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EXISTENCE, NONEXISTENCE AND MULTIPLICITY

RESULTS FOR SEMILINEAR ELLIPTIC PROBLEMS WITH

MEASURE DATA AND ABSORPTION–REACTION TERM

B. ABDELLAOUI, A. PRIMO, AND T. M. TOUAOULA

Abstract. In the case where g(u) appears as an absorption term, then under some additional
hypotheses on g we prove that the main problem has a solution for all λ > 0 and for all positive
μ ∈ L1(Ω) . In the case where g appears as a reaction term, then we prove that the main problem
has at least two positive solutions under suitable hypotheses on μ . The asymptotic linear case is
also studied.
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