1

1

� C+
1
p
wp/2

∣∣∣
r=T 1

1

. (4.10)
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Next, combining (4.8), (4.6) and (4.4), we derive

1
ε p

∣∣∣∫ 1−T2
1

T 1
1

ζρr cosρ sinρdr
∣∣∣ � 1

ε p

∣∣∣∫ 1−T 2
1

T 1
1

ζρr sinρdr
∣∣∣

=
1
ε p

∣∣∣−∫ 1−T2
1

T 1
1

(ζ cosρ)rdr+
∫ 1−T 2

1

T 1
1

ζr cosρdr
∣∣∣

� 1
ε p cosρ

∣∣∣
r=T 1

1

+
c
ε p

∫ 1−T 2
1

T 1
1

cos2ρdr � C.

Substituting this and (4.10) into (4.9) yields

w(p−2)/2ρ2
r

∣∣∣
r=T 1

1

� C+
1
p
wp/2

∣∣∣
r=T 1

1

.

This result, together with wp/2 = w(p−2)/2(ρ2
r +1) , implies

wp/2
∣∣∣
r=T 1

1

� C. (4.11)

Step 3. Take ζ ∈ C∞((0,1]; [0,1]) , ζ = 0 on (0,T 1
1 ] , ζ = 1 in [1−T2

1 ,1] and |ζr| �
C(T 1

1 ,T 2
1 ) . Similar to the argument of step 2, using (4.4)-(4.8), we also obtain

wp/2
∣∣∣
r=1−T 2

1

� C. (4.12)

Step 4. Multiplying (4.5) with cosρ and integrating over [T 1
1 ,1−T2

1 ] , we have

∫ 1−T2
1

T 1
1

w(p−2)/2ρ2
r sinρdr+

1
ε p

∫ 1−T 2
1

T 1
1

cos2ρ sinρdr = −
∫ 1−T2

1

T 1
1

(w(p−2)/2ρr cosρ)rdr.

Thus, using (4.11), (4.12) and (4.5)-(4.7), we can deduce that

∫ 1−T 2
1

T 1
1

w
(p−2)

2 ρ2
r dr+

1
ε p

∫ 1−T2
1

T 1
1

cos2ρdr

� C
(∫ 1−T2

1

T 1
1

w
(p−2)

2 ρ2
r sinρdr+

1
ε p

∫ 1−T 2
1

T 1
1

cos2ρ sinρdr
)

� C
∣∣∣∫ 1−T 2

1

T 1
1

(w(p−2)/2ρr cosρ)rdr
∣∣∣ � C

∣∣∣(w(p−2)/2ρr cosρ)
∣∣∣1−T2

1

T 1
1

∣∣∣ � Cεn/2.

Proposition 4.2 is proved.

PROPOSITION 4.3. There holds

Eε( fε , [T 1
1 ,1−T2

1 ]) � Cεn/2 +
(n−1)p/2

p

∫ 1−T 2
1

T 1
1

rn−1−pdr.
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Proof. Define

f4(r) =

{
fε , r ∈ [0,T 1

1 ]∪ [1−T2
1 ,1];

ρ1, r ∈ [T 1
1 ,1−T2

1 ].

Since uε is a minimizer, we have

Eε(uε ,B) � Eε((
x
|x| sin f4(r),cos f4(r)),B).

Thus

Eε( fε , [T 1
1 ,1−T2

1 ])

� 1
p

∫ 1−T 2
1

T 1
1

(
ρ2

r +
n−1
r2 sin2ρ

)p/2
rn−1dr+

1
2ε p

∫ 1−T 2
1

T 1
1

rn−1 cos2ρdr.

Combining this with

∫ 1−T2
1

T 1
1

[(
ρ2

r +
n−1
r2 sin2ρ

)p/2−
(n−1

r2 sin2ρ
)p/2

]
rn−1dr

=
p
2

∫ 1−T2
1

T 1
1

{∫ 1

0

[(
ρ2

r +
n−1
r2 sin2ρ

)
s+

(n−1
r2 sin2ρ

)
(1− s)

](p−2)/2
ds

}
ρ2

r rn−1dr

� C
∫ 1−T 2

1

T 1
1

(
ρ2

r +1
)(p−2)/2ρ2

r dr � Cεn/2,

as well as Proposition 4.2, we get

Eε( fε , [T 1
1 ,1−T2

1 ]) � 1
p

∫ 1−T2
1

T 1
1

(n−1
r2 sin2ρ

)p/2
rn−1dr

+Cεn/2 +
1

2ε p

∫ 1−T 2
1

T 1
1

rn−1 cos2ρ dr � Cεn/2 +
(n−1)p/2

p

∫ 1−T2
1

T 1
1

rn−1−pdr.

Thus we complete Proposition 4.3.

REMARK 4.4. Similar to the derivation of (4.3), using (4.1) and Proposition 4.3,
we may get

∫ 1−T2
1

T 1
1

( f ′ε )
prn−1dr+

1
ε p

∫ 1−T2
1

T 1
1

rn−1 cos2 fεdr � Cεn/2. (4.13)

Comparing this with (4.3), we see that the exponent of ε is improved from n− p to
n/2. Thus, this estimate is better as ε → 0.
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Proof of Theorem 1.3. Similar to the derivation of (4.4), by (4.13) and the mean
value theorem, there exists T i

2 ∈ (T i
1 ,T ] (i = 1,2) such that

1
ε p [cos2 fε(T 1

2 )+ cos2 fε (1−T2
2 )] � Cεn/2. (4.14)

The minimizer ρ2 of the functional

E(ρ , [T 1
2 ,1−T2

2 ]) =
1
p

∫ 1−T2
2

T 1
2

(ρ2
r +1)p/2dr+

1
2ε p

∫ 1−T2
2

T 1
2

cos2 ρ dr

in W 1,p
fε

([T 1
2 ,1− T 2

2 ],R+ ∪ {0}) also exists. Similar to the proof of Proposition 4.2,
using (4.14), we can also derive

∫ 1−T 2
2

T 1
2

(
ρ2

r +1
)(p−2)/2ρ2

r dr+
1
ε p

∫ 1−T2
2

T 1
2

cos2ρdr � CεG[1]

where G[ j] = n/2
2 j + (2 j−1)p

2 j , j = 0,1,2, · · · . By an argument of Proposition 4.3, we also
obtain

Eε( fε , [T 1
2 ,1−T2

2 ]) � CεG[1] +
(n−1)p/2

p

∫ 1−T2
2

T 1
2

rn−1−pdr.

Furthermore, similar to the derivation of (4.3), using (4.13), we may get

∫ 1−T2
2

T 1
2

( f ′ε )
prn−1dr+

1
ε p

∫ 1−T2
2

T 1
2

rn−1 cos2 fεdr � CεG[1].

Comparing with (4.13), we have improved the exponent of ε from G[0] = n/2 to G[1] .
Proceeding in the way above (its idea is to improve the exponent of ε from G[k]

to G[k+1] by induction), we can see that for any k ∈ N

∫ 1−T2
k+1

T 1
k+1

( f ′ε )
prn−1dr+

1
ε p

∫ 1−T2
k+1

T 1
k+1

rn−1 cos2 fεdr � Cε
n/2
2k + (2k−1)p

2k

where T i
k+1 ∈ (T i

k ,T ], i = 1,2,k = 0,1,2, · · · . Letting k →∞ and noting T � T i
k , we get

our conclusion.
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