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Abstract. In the case where g(u) appears as an absorption term, then under some additional
hypotheses on g we prove that the main problem has a solution for all λ > 0 and for all positive
μ ∈ L1(Ω) . In the case where g appears as a reaction term, then we prove that the main problem
has at least two positive solutions under suitable hypotheses on μ . The asymptotic linear case is
also studied.

1. Introduction

This paper is devoted to obtain existence and nonexistence results for nonlinear
elliptic equations of the form⎧⎪⎨⎪⎩

−Δu±g(u) = λ
u
|x|2 +αμ in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω⊂ IRN is an open bounded domain which contains the origin, g is a continuous
function under suitable hypotheses and λ ,α ∈ IR . In the whole of this work, we suppose
that μ is a radon positive measure with some additional hypotheses that we will precise
later.

In the case where g ≡ 0, we refer to problem (1.1) as the elliptic Baras-Goldstein
problem (see [10]). By setting

ΛN = inf
{φ∈C∞

0 (Ω),φ �≡0}

∫
Ω
|∇φ |2dx

∫
Ω

φ2

|x|2 dx

=
(N−2

2

)2
,
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we obtain that if λ > ΛN , then the above problem, with g ≡ 0, has no positive solu-
tion. In the case where λ � ΛN , then the above problem has a solution if and only if
〈|μ |, |x|−a(λ )〉 < ∞ where a(λ ) = (N−2)/2−√

ΛN −λ .
The case where λ = 0 was considered by several authors and it is well known in

the literature, see for instance [11], [13], [9] and the references therein. Let begin by
quoting the result in the absorption case. From the result of [11], we know that the
above problem has a solution for all measure μ if g is an increasing function such that
g(s) � C|s|q as |s| → ∞ with q < N/(N−1) . We refer to [13] and [19] for a complete
discussion in this case.

The case of reaction term was considered in [12]. Using capacity estimates and
some tools from convex analysis, under some conditions on g , the authors proved that
problem (1.1) has a solution for all α ∈ (0,α∗) . Recently in [24], the authors consider
the above problem for λ = 0 with the reaction term. They give an alternative proof of
the existence result based on an iteration schema. In the case where λ > 0, we know
apriori that any supersolution to problem −Δu−λ u

|x|2 � 0 is not bounded at the origin

and then to insure the existence of positive solution to problem (1.1) we need some
additional hypotheses on the measure.

The paper is organized as follows. In section 2 we give functional tools that we
need in the paper, and we define the main spaces where we will work.

In Section 3 we consider the case of absorption term, namely we will prove that
under some hypotheses on g , the above problem has a solution for all λ > 0 and
positive μ ∈ L1(Ω) . At the end of the section, we show that the condition on g is
optimal to get the existence result.

In Section 4 we study the case of reaction term. We will assume that λ = ΛN ,
which is the critical case. In Subsection 4.1 we deal with the superlinear case. Notice
that in this case, problem (1.1) has some convex-concave behavior, therefore under
some hypotheses on μ and g , we prove the existence of α∗ such that (1.1) has two
positive solutions for α < α∗ , at least one solution for α = α∗ and no positive solution
for α > α∗ . The proof of the existence result for α = α∗ and the proof of the existence
of the second positive solution are different from the proofs obtained in [24].

In Subsection 4.2 we consider the asymptotic linear case, namely we will prove
that independently of value of α , problem (1.1) has a solution. In subsection 4.3 we
prove an antimaximum principle for the linear case. At the end, in the appendix, we
continue with asymptotic linear case in variational framework. Following the argument
used in [14], under additional hypotheses on μ , we show that problem (1.1) has exactly
two solutions, one solution or no solution. This is related to the beautiful result of
Ambrosetti-Prodi, see [6] and [7].

2. Functional setting.

Let Ω be a bounded domain in IRN , with N � 3 such that 0 ∈ Ω . Given α ∈ IR
we note the weighted Lebesgue space,

Lr
α(Ω) =

{
u :Ω→ IR measurable,

∫
Ω
|u|r|x|−rαdx < ∞

}
.
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We consider the Sobolev space W 1,2(Ω) , which is defined as the closure of C ∞ (Ω) ,
with respect to the norm

‖φ‖ =
(∫

Ω
(|φ |2 + |∇φ |2)dx

)1/2

and we denote by W 1,2
0 (Ω) the closure of C ∞

0 (Ω) with respect to the norm ‖.‖ . If

0 ∈Ω , then for u ∈W 1,2
0 (Ω) we have the following Hardy-Sobolev inequality

ΛN

∫
Ω

u2

|x|2 dx �
∫
Ω

|∇u|2dx,

where ΛN = (N−2
2 )2 is optimal and is never achieved in W 1,2

0 (Ω) . Using the improved
Caffarelli-Kohn-Nirenberg inequalities in [31] ( see also [2] for an alternative proof) we
can define the space H(Ω) as the closure of C ∞

0 (Ω) with respect to the norm

‖u‖2
H =

∫
Ω

[
|∇u|2−

(N−2
2

)2 |u|2
|x|2

]
dx .

H(Ω) is a Hilbert space with the following inner product,

〈u,v〉H =
∫
Ω

[
∇u∇v−

(N−2
2

)2 uv
|x|2

]
dx, ∀u,v in H(Ω).

Furthermore, the following embeddings are followed:

W 1,2
0 (Ω) ↪→H(Ω) ↪→W 1,q

0 (Ω) ↪→↪→ Lr(Ω) for all 1 � r < q∗ =
qN

N−q
and q < 2.

(2.1)
Let us denote by H ′(Ω) the dual space of H(Ω) and by 〈·, ·〉 = 〈·, ·〉H′ ,H the

duality product. We define:

H(Ω) → H ′(Ω)

u �→ Lu = −Δu−ΛN
u
|x|2 .

It follows that:

a) L : H(Ω)→H ′(Ω) is a continuous linear isomorphism (uniformly continuous on
bounded sets).

b) 〈Lu,v〉H,H′ = 〈u,v〉H , so ‖u‖H = ‖Lu‖H′ and therefore, L is an isometry.

c) L is a self adjoint operator, i.e., 〈Lu,v〉H′ ,H = 〈u,v〉H = 〈u,Lv〉H,H′ .

d) The restriction of L−1 to (Lr)′(Ω) with 1 � r < 2∗ is a compact map in Lr(Ω) .
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Let consider the following eigenvalue problem:

(EPβ ) ≡
{

Lu = λ |x|−2βu in Ω,
u = 0 on ∂Ω,

(2.2)

with Ω as in the introduction and β < 1. From classical theory of Hilbert Spaces we
get the next classical result.

THEOREM 2.1. There exists an eigenvalue sequence {λk(|x|−2β )} ⊂ IR+ , with
λk(|x|−2β ) → ∞ as k → ∞ for which problem (EPβ ) has nontrivial solution. Noting
Eλi

the eigenvectors associated to λi , then {Eλi
}i is a decomposition of H(Ω) . Fur-

thermore, the first eigenvalue to (EPβ ) is simple and isolated and the corresponding
eigenfunctions don’t change sign in Ω .

REMARK 2.2. We denote φk , k ∈ IN , the eigenvector associated to the eigenvalue
λk(|x|−2β ) . Without loss of generality, we can consider that ‖φk‖H = 1.

Let a = N−2
2 , and consider v(x) = |x|au(x) , then

H ′(Ω) → H(Ω) →W 1,2
0 (|x|−2adx,Ω) →W−1,2(|x|−2adx,Ω),

f = Lu �→ u �→ v = |x|au �→ −div(|x|−2a∇v) = |x|−a f . (2.3)

We obtain the following equivalence of norms

‖u‖2
H = 〈Lu,u〉H′ ,H = 〈−|x|a div(|x|−2a∇v), |x|−av〉H,H

= 〈−div(|x|−2a∇v),v〉
W−1,2

0 (|x|−2adx),W 1,2
0

= ‖v‖2
W1,2

0 (|x|−2adx)
.

Therefore, we get the equivalent eigenvalue problem

(EPβ )′ ≡
{−div(|x|−2a∇v) = μ |x|−(2a+2β )v in Ω,

v = 0 on ∂Ω.
(2.4)

THEOREM 2.3. There exists an eigenvalue sequence {μk(|x|−(2a+2β ))} ⊂ IR+ ,
with μk → ∞ as k → ∞ for which problem (EPβ )′ has nontrivial solution. Noting E ′

λi

the eigenvectors associated to λi , then {E ′
λi
}i is a decomposition of the Hilbert space

W 1,2
0 (|x|−2adx) . Furthermore, the first eigenvalue to (EPβ )′ is simple and isolated and

the corresponding eigenfunctions don’t change sign in Ω .

REMARK 2.4. We denote ϕk , k ∈ IN , the eigenvector associated to the eigenvalue
μk(|x|−(2a+2β )) . Without loss of generality, we can consider that ‖ϕk‖W1,2

0 (|x|−2adx) =

1. Furthermore, ϕk = |x|aφk and λk(|x|−2β ) = μk(|x|−(2a+2β )) . For the simplicity of
notation, we just write λk and μk , except in the case where we need to precise the
correct weight.
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PROPOSITION 2.5. Let v ∈W 1,2
0 (|x|−2adx) be a weak solution to problem,{−div(|x|−2a∇v) = g in Ω,

v = 0 on ∂Ω,
(2.5)

where g ∈ Lr
η , η = −(N−2)(r−1)/r with r > N/2 . Then v ∈ L∞(Ω) .

Proof. It is sufficient to see the proof of Lemma 2.8 in [4] with γ = (N−2)/2.

COROLLARY 2.6. Let u ∈ H(Ω) be a solution to Lu = h, where h ∈ Lr
k(Ω), k =

(N−2)(2− r)/(2r) and r > N/2 . Then it follows that v = |x|au ∈ L∞(Ω).

LEMMA 2.7. Under the same condition as in Corollary 2.6, if u ∈ H(Ω) is a
solution to Lu = h, with h ∈ Lr

k(Ω), k = (N − 2)(2− r)/(2r) and r > N/2 , then v =
|x|au ∈Cα (Ω) , for some 0 < α < 1/2 .

Proof. It is sufficient to consider γ = (N−2)/2 in Theorem 5.1 in [21]. �

Given u a measurable function we will consider the k -truncation of u defined by

Tk(u) =

{
u, |u| � k,

k
u
|u| , |u| > k.

3. Existence of weak positive solutions

In this section we prove the existence of a positive solution to the problem⎧⎪⎨⎪⎩
−Δu+g(u) = λ

u
|x|2 + μ in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(3.1)

where Ω ⊂ IRN is an open bounded domain with 0 ∈ Ω . Moreover under some ad-
ditional hypotheses on g , we will show that the above problem has a non-negative
solution for all λ > 0 and for a suitable class of positive radon measures.

We will assume that g is an increasing function such that g(0) = 0 and

lim
s→+∞

g(s)
sq = ∞ for some q >

N
N−2

. (3.2)

Let begin by the following definition.

DEFINITION 3.1. We say that u is a minimal solution to (3.1) if u � 0 and for
any non-negative solution v to problem (3.1), we have u � v .

Our first existence result is the following.
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THEOREM 3.2. Assume that the above hypothesis holds and let 0 � μ ∈ L1(Ω) ,
then problem (3.1) has a minimal solution for all λ > 0 .

Proof. Since μ ∈ L1(Ω) , then define μn = Tn(μ) . Consider wn , the minimal
solution to the problem{−Δwn +g(wn) = λ 1

|x|2+ 1
n
Tnwn + μn(x),

wn ∈W 1,2
0 (Ω), wn � 0.

(3.3)

It is clear that wn � wn+1 . Using Tk(wn) as a test function in (3.3) it follows that∫
Ω

|∇Tk(wn)|2dx+ k
∫
wn�k

g(wn)dx � kλ
∫

wn�k

wn

|x|2 dx+λk2C(Ω)+ k
∫
Ω

μdx.

By the main hypotheses on g we know that g(s) � csq as s → ∞ , for some q > N
N−2 .

Hence we conclude∫
Ω

|∇Tk(wn)|2dx+ k
∫
wn�k

wq
ndx � λk

∫
wn�k

wn

|x|2 dx+C(k,λ ,μ ,Ω)

� εk
∫

wn�k
wq

ndx+C(k,λ ,ε)
∫
Ω

1

|x|2q′ dx+C(k,λ ,μ ,Ω).

Since q > N
N−2 , then 2q′ < N , moreover choosing ε small enough it follows that∫

Ω

|∇Tk(wn)|2dx+ k
∫
wn�k

wq
ndx � C(k,λ ,ε,μ ,Ω).

Hence,

i)
∫
Ω

g(wn)dx � C, ii)
∫
Ω

wn

|x|2 dx � C, and iii)
∫
Ω

|∇Tk(wn)|2 � Ck.

Therefore we get the existence of w ∈ W 1,p
0 (Ω) , p < N

N−1 such that g(wn) → g(w) ,
Tn(wn)
|x|2 + 1

n

→ w
|x|2 strongly in L1(Ω) . Thus there results that w solves (3.1) and the

result follows. �

REMARK 3.3. It is not difficult to see that the existence result holds for all μ ∈
W−1,2(Ω) + L1(Ω) , namely for any measure that is continuous with respect to the
W 1,2

0 (Ω) capacity.

To see the optimality condition imposed on g in (3.2), we have the following
nonexistence result.
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THEOREM 3.4. Assume that g(s) = |s|q where 1 < q < N
N−2 , then for λ > ΛN ,

the problem

−Δu+g(u) = λ
u
|x|2 ,u > 0 in Ω,

has no positive supersolution with g(u),
u
|x|2 ∈ L1

loc(Ω) .

Proof. We argue by contradiction. Assume that the above equation has a super-

solution u∗ such that g(u∗),
u∗

|x|2 ∈ L1
loc(Ω) for some λ > ΛN . Choosing a subdomain

Ω1 ⊂⊂Ω such that 0 ∈Ω1 , g(u∗),
u∗

|x|2 ∈ L1
loc(Ω) and let λ ∗ = λ −σ > ΛN , then u∗

satisfies

−Δu∗+g(u∗) � λ ∗ u∗

|x|2 +h∗(x), u∗ > 0 in Ω1

where h∗(x) = σ
u∗

|x|2 . Hence an iteration argument allows us to prove that the problem

⎧⎪⎨⎪⎩
−Δu+g(u) = λ ∗ u

|x|2 +h∗ in Ω1,

u > 0 in Ω1,
u = 0 on ∂Ω1,

(3.4)

has a minimal solution u∗ � u∗ obtained as a limit of solutions to some approximated
problems. Using the strong maximum principle we obtain that u∗ > 0 in Ω1 . Notice
that u∗ ∈W 1,p

0 (Ω1) for all p < N
N−1 , then for all ε > 0 and for all a < N

N−2 , we get the

existence of η > 0 such that
∫

Bη (0)
ua
∗dx � ε with Bη(0) ⊂⊂ Ω1 . We choose ε such

that
λ ∗

(1+S−1ε
2
N )

> ΛN +σ , where S is the Sobolev constant, and fixed η as above.

Let φ ∈ C ∞
0 (Bη (0)) , then using Picone type inequality as in [4] it follows that∫

Bη (0)
|∇φ |2dx �

∫
Bη (0)

−Δu∗
u∗

φ2dx.

Thus ∫
Bη (0)

|∇φ |2dx+
∫
Bη (0)

uq−1
∗ φ2dx � λ ∗

∫
Bη (0)

φ2

|x|2 dx.

Using Hölder and Sobolev inequalities there results that

∫
Bη (0)

uq−1
∗ φ2dx �

(∫
Bη (0)

φ2∗dx
) 2

2∗
(∫

Bη (0)
u

(q−1)N
2∗ dx

) 2
N

� S−1
(∫

Bη (0)
u

(q−1)N
2∗ dx

) 2
N

∫
Bη (0)

|φ |2dx.
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Since (q−1)N
2 < N

N−2 , we get
∫

Bη (0)
u

(q−1)N
2∗ dx � ε . Therefore we conclude that

∫
Bη (0)

|∇φ |2dx � λ ∗

(1+S−1ε
2
N )

∫
Bη (0)

φ2

|x|2 dx � (ΛN +σ)
∫

Bη (0)

φ2

|x|2 dx,

a contradiction with the optimality of the Hardy inequality. Hence we conclude. �

4. The case of reaction term

4.1. The superlinear case

In this part we consider the next problem⎧⎪⎨⎪⎩
Lu ≡−Δu−ΛN

u
|x|2 = g(u)+αμ in Ω,

u > 0 in Ω,
u = 0 on ∂Ω.

(4.1)

We assume that g is a regular convex function such that the following hypotheses hold:

i) g′(s) > 0 for all s > 0,

ii) |g(s)| � λ |s|+C|s|p , p < N
N−2 ,λ ∈ (0,λ1),

iii) lim
s→∞

g(s)
s1+σ = ∞ for some 0 < σ <

2
N−2

.

We begin by the following result (a part of the proof can be found in [5]).

THEOREM 4.1. Consider the problem⎧⎨⎩
Lw = μ in Ω,
w > 0 in Ω,
w = 0 on ∂Ω,

(4.2)

where μ is a positive Radon measure. Then problem (4.2) has a positive solution if and
only if 〈μ , |x|−a〉 < ∞ . Moreover w verifies:

1)
w

|x|2+a−ε ∈ L1(Ω) for all ε > 0 ,

2) |∇w||x|−a−γ+ε ∈ L1(Ω) , where γ = N+2
2N and ε > 0 .

Recall that a = N−2
2 .

Proof. If M1(Ω) is the set of radon measures μ such that 〈|μ |, |x|−a〉 < ∞ , then
existence and uniqueness result to problem (4.2) is obtained in [5] where it is also
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proved that the condition μ ∈ M1(Ω) is necessary and sufficient for the existence of a
positive solution. It is not difficult to show that w = lim

n→∞
wn , where wn solves

⎧⎨⎩
Lwn = fn in Ω,

w > 0 in Ω,
w = 0 on ∂Ω,

(4.3)

with fn ∈ L∞(Ω) , || fn||L1(Ω) � C and fn ⇀ μ in the sense of measures. Using the

theory of renormalized solutions, we obtain that wn → w strongly in W 1,q
0 (Ω) , for all

q < N/(N−1) .
Let begin by proving 1) . Assume that λ < ΛN and consider ψ ∈W 1,2

0 (Ω) , the
unique solution to the problem

−Δψ = λ
ψ
|x|2 +

1
|x|2 .

It is clear that ψ � c|x|−a+
√

ΛN−λ . Since 〈μ ,ψ〉 < ∞ , hence using an approximation
argument we can use ψ as a test function in (4.2). Therefore we get

(ΛN −λ )
∫
Ω

ψw
|x|2 dx+ 〈μ ,ψ〉=

∫
Ω

w
|x|2 dx <∞.

Choosing λ very close to ΛN it follows that w
|x|2+a−ε ∈ L1(Ω) where ε =

√
ΛN −λ .

Hence the proof of the point 1) follows.
We continue to prove the point 2) . We observe that |∇w||x|−a−γ+ε ∈L1(B\Br(0)) .

Hence we have just to prove that |∇w||x|−a−γ+ε ∈ L1(Br(0)) , for r small.
Using Tk(wn)ψ as a test function in (4.3) and letting n → ∞ , we get∫

Ω

|∇Tkw|2ψdx � k〈 f ,ψ〉 � Ck.

Thus from the result of [4] and using the behavior of ψ near the origin we conclude
that ∫

Ω

|∇w|q|x|−a+εdx < ∞ for all ε > 0 and for all q <
N

N−1
.

Fixed q < N/(N − 1) such that q is very close to N/(N − 1) , then using Hölder in-
equality it follows that∫

Ω

|∇w||x|−a−γ+εdx =
∫
Ω

|∇w||x| −a+ε
q |x| −(q−1)(a−ε)

q −γdx

�
(∫
Ω

|∇w|q|x|−a+εdx
) 1

q
(∫
Ω

|x|−a+ε− qγ
q−1 dx

) q−1
q

.
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Using the hypothesis on γ it follows that∫
Ω

|x|−a+ε− qγ
q−1 dx < ∞.

Hence the result follows. �

The next result will play an important role in the proof of the main result of this
section.

THEOREM 4.2. If w is the solution to problem (4.2), then
∫
Ω
|x|−awqdx < ∞ , for

all q < N
N−2 . As a consequence the next problem⎧⎨⎩

Lw1 = wq in Ω,
w1 > 0 in Ω,
w1 = 0 on ∂Ω,

(4.4)

has a unique positive solution.

Proof. Using Theorem (4.1) we have just to show that
∫
Ω
|x|−awqdx <∞ . Without

loss of generality, we can assume that B1(0) ⊂ Ω . Let φ(x) = |x|−a − 1, then φ ∈
H(B1(0)) and φ solves

Lφ =
ΛN

|x|2 in B1(0), φ = 0 on ∂B1(0).

Since 〈μ ,φ〉 < ∞ , then using an approximation argument, we obtain that

−Δ(wφα) = φα(Λ
w
|x|2 + μ)+w(αφα−1(−Δφ)−α(α−1)φα−2|∇φ |2)

+2αφα−1∇φ∇w = Λ(α +1)
φαw
|x|2 +α

φα−1w
|x|2

−α(α−1)φα−2w|∇φ |2 +2αφα−1∇w∇φ + 〈μ ,φ〉.

Notice that
w

|x|2+a−ε ∈ L1(Ω) for all ε > 0. Therefore using the main properties of w

and φ , it follows that
φαw
|x|2 , φα−2w|∇φ |2 ∈ L1

loc(Ω).

From Theorem 4.1, we obtain that |φα−1∇w∇φ | ≡ |∇w||x|−αa−1 ∈ L1(Ω) . Hence
wφα ∈ L1

loc and −Δ(wφα) ∈ L1
loc . Then, from [13], we obtain that (wφα )q ∈ L1

loc .
Thus wqφ ∈ L1(Ω) and then the result follows. �

As a consequence of the previous result we have the main Theorem of this section.
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THEOREM 4.3. Assume that the above hypotheses on g hold. If μ ∈ M1(Ω) is a
positive radon measure, then there exists α0 > 0 such that for all α ∈ [0,α0] problem
(4.1) has a minimal solution.

Proof. We divide the proof in several steps.
Step 1. Let E = {α > 0 such that problem (4.1) has a minimal solution }. We

claim that if E �= /0 , then E is an interval. To prove the claim we suppose that E �= /0 .
Let α0 ∈ E and consider u0 a solution to (4.1) with α = α0 , then u0 is a supersolution
to (4.1) with α < α0 . It is clear that 0 is a subsolution. Hence using an iteration
argument we get the existence result. Therefore α ∈ E for all α ∈ (0,α0) . Thus we
conclude that E is an interval and then the claim follows.

Step 2. We will show that E �= /0 . We follow closely the argument used in [24].
Let w1,α be the solution to the problem⎧⎨⎩

Lw1,α = αμ in Ω,
w1,α > 0 in Ω,
w1,α = 0 on ∂Ω.

(4.5)

It is clear that w1,α = αw̃1 , the unique positive solution to the problem

Lw̃1 = μ .

By iteration, we define wk+1,α ( w̃k+1 respectively ) as the unique solution to the
problem {

Lwk+1,α = g(∑k
i=1 wi,α )−g(∑k−1

i=1 wi,α) in Ω,
wk+1,α = 0 on ∂Ω,

(4.6)

and {
Lw̃k+1 = g(∑k

i=1 w̃i)−g(∑k−1
i=1 w̃i) in Ω,

w̃k+1 = 0 on ∂Ω,
(4.7)

respectively. Using the hypotheses on g and Theorem 4.2, we obtain that g(∑k
i=1 wi,α )

is well defined and that wk+1,α > 0. If we suppose that problem (4.1) has a solution u ,
then by iteration we define uk+1,α = uk,α −wk+1,α . Hence uk+1,α solves{

Luk+1,α = g(uk+1,α +∑k+1
i=1 wi,α )−g(∑k

i=1 wi,α ) in Ω,
uk+1,α = 0 on ∂Ω.

(4.8)

For simplicity of typing we set vk,α = ∑k+1
i=1 wi,α , then we define the odd function

hk,α(x,s) by

hk,α(x,s) =
{

g(s+ vk,α)−g(vk,α) if s � 0
hk,α(x,s) = −hk,α(x,−s) if s � 0.

It is clear that uk+1,α solves

Lw = hk,α(x,w)+βk,α(x) w|∂Ω = 0, (4.9)

where βk,α(x) = g(vk,α(x))−g(vk−1,α(x)) . Thus to prove the existence of a solution u
to problem (4.1) we have just to prove that problem (4.9) has a solution for some k > 1.
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Notice that by using the main properties of g , we have

hk,α(x,s) � (λ1 +C(vk,α + s)p−1)s for all x ∈Ω,s � 0,

and
h′k,α(x,s) � λ1 +C(vk,α + s)p−1 for all x ∈Ω,s � 0.

We claim the existence of m ∈ IN such that wm,α ∈H(Ω) and βm,α ∈ Lθ (Ω) with
θ > 2N

N+2 . Notice that

βk,α = g(vk,α)−g(vk−1,α) � g(vk,α)wk,α � (λ1 +Cvp−1
k,α )wk,α .

Let begin by proving the existence of m ∈ IN such that wm,α ∈ H(Ω) . From the
result of [24] we get the existence of m0 ∈ IN such that wm,α ∈ L∞(Ω\Br(0)) for r
small and for all m � m0 . Hence we have just to prove the desired regularity in Br(0) .
We will show that wm1,α �C|x|−a as x → 0, for some m1 � m0 , and this allows us to
get the desired regularity. We use the result obtained in [3] and [16].

Using the hypothesis on p , it is not difficult to see that (λ1 +Cvp−1
k,α ) ∈ Lr(Ω)

for some r > N
2 and for all k > 1. If |x|−awm1,α(λ1 +Cvp−1

N,α ) ∈ Ls(Ω) for some
s > 1, then from the regularity result obtained in Corollary 5.1 of [3], we obtain that
|x|−awm1+1,α � C and then the result follows. If not, then from Theorem 4.2 and using

Hölder inequality, we obtain that |x|−awm1,α(λ1 +Cvp−1
N,α )∈ L1(Ω) . Hence from Corol-

lary 5.1 in [3], we obtain that |x|−awm1+1,α ∈ Lr(Ω) for all r > 1. Therefore using again
Hölder inequality and the hypothesis on p , we get the existence of s > 1 such that
|x|−awm1+1,α(λ1 +Cvp−1

N+1,α) ∈ Ls(Ω) and then we conclude that |x|−awm1+2,α � C .
Thus wm+2,α ∈ H(Ω) and then the first part of the claim follows. The same discussion
allows us to show the existence of m2 ∈ IN such that βm,α ∈ Lθ (Ω) with θ > 2N

N+2 for
all m � m2 . Hence the claim follows.

Fixed m � max{m1 +1,m2} , then following the argument of [24], we can easily
prove that hm,α is an increasing function in α and that βm,α is strictly decreasing with
respect to α .

Recall that w̃1 is the unique solution to problem Lw̃1 = μ . By iteration, we define
w̃k as the unique solution to the problem{

Lw̃k =
(
λ1 +C(∑k−1

i=1 w̃i)p−1
)
w̃k−1 in Ω,

w̃k = 0 on ∂Ω.
(4.10)

Notice that w1 � αw̃1 , hence by induction and using the properties of g we can
prove that wk � αw̃k for all k . In the same way, we have

0 � βm,α(x) � (λ1 +Cvp−1
m,α )wk,α � αβ̃m,α ,

where β̃m,α =
(
λ1 +C(∑m

i=1 w̃i)p−1
)
w̃m . Therefore we conclude that

|hm,α(s,x)| � g′(|s|+ vm,α)|s| � [(λ +σ)+C(|s|+ vm,α)p−1]|s|
� (λ +σ)|s|+C1|s|p +α p−1C2(∑m

i=1 ṽi)p−1]|s|
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where σ is such that λ +σ < λ1 . We set ζ (x) = C2(∑m
i=1 ṽi)p−1 , as above we know

that ζ ∈ Lr(Ω) for some r > N
2 , thus

|hm,α(s,x)| � ((λ +σ)+α p−1ζ (x))|s|+C|s|p.
Choosing α small, since p > 1, we get the existence of u , the minimal solution to the
problem

Lu =
(
(λ +σ)+α p−1ζ (x)

)
u +C1u

p +α f̃m,α , u ∈ H(Ω).

It is clear that u is a supersolution to problem (4.1). Since 0 is a subsolution, then
an iteration argument allows us to prove the existence of a minimal solution. Hence
E �= /0 .

Step 3. Let α∗ = sup{α ∈ E} , then α∗ < ∞ .
Let φ be the solution to the problem

−Δφ = λ1φ , and φ > 0.

It is clear that φ ∈ C (Ω) . Using φ as a test function in (4.1), we obtain that

λ1

∫
Ω

uφ �
∫
Ω

g(u)φdx+α
∫
Ω

φdμ .

Since g(s) � (λ1 +σ)s−C , it follows that C
∫
Ω
φdx � α

∫
Ω
φdμ . Hence α∗ < ∞ .

Step 4. α∗ ∈ E . Let {αn} be an increasing sequence such that αn ↑α∗ as n→∞ .
Consider un the minimal solution to (4.1) for α = αn , hence un � um if n � m and
then {un} is an increasing sequence in n . Let ψ ∈ C ∞

0 (Ω) be a regular fixed function.
Using Picone type inequality as in [4], it follows that∫

Ω

|∇ψ |2dx � λ
∫
Ω

ψ2

|x|2 dx+
∫
Ω

g(un)
un

ψ2dx.

Notice that by the hypothesis iii) on g we obtain that g(s) � cs1+σ −C , hence we
conclude that ∫

Ω

|∇ψ |2dx−λ
∫
Ω

ψ2

|x|2 dx+
∫
Ω

φ2

u2
1

�
∫
Ω

uσn ψ
2dx,

where we have used the fact that
φ2

u2
n

� φ2

u2
1

for all n � 1. Since {un} is a monotone

sequence, we get the existence of a measurable function u such that un ↑ u a.e in Ω and
uα ∈ L1

loc(Ω) . Let x0 ∈ Ω be such that un(x0) → u(x0) as n → ∞ . Using the general
extension of the maximum principle obtained in [18], we obtain that

C � un(x0) � C
(
λ

∫
Ω

un

|x|2 δ (x)dx+
∫
Ω

g(un)δ (x)dx
)
,
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where δ (x) = dist(x,∂Ω) . Hence we conclude that

λ
un

|x|2 +g(un) → λ
u
|x|2 +g(u) strongly in L1

loc(Ω).

It is not difficult to show that u is a distributional solution to (4.1) for α = α∗ .
To complete the proof, we need to show that

u
|x|2 and g(u) are in L1(Ω) . Let φ1 the

solution to the problem
−Δφ1 = 1,φ1 = 0 on Ω.

It is clear that φ1 � Cδ (x) . Using φ1 as a test function in the equation of un , there
results that∫

Ω

undx = λ
∫
Ω

un

|x|2 φ1dx+
∫
Ω

g(un)φ1dx+
∫
Ω

φ1dμ

� C(λ
∫
Ω

un

|x|2 δ (x)dx+
∫
Ω

g(un)δ (x)dx+
∫
Ω

δ (x)dμ) � C.

Therefore the Monotone Convergence Theorem allows us to conclude that u ∈ L1(Ω) .
Let Ω1 be a regular domain such that Ω ⊂⊂ Ω1 and define ψ2 as the solution to the
problem

−Δφ2 = χΩ in Ω1,φ2 = 0 on ∂Ω1.

Using ψ2 as a test function in the un -equation, it follows that∫
Ω

un(−Δψ2) � λ
∫
Ω

un

|x|2 φ2dx+
∫
Ω

g(un)φ2dx.

Using the strong maximum principle we know that ψ2 � c in Ω . Hence we conclude
that

λ
∫
Ω

un

|x|2 dx+
∫
Ω

g(un)dx �
∫
Ω

undx � C.

Thus
λun

|x|2 +g(un) → λu
|x|2 +g(u) strongly in L1(Ω) and the result follows. �

REMARKS 4.4. Fixed m as above, it is clear that solutions to (4.9) are critical
points to the functional

Jm,α(w) =
1
2
||w||2 −

∫
Ω

Hm,α(x,w)dx−
∫
Ω

βm,αwdx,

where Hm,α(x,s) =
∫ s
0 hm,α(x,t)dt . Using the properties of g , we easily get that Jm,α

is well defined and Jm,α ∈ C 1(H(Ω)) . Notice that for α small, Jm,α has a concave-
convex geometry. This will be used to prove the existence of a second positive solution.
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Let consider the next set P = {α > 0 |Jm,α has a local minimum uα}. If α ∈ P
and uα is the local minimum of Jm,α in H(Ω) , then v = 0 is a local minimum of the
functional

Φ(v) =
1
2
(
∫
Ω

|∇v|2 −ΛN
v2

|x|2 )dx−
∫
Ω

F(λ ,x,v)dx, (4.11)

where

F(x,v) =
∫ v

0
f (x,s)ds

and

f (x,s) =
{

hm,α(x,s+uα(x))−hm,α(x,uα(x)) if s � 0
0, if s < 0,

it is clear that

f (x,s) =
{

g(s+uα(x)+ vm,α(x))−g(uα(x)+ vm,α(x)) if s � 0
0, if s < 0.

Therefore we get the next result.

THEOREM 4.5. If α ∈ P, then Jm,α has a second critical point and then problem
(4.9) has a second positive solution. As a consequence, problem (4.1) has also a second
positive solution.

Proof. We argue by contradiction. Assume that wα is the only critical point of
Jm,α . Then v = 0 is a local minimum and the unique critical point of Φ . It is clear that
Φ has the mountain pass geometry. Choosing w0 ∈ H(Ω) such that Φ(w0) < 0 and
consider

Γ =
{
γ : [0,1] → H1

0 γ(0) = 0, γ(1) = w0
}

and c = inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)) .

Using the properties of g we obtain that c > 0. Notice that, in general the functional
Φλ dos not satisfies the Ambrosetti-Rabinowitz condition. Hence to prove the existence
of a critical mountain pass point of Φ we follow closely the argument used in [27], see
also [1]. Let ν > 0, then define the functional Φν by

Φν (v) =
1
2
(
∫
Ω

|∇v|2 −ΛN
v2

|x|2 )dx−ν
∫
Ω

F(x,v)dx. (4.12)

By a continuity argument we get the existence of ε > 0 such that for all ν ∈ I =
[1− ε,1+ ε] , the family of functional {Φν}ν∈I has the same geometry as Φ , namely

c(ν) = inf
γ∈Γ

max
t∈[0,1]

Φν(γ(t)) > 0.

Notice that Φν (w0) < 0 for all ν ∈ I . Using Theorem 1.1 in [27] we obtain that for

almost every ν ∈ I there exists a sequence {v(ν)
k } such that: i) {v(ν)

k } is bounded in
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H(Ω) ii) Φν (v
(ν)
k ) → c(ν) and iii) Φ′

ν(v
(ν)
k ) → 0 in H−1(Ω) . Using the subcritical

behavior of g , we obtain that {v(ν)
k } is a bounded Palais-Smale sequence of Φν . Thus,

up to a subsequence, v(ν)
k → v(ν) strongly in H(Ω) , where v(ν) solves⎧⎨⎩−Δv(ν)−ΛN

v(ν)

|x|2 = ν f (x,v(ν)) in Ω

v(ν) = 0 on ∂Ω,

(4.13)

with Φν (v(ν)) = c(ν) . Let {νn} be a decreasing sequence in I such that νn ↓ 1 as
n → ∞ and consider v(νn) the corresponding solution to problem (4.13). We will prove
that {v(νn)} is bounded in H(Ω) . For the simplicity of notation we set vn = v(νn) .

Let φ1 be the solution to problem⎧⎨⎩−Δφ1−ΛN
φ1

|x|2 = λ1φ1 in Ω

φ1 = 0 on ∂Ω.
(4.14)

Using φ1 as a test function in (4.13) we get

νn

∫
Ω

f (x,vn)φ1vndx = λ1

∫
Ω

vn φ1dx.

Therefore using the definition of f and the convexity hypotheses on g we get the exis-
tence of a constant C1 such that∫

Ω

φ1vndx � C1 and
∫
Ω

φ1 f (x,vn)dx � C1.

Let now φ2 be the solution to problem⎧⎨⎩−Δφ2−ΛN
φ2

|x|2 = 1 in Ω

φ2 = 0 on ∂Ω.
(4.15)

From Proposition 2.5 and using the Hopf Lemma, we get the existence of c1,c2 > 0
such that c1φ1 � φ2 � c2φ1 . Taking φ2 as a test function in (4.13) we obtain that∫

Ω

vndx = νn

∫
Ω

f (x,vn)φ2dx � c2νn

∫
Ω

f (x,vn)φ1dx � C. (4.16)

Hence
∫
Ω

vndx � C . Since Φνn(vn) = c(νn) � c+1, then using (4.13) we obtain that

∫
Ω

f (x,vn)vn −2F(x,vn))dx � C. (4.17)
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We prove now the energy estimate. Assume by contradiction that ||vn||H(Ω) → ∞ as

n → ∞ . We set wn =
vn

||vn||H(Ω)
, then ||wn||H(Ω) = 1, hence we get the existence of

w0 ∈ H(Ω) such that, up to subsequences, wn ⇀ w0 weakly in H(Ω) and wn → w0

strongly in La(Ω) for all a < 2N
N−2 . Moreover wn verifies

−Δwn−ΛN
wn

|x|2 =
νn f (x,vn)
||vn||H(Ω)

.

Since wn ⇀ w0 weakly in H(Ω) we obtain that∫
Ω

(−Δw0 −ΛN
w0

|x|2 )φ = lim
n→∞

∫
Ω

f (x,vn)
||vn||H(Ω)

φ for all φ ∈ C ∞
0 (Ω). (4.18)

From (4.16) we obtain that f (x,vn) is bounded in L1
loc(Ω) . Therefore (4.18) implies

w0 = 0. Let zn = tnvn where tn is defined as

tn = inf

{
t ∈ [0,1] | Φνn(tvn) = max

s∈[0,1]
Φνn(svn)

}
.

We prove that tn ∈ (0,1) for n large enough. Since Φνn(0) = 0, it follows that tn �= 0
for all νn . To show that t �= 1 we claim that

lim
n→∞

Φνn(zn) = +∞ . (4.19)

We argue by contradiction. If liminf
n→∞

Φνn(zn) � M , we set un =
√

4Mwn , then un ⇀ 0

weakly in H(Ω) , hence
∫
Ω

F(x,un)dx,
∫
Ω

undx→ 0 as n →∞ . Therefore we obtain that

Φνn(un) = 2M−αn

∫
Ω

F(x,un)dx � 3
2
M as n → ∞. (4.20)

On the other hand, using the definition of zn and observing that un =
√

4M
||vn||H vn , we

obtain that
Φνn(un) � Φνn(zn) � M,

a contradiction with (4.20). Hence (4.19) is proved.
Therefore, taking into account that Φνn(vn) = cαn � c + 1 and by the claim, we

conclude tn �= 1 for n large enough. As a consequence by the definition of zn we have
〈Φ′

νn
(zn),zn〉 = 0, hence we conclude that

Φνn(zn) =
νn

2

∫
Ω

( f (x,zn)zn −2F(x,zn))dx → ∞ as n → ∞.

By the fact that the function l(x,s) = f (x,s)s−2F(x,s) is an increasing function in s ,
it follows that

f (x,zn)zn −2F(x,zn) � f (x,vn)vn−2F(x,vn)
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and then ∫
Ω

f (x,vn)vn−2F(x,vn))dx → ∞ as n → ∞ ,

a contradiction with (4.17). As a consequence we conclude that ||vn||H(Ω) � C1. Thus
using the subcritical behavior of g we conclude that, up to a subsequence, vn → v
strongly in H(Ω) , where v is a critical point of Φ . Hence problem (4.1) has a second
positive solution. �

As a consequence, using the main ideas of [20] and [8], we get the next global
existence result.

THEOREM 4.6. Assume that α ∈ (0,α∗) , then problem (4.9) has a second posi-
tive solution.

Proof. We fix α0 ∈ (0,α∗) , α0 < α1 < α∗ . Let w0, w1 the minimal solutions of
(4.9) with α = α0 and α = α1 respectively. It is clear that w0 < w1 . Let

M = {w ∈ H(Ω) : 0 � w � w1}.
Notice that M is a convex closed set in H . Since Jm,α0 is bounded and lower semi
continuous over M , then we get the existence of ϑ ∈ M such that

Jm,α0(ϑ) = inf
w∈M

Jm,α0(w).

Notice that ϑ �= 0 since Jm,α0(w) < 0, where w solves L(w) = βm,α0(x),w ∈ H(Ω) .
We conclude that Jm,α0(ϑ) < 0. Using a similar argument as in Theorem 2.4 in [30],
we obtain that ϑ is a solution to (4.9). If ϑ �= w0 , we have done. Suppose that ϑ ≡w0 .
We will prove that in this case ϑ is a local minimum to Jm,α0 and then using Theorem
4.5, we conclude.

We argue by contradiction. Assume that ϑ is not a local minimum of Jm,α0 , then
we get the existence of {vn} ⊂ H(Ω) such that ||vn −ϑ ||H(Ω) → 0 and Jm,α0(vn) <
Jm,α0(ϑ) . Let wn = (vn−w1)+ and φn = max{0,min{vn,w1}} . It is clear that φn ∈ M
and

φn(x) =

⎧⎨⎩
0 if vn(x) � 0,
vn(x) if 0 � vn(x) � w1(x),
w1(x) if w1(x) � vn(x).

Let Tn ≡ {x ∈ Ω : φn(x) = vn(x)} and Sn ≡ supp wn . Notice that supp v+
n = Tn ∪ Sn .

We claim that |Sn| → 0 as n → ∞ , where | · | is the Lebesgue measure. Let ε > 0,

En = {x ∈Ω : vn(x) � w1(x) > ϑ(x)+ δ},
Fn = {x ∈Ω : vn(x) � w1(x) and w1(x) � ϑ(x)+ δ},

where δ is a positive constant that we will chose later. Using the fact that

0 = |{x ∈Ω : w1(x) < ϑ(x)}| = | ∩∞
j=1 {x ∈Ω : w1(x) � ϑ(x)+

1
j
}|

= lim
j→∞

|{x ∈Ω : w1(x) � ϑ(x)+
1
j
}|,
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we get the existence of δ0 ≡ 1/ j0 such that if δ < δ0 ,

|{x ∈Ω : w1(x) � ϑ(x)+ δ}|� ε/2.

Thus we conclude that |Fn|� ε/2. Since ||φn−w0||L2(Ω) → 0 as n→∞ we obtain that

giving η = δ 2ε
2 , for n � n0 ,

δ 2ε
2

�
∫
Ω

|vn −ϑ |2dx �
∫

En

|vn−ϑ |2dx � δ 2|En|.

Hence |En|� ε
2 . As Sn ⊂ Fn∪En , we conclude that |Sn|� ε for n � n0 , then |Sn| → 0

as n → ∞ .
If Q(x,w) = Hm,α0(x,w

+)+βm,α0(x)w+ , then we have

Jm,α0(vn) =
1
2

∫
Ω

(|∇vn(x)|2 −ΛN
v2
n

|x|2 )dx−
∫
Ω

Q(x,vn)dx

=
1
2

∫
Tn

(|∇φn(x)|2 −ΛN
φ2

n

|x|2 )dx−
∫
Tn

Q(x,φn)dx+
1
2

∫
Sn

(|∇vn(x)|2 −ΛN
v2
n

|x|2 )dx

−
∫

Sn

Q(x,vn)dx+
1
2

∫
Ω

(|∇v−n (x)|2 −ΛN
(v−n )2

|x|2 )dx

=
1
2

∫
Tn

(|∇φn(x)|2 −ΛN
φ2

n

|x|2 )dx−
∫
Tn

Q(x,φn)dx+
1
2

∫
Sn

(|∇(wn +w1)|2

−ΛN
(wn +w1)2

|x|2 )dx−
∫
Sn

Q(x,wn +w1)dx+
1
2

∫
Ω

(|∇v−n (x)|2 −ΛN
(v−n )2

|x|2 )dx.

Since∫
Ω

(|∇φn(x)|2 −ΛN
φ2

n

|x|2 )dx =
∫

Tn

(|∇φn(x)|2 −ΛN
φ2

n

|x|2 )dx+
∫
Sn

(|∇w1|2−ΛN
w2

1

|x|2 )dx,

∫
Ω

Q(x,φn)dx =
∫

Tn

Q(x,φn)dx+
∫
Sn

Q(x,w1)dx,

then using the fact that w1 is a supersolution to (4.9) with α = α0 , we obtain that

Jm,α0(vn) = Jm,α0(φn)+
1
2

∫
Sn

[(|∇(wn +w1)|2−ΛN
(wn +w1)2

|x|2 )

− (|∇w1|2−ΛN
w2

1

|x|2 )]dx−
∫
Sn

(Q(x,wn +w1)−Q(x,w1))dx

+
1
2

∫
Ω

(|∇v−n (x)|2 −ΛN
(v−n )2

|x|2 )dx = Jm,α0(un)+
1
2
||wn||2H +

1
2
||(vn)−||2H

−
∫
Ω

{
Q(x,wn +w1)−Q(x,w1)−Qu(x,w1)wn

}
dx
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� Jm,α0(ϑ)+
1
2
||wn||2H +

1
2
||(vn)−||2H

−
∫
Ω

{
Q(x,wn +w1)−Q(x,w1)−Qu(x,w1)wn

}
dx.

Since

Q(x,wn +w1)−Q(x,w1)−Qu(x,w1)wn

= Hm,α0(x,(wn +w1)+)−Hm,α0(x,w1)−hm,α0(x,w1)wn,

using the properties of g , in particular the point iii) , it follows that∫
Ω

{
Q(x,wn +w1)−Q(x,w1)−Qu(x,w1)wn

}
dx = o(1)||wn||2H(Ω).

Thus

Jm,α0(vn) � Jm,α0(ϑ)+
1
2
||wn||2H(Ω)(1−o(1))+

1
2
||(vn)−||2H(Ω)

≡ Jm,α0(ϑ)+
1
2
||wn||2H(Ω)(1−o(1))+o(1).

Therefore we conclude that Jm,α0(ϑ) > Jm,α0(vn) � Jm,α0(ϑ) for n > n0 , which is a
contradiction. Hence the result follows. �

4.2. The asymptotic linear case

In this subsection we will consider the resonance problem,{
Lu = f (x,u)+ μ in Ω,
u = 0 on ∂Ω,

(4.21)

where f (x,s) is such that f (x,0) = 0 and

1) (λk+δ )|x|−2β <
f (x,t)− f (x,s)

t− s
< (λk+1−δ )|x|−2β for all t,s∈ IR, t �= s,k � 0,

2) lim
s→−∞

f (x,s)
s

= θ−(x), lim
s→∞

f (x,s)
s

= θ+(x) .

Recall that Lu ≡−Δu−ΛN
u
|x|2 . Then we have the next existence result.

THEOREM 4.7. Assume that f satisfies the hypotheses 1) and 2), then problem
(4.9) has a solution for all μ ∈ M1(Ω) . In addition, if μ is a positive measure and
k = 1 , then (4.9) has a minimal positive solution.
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Proof. From the above hypotheses on f , we get easily that

(λk + δ )|x|−2β � θ−(x),θ+(x) � (λk+1 − δ )|x|−2β .

We follow by approximation. Let μ be a measure such that μ ∈ M1(Ω) , then we get
the existence of a sequence { fn}∈ L∞(Ω) such that || fn||L1 �C , fn → μ in M (Ω) and∫
Ω

| fn||x|−adx � C for all n . Consider wn ∈ H(Ω) the unique solution to the problem

{
Lwn = f (x,wn)+ fn in Ω,

u = 0 on ∂Ω.
(4.22)

The existence and uniqueness of wn follow by the hypothesis 1) on f . We claim that
{wn} is bounded in L1(Ω) . We argue by contradiction. Assume that ||wn||L1 → ∞ and

let vn = wn
||wn||L1

, then ||vn||1 = 1 and vn solves Lvn =
f (x,wn)

wn
vn + fn

||wn|| in Ω . We set

Dn(x) =

⎧⎪⎪⎨⎪⎪⎩
|x|2β f (x,wn(x))

wn(x)
if wn(x) �= 0,

fs(x,0)|x|2β if wn(x) = 0.

It is clear that {Dn} is bounded in L∞(Ω) and that λk + δ � Dn(x) � λk+1 − δ for all
n . Hence we get the existence of D0(x) ∈ L∞(Ω) such that Dn → D0 in L∞ weak∗
topology and λk + δ � D0(x) � λk+1− δ . Then vn is a solution to the problem

Lvn = |x|−2βDn(x)vn +
fn

||wn|| . (4.23)

Since λk + δ � Dn(x) � λk+1 − δ for all n , we get the existence of φn ∈ H(Ω) , the
unique solution to the problem

Lφn = |x|−2βDn(x)φn +
sign(vn(x))

|x|2 .

Using the fact that β < 1 and by the hypothesis on Dn , there results that |φn(x)| �
C0|x|− N−2

2 for all n ∈ N . Using φn as a test function in (4.23), we obtain∫
Ω

|vn|
|x|2 dx =

∫
Ω

fn
||wn||L1

φndx.

It is clear that

|
∫
Ω

fnφndx| �
∫
Ω

c1| fn||x|− N−2
2 dx+ c2

∫
Ω

| fn|dx � C.

Therefore we have that
∫
Ω

|vn|
|x|2 dx � C|Ω|

||wn||L1
→ 0 as n → ∞ , a contradiction with the

main normalization. Hence we conclude that ||wn||L1 �C . Using the same test function
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as above, we conclude that { wn

|x|2 } is bounded in L1(Ω) . Hence using the classical

theory of renormalized solutions we obtain that {wn} is bounded in W 1,q
0 (Ω) for all

q < N
N−1 , and then wn ⇀ w0 weakly in W 1,q

0 (Ω) . Passing to the limit as n → ∞ , we
obtain that w solves

Lw0 = f (x,w0)+ μ ,w0 ∈W 1,q
0 (Ω), for all q <

N
N−1

.

Hence the result follows.

4.3. The antimaximum Principle

In this subsection we deal with the case f (x,s) = λ |x|−2β s , namely we consider
the problem {

Lu = λ |x|−2βu+h(x) in Ω,
u = 0 on ∂Ω,

(4.24)

where h(x) ∈ Lr
k(Ω) ⊂ H ′(Ω) is such that h(x) � 0. From the Fredholm Alternative

Theorem, we get that:

i) If λ �= λi,∀i , being λi the eigenvectors associated to problem (2.2), then (4.24)
has an unique solution for all h in H ′(Ω) .

ii) If λ is an eigenvalue of (2.2), then (4.24) has a solution if and only if
∫
Ω

hφ = 0

for any eigenvector φ associated to λ , i.e, h ∈ Ker (L−λ Id)⊥.

If h(x) � 0, h(x) �≡ 0, then h �∈ Ker (L−λ1Id)⊥ and there is no solution in H(Ω) to
(4.24) with λ = λ1 .

THEOREM 4.8. (Anti-maximum Principle) Assume that h(x) is a nonnegative
function such that h ∈ Lr

k(Ω), k = (N − 2)(2− r)/(2r) and r > N/2 . Suppose that
λ �= λi,∀i and let u ∈ H(Ω) be the unique solution to (4.24), then

i) if λ < λ1 , it follows that u > 0 in Ω,

ii) there exists ε(h) > 0 such that if λ1 < λ < λ1 + ε(h) , then u < 0 in Ω.

Proof. Assume that λ < λ1 , then to prove i) we take u− as a test function in
(4.24). Hence,

〈Lu,u−〉 = −
(∫
Ω

|∇u−|2dx−ΛN

∫
Ω

u2−
|x|2 dx

)
= −λ

∫
Ω

|x|−2βu2
−dx+

∫
Ω

h(x)u−dx,

so ||u−||2H(Ω) � λ
∫
Ω
|x|−2βu2−dx . Since λ < λ1 , we can conclude that u− = 0, so the

proof is finished in this case.
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We prove now ii) . We follow an argument by contradiction. Assume that for all
εn > 0, there exists un ∈ H(Ω) , a solution to the problem{

Lun = λn|x|−2βun +h(x) in Ω,
un = 0 on ∂Ω,

with λ1 < λn < λ1 + εn and un(xn) � 0 for some points xn ∈ Ω . Without loss of
generality, we can assume that εn → 0 and xn → x ∈Ω , as n → ∞ .

Two cases are possible.
Case 1: If we suppose that {un} is bounded in H(Ω) , then we conclude that

for some subsequence, un ⇀ u0 in H(Ω) and un → u0 in L2
β (Ω) . Therefore, u0 is a

solution to {
Lu0 = λ1|x|−2βu0 +h(x) in Ω,
u0 = 0 on ∂Ω.

(4.25)

In fact, notice that un → u0 in H(Ω) . Getting φ1 as a test function in (4.25), it follows
that:

〈Lu0,φ1〉 = λ1

∫
Ω
|x|−2βφ1u0dx+

∫
Ω

hφ1dx,

so
∫
Ω

hφ1dx = 0, but h �≡ 0, h � 0, then we reach a contradiction.

Case 2: We suppose that ‖un‖H →∞ . We consider vn = un/‖un‖H , then vn(xn) �
0. It follows that vn > 0 in Ωn ⊂Ω and since ‖vn‖H = 1, then for some subsequence,
vn ⇀ v0 in H(Ω) and vn → v0 in L2

β (Ω). Furthermore,

Lvn = λn|x|−2β vn +
h

‖un‖H
, (4.26)

and since
h

‖un‖H
→ 0 in H ′(Ω) , then

{
Lv0 = λ1v0 in Ω,
v0 = 0 on ∂Ω.

In fact, notice that vn → v0 in H(Ω). From the simplicity of the first eigenvalue, we
conclude that v0 = αφ1 .

a) If v0 = 0, then vn ⇀ 0 in H(Ω) and vn → 0 in L2
β (Ω). Therefore,

1 = ‖vn‖2
H = λn

∫
Ω
|x|−2β v2

ndx+
∫
Ω

vn

‖un‖H
dx → 0 in H(Ω),

a contradiction.

b) If v0 > 0, then vn ⇀ v0 > 0 in H(Ω), and vn → v0 > 0 in L2
β (Ω) . We choose v0 as

a test function in (4.26) and then

(λ1−λn)‖un‖H

∫
Ω
|x|−2β vnv0dx =

∫
Ω

hv0 > 0.
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Since (λ1−λn) < 0 and thanks to the strong convergence in L2
β (Ω) , we conclude that∫

Ω
|x|−2β v2

0dx � 0,

so v0 = 0, which is a contradiction.

c) If v0 < 0, for every ε > 0, we consider Ωη = Ω\Bη(0) , then vn → v0 in C1,α(Ωη )

and
∂vn

∂ν
→ ∂v0

∂ν
in Cα(Ωη) . If x ∈ Ωη , then 0 � vn(xn) → v(x) < 0, which is a

contradiction. Hence we conclude in this case.
Assume that x ∈ ∂Ω . Let denote Ωη \Dn =

{
x ∈Ωη , dist(x,∂Ω) <

η
n

}
.

Ω

Ωη

Dn

Bη

0

By Hopf Maximum Principle, there results that
∂v0

∂ν
> 0 in ∂Ω . Hence, by the conti-

nuity of
∂vn

∂ν
, we get the existence of c > 0 and n0 ∈ IN such that ∀n � n0 , we have

∂vn

∂ν
>

c
2

> 0 in Ωη \Dn .

Since vn = 0 on ∂Ω , vn < 0 on ∂Dn and vn(xn) � 0, we get the existence of
{Pn} ∈ Ωη \Dn such that vn(Pn) � 0 and ∇vn(Pn) = 0, which is a contradiction with
∂vn

∂ν
>

c
2

.

We consider now the case where xn ∈ Bη(0) , then recall that vn(xn) � 0. We use
the change of variables in (2.3) wn = |x|avn , then we obtain an equivalent problem in
W 1,2

0 (|x|−(N−2)dx)∩L∞(Ω)∩C1(Ω) ,⎧⎨⎩−div(|x|−(N−2)∇wn) = λn|x|−N−2wn + |x|− N−2
2

h(x)
‖un‖H

in Ω,

wn � 0 in Ωn.

It follows that
−div(|x|−(N−2)∇w1) = λ1|x|−N−2w1,

where w1 = |x|av1 < 0 is the first eigenvector associated to the eigenvalue problem in
the space W 1,2

0 (|x|−(N−2)dx) . Moreover, wn → w1 in C 1,α(Ω) , in particular wn(xn) →
w1(xn) < 0. Since wn(xn) = |xn|avn(xn) � 0, we reach a contradiction. Hence the result
follows. �



ELLIPTIC PROBLEMS WITH MEASURE DATA 277

5. Appendix

5.1. Semilinear problems

We consider the following problem in Hγ(Ω) ,

(P) ≡
{

Lu = f (x,u)+ |x|−2βh(x) in Ω,
u = 0 on ∂Ω,

(5.1)

where β < 1, h(x) ∈ Lr
k(Ω) ⊂ H ′(Ω), k = (N − 2)(2− r)/(2r) with r > N/2, and

f (u,x) = |x|−2βg(u) with g ∈ C 2(IR) is such that

1) g(0) = 0,

2) g′′(s) > 0 in IR , namely, g(s) is a convex function,

3) lim
s→− ∞

g′(s) = δ ′, lim
s→+∞

g′(s) = δ ′′ and 0 < δ ′ < λ1 < δ ′′ < λ2 .

REMARK 5.1. Since g(s) ∈C2(IR) and g′(s) is an increasing function, then

lim
s→− ∞

g′(s) = δ ′ and lim
s→∞

g′(s) = δ ′′

implies 0 < δ ′ � g′(s) � δ ′′ . Therefore, g(s) is strictly increasing function and since
g(0) = 0 we state that sg(s) > 0 for s > 0. Furthermore, by integration it follows easily
that δ ′s � g(s) � δ ′′s in [0,s] and δ ′′s � g(s) � δ ′s in [s,0] .

We begin by proving the next result.

THEOREM 5.2. Assume that the above hypotheses on g hold, then problem has
at most two positive solutions u1 , u2 such that u1 < u2 . Moveover if u is a solution,
then v = |x|au ∈ C α(Ω) .

Proof. Assume that problem (P) has two solutions u1 and u2 . Consider w =
u1−u2 , then w solves

Lw = f (x,u1)− f (x,u2) = |x|−2β g(u1)−g(u2)
u1−u2

w ≡ η(x)w,

where η(x) =
g(u1)−g(u2)

u1−u2
if u1(x) �= u2(x) and η(x) = g′(u1(x)) for u1(x) = u2(x) .

From the hypotheses on g we conclude that 0 � η(x) < λ2 . Since w �= 0, then
λi(η(x)) = 1 for some i . It is clear that 1 = λi(η(x)) > λi(λ2) = λi

λ1
. Hence it fol-

lows that i = 1 and then w has a fixed sign, therefore u1 < u2 in Ω .
Assume by contradiction that problem (P) has three solutions u1 < u2 < u3 . Con-

sider w1 = u2−u1 and w2 = u3−u2 , then

L(w1) = η1(x)w1 and L(w2) = η2(x)w2.
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Using the convexity of g it follows that η1(x) < η2(x) , hence we get a contradiction
with the fact that λ1(η1(x)) = λ1(η2(x)) . �

The next lemma will be systematically used in this section.

LEMMA 5.3. Let z be a real function such that |x|az ∈ C α(Ω) , then for any h
such that |x|ah ∈ C α(Ω) , problem (5.1) has a subsolution u1 such that u � z in Ω .
Moreover, |x|au1 ∈ C α(Ω) .

Proof. Let u any solution to problem (5.1). By setting v(x) = |x|au , a = N−2
2 , it

follows that{−div(|x|−(N−2)∇v) = |x|−a−2βg(|x|−av)+ |x|−a−2βh(x) in Ω,
v = 0 on ∂Ω.

(5.2)

It is clear that v ∈ C α(Ω) . To prove the lemma we have to show that for all z1(x) =
|x|az(x) such that z1 ∈ C α(Ω) , there exists a subsolution v1 of (5.2) such that v1 ∈
C α(Ω) and v1 � z1 .

Let λ and ε0 fixed constants such that

lim
s→−∞

g(s)
s

� λ − ε0 < λ < λ1. (5.3)

For fixed k > 0, consider ϕ as the solution to the problem

−div(|x|−(N−2)∇ϕ) = λ |x|−2a−2βϕ−λ |x|−2a−2βk in Ω,ϕ ∈W 1,2
0 (|x|−2adx,Ω).

It is clear that ϕ ∈ C α(Ω) and ϕ < 0 in Ω . We set v = ϕ− k , then v solves

−div(|x|−(N−2)∇v) = λ |x|−2a−2βϕ−λ |x|−2a−2βk = λ |x|−2a−2βv in Ω, v =−k on ∂Ω.

Since λ < λ1 , using the strong maximum principle we conclude that v � −k . Since
z1, |x|ah ∈ C α(Ω) , then we can choose k large enough such that

v � z1 and |||x|ah||
C α (Ω) � ε0k.

Using the main properties of g we get
g(|x|−av)
|x|−av

< λ − ε0 , hence we conclude that

g(|x|−av) > λ |x|−av+ ε0k|x|−a and then

|x|−a−2βg(|x|−av) > λ |x|−2a−2βv+ ε0k|x|−2a−2β .

Thus

−div(|x|−(N−2)∇v) = λ |x|−2a−2βv � |x|−a−2βg(|x|−av)− ε0k|x|−2a−2β

� |x|−a−2βg(|x|−av)+ |x|−ah in Ω,
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and then the result follows. �

In the sequel, we will assume that h ∈ C α(Ω) . Define

N1 = {h ∈ C α(Ω) : problem (5.1) has exactly one solution},
N2 = {h ∈ C α(Ω) : problem (5.1) has two solutions},
N3 = {h ∈ C α(Ω) : problem (5.1) has no solution}.

Let N = N1 ∪N2 . We begin by proving the next lemma.

LEMMA 5.4. Let M be a bounded set of C α(Ω) , then there exists ρ > 0 such
that if u is a solution to problem (5.1) with h ∈ M , then |||x|au||C α (Ω) � ρ .

Proof. As above, by setting v = |x|au , problem (5.1) is equivalent to the problem

−div(|x|−(N−2)∇v) = |x|−a−2βg(|x|−av)+ |x|−a−2βh in Ω. (5.4)

Therefore we have just to show that ||v||C α (Ω) � ρ for all h ∈ M . We claim the ex-

istence of v ∈ C α(Ω) such that for all solution to (5.4) with h ∈ M , we have v � v .
Fixed λ as in (5.3), then

g(|x|−as) � λ |x|−as−C|x|−a.

Let C1 = suph∈M ||h||C α (Ω) . Thus

|x|−a−2βg(|x|−av)+ |x|−a−2βh(x) � λ |x|−2a−2β v−C|x|−2a(|x|−2β +C1).

Consider now v̂ the unique solution to the problem

−div(|x|−(N−2)∇v̂) = λ |x|−2a−2β v̂−C|x|−2a(|x|−2β +C1).

Then v̂ ∈ C α(Ω) and since λ < λ1 , it follows that v̂ � v , where v is any solution to
(5.4). Hence the claim follows. To prove the lemma we argue by contradiction. Suppose

the existence of a sequence {hn} ⊂M with ||vn||C α (Ω) →∞ . We set wn =
vn

||vn||C α (Ω)
,

then

−div(|x|−(N−2)∇wn) =
|x|−a−2βg(|x|−avn)

||vn||C α (Ω)
+

|x|−ah
||vn||C α (Ω)

. (5.5)

Using the linear behavior of g we obtain that {wn} is bounded in

C α(Ω)∩W 1,2
0 (|x|−(N−2)dx,Ω).

Hence classical regularity theory allows us to prove that wn → w strongly in C α(Ω) .
Thus ||w||C α (Ω) = 1. Since vn � v̂ , then w � 0. Consider ϕ1 the first eigenfunction
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defined in Theorem 2.3. Using ϕ1 as a test function in (5.5), we obtain that

λ1

∫
Ω

|x|−2a−2βϕ1wndx =
∫
Ω

|x|−a−2βg(|x|−avn)ϕ1

||vn||C α (Ω)
dx+

∫
Ω

|x|−ahϕ1

||vn||C α (Ω)

� λ
∫
Ω

|x|−2a−2βϕ1wndx+o(1).

Letting n → ∞ , it follows that

λ1

∫
Ω

|x|−2a−2βϕ1wndx � λ
∫
Ω

|x|−2a−2βϕ1wdx,

which is a contradiction with the fact that λ > λ1 and that w � 0. Hence we get the
desired result.

LEMMA 5.5. Under the same hypotheses as in the previous lemmas, we obtain
that N is a non bounded convex set with N−U = N , where U = {z ∈ C α(Ω) : z � 0} .

Proof. We begin by proving that N is a convex set. Let h1,h2 ∈ N and let u1,u2 ,
the corresponding solution to h1 and h2 . Let h = th1 +(1− t)h2 where 0 � t � 1, and
define ũ = tu1 +(1− t)u2 . Since f (x, ũ) � |x|−2β (t(g(u1)+(1− t)g(u2)) = t f (x,u1)+
(1− t) f (x,u2) , we conclude that

L(ũ) = tL(u1)+ (1− t)L(u2) � f (x, ũ)+h.

Therefore ũ is a supersolution to problem (5.1). It is clear that |x|au ∈ C α(Ω) , then
using the previous lemma, we get the existence of a subsolution û to problem (5.1)
with û � ũ . The existence result follows using an iteration argument. It is clear that N
is non empty. To see that, we consider φ ∈ C ∞

0 (Ω) such that φ = 0 in Bη(0) ⊂⊂ Ω .
By setting h = Lφ − f (x,φ), it follows that h ∈ N , thus N �= /0 . We prove now that
N−U = N . Let h∗ ∈ N−U , then h∗ = h1− z � h1 with h1 ∈ N . Let u1 be a solution
to (5.1) with h = h1 . It is clear that u1 is a supersolution to (5.1) with h = h∗ . Using
Lemma 5.3 we get the existence of a subsolution u2 such that u2 � u1 . Hence an it-
eration argument allows us to prove the existence of a solution to problem (5.1) with
h = h∗ . Thus h∗ ∈ N . Therefore we conclude that N is not bounded. �

As a consequence we get easily that N3 = �N and N3 −U = N3 . We prove now
the main result of this section.

THEOREM 5.6. Under the above hypotheses on g, we have that N is a closed
convex set, N2 = Int(N) , N1 = ∂N . N3 is a convex open set and it is not bounded.

Proof. We begin by proving that N3 �= /0 . We claim the existence of C0 > 0 such
that if h ∈ C α(Ω) with h(x) � C0 , then problem (5.1) has no solution. To prove the
claim, we use the main properties of g . Notice that

g(s) > λ s−C1 for all s ∈ IR,
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g(s) > λ s−C1 for all s ∈ IR,

where λ < λ1 < λ . We set C0 = C1 . Let h ∈ C α(Ω) with h(x) � C0 . Assume by
contradiction that h ∈ N . Let u be a solution to problem (5.1) corresponding to the
above h . Then

Lu = f (x,u)+ |x|−2βh,u ∈ H(Ω). (5.6)

Using u− as a test function in the above equation, we get

−(
∫
Ω

|∇u−|2dx−ΛN

∫
Ω

u2−
|x|2 dx) =

∫
Ω

g(x,u)u−dx+
∫
Ω

|x|−2βhu−dx

� −λ
∫
Ω

|x|−2βu2
−dx+

∫
Ω

|x|−2βu−(h(x)−C0)dx.

Since h(x) � C0 , there results that

∫
Ω

|∇u−|2dx−ΛN

∫
Ω

u2−
|x|2 dx � λ

∫
Ω

|x|−2βu2
−dx.

Using the fact that λ < λ1 , we conclude that u− ≡ 0 and then u � 0. Taking ϕ1 (the
first eigenfunction defined in Theorem 2.3) as a test function in (5.6), it follows that

λ1

∫
Ω

uφ1|x|−2βdx =
∫
Ω

|x|−2βg(u)φ1dx+
∫
Ω

|x|−2βh(x)φ1dx

� λ
∫
Ω

uφ1|x|−2βdx+
∫
Ω

|x|−2βu(h(x)−C)dx � λ
∫
Ω

uφ1|x|−2βdx.

Since u � 0, we reach a contradiction. Thus h ∈ N3 and then N3 �= /0 .
To complete the proof, we use classical Leray-Schauder topological degree, see

[14].
For h ∈ C α(Ω) , we define T ( f ) = w ∈ C α(Ω) , the solution to the problem

−div(|x|−(N−2)∇w) = |x|−a−2βh, w ∈W 1,2
0 (|x|−(N−2)dx,Ω).

It is clear that T is well defined as a linear operator from C α(Ω) into C α (Ω) . We set
G(w) = T (g(|x|−aw)) . It is not difficult to see that G is a compact operator from E in
itself, where

E = {w ∈ C α(Ω) : w = 0 on ∂Ω}.
Define now Ψ(w) = w−G(w) . Solving problem (5.2), and then problem (5.1), is
equivalent to solve Ψ(w) = T (h) . Using Lemma 5.4, we know that for all C > 0, there
exists R(C) such that if Ψ(w) = T (h) with ||h||Cα (Ω) � C , then ||w||C α (Ω) < R(C) .
Hence the topological degree deg(Ψ,BR,Sh) is well defined and it is independent of R
once we have R � R(||h||C α (Ω)) .
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In the same way, it follows that deg(Ψ,BR,Sh) is independent of h once we have
||h||C α (Ω) �C2 and R > R(C2) . Since N3 �= /0 , then for h∗ ∈N3 , we get deg(Ψ,BR,Sh∗)
= 0. Hence there results that

deg(Ψ,BR,Sh) = 0, ∀h ∈ C α (Ω), ∀R � R(||h||Cα (Ω).

We prove now that N1 ⊂ ∂N . We argue by contradiction. Let h∗ ∈ N1 with
h∗ ∈ int(N) , then for ε small, h∗ + ε ∈ int(N) and then we get the existence of a
solution wε to the problem

−div(|x|−(N−2)∇wε ) = |x|−a−2βg(|x|−awε)+ |x|−a−2β(h∗ + ε),

wε ∈W 1,2
0 (|x|−(N−2)dx,Ω).

Let w∗ be the unique solution to (5.2) with h = h∗ . It is clear that wε is a supersolution
to the corresponding equation with h∗ . Since h∗ ∈ N1 , then necessary w∗ � wε , other-
wise we get the existence of second solution to problem (5.2) with h = h∗ , which is a
contradiction with the fact that h∗ ∈ N1 . Hence w∗ � wε and by the strong maximum
principle it follows that w∗ < wε in Ω . Set ϖ = wε −w∗ , then ϖ solves

−div(|x|−(N−2)∇ϖ) = |x|−2a−2βθ (x)ϖ + ε|x|−a−2β ,

where

θ (x) =
g(|x|−awε )−g(|x|−aw∗)

|x|−a(wε −w∗)
.

Hence we conclude that λ1(θ (x)) > 1. On the other hand, using the convexity of
g , we obtain that g′(|x|−aw∗) < θ (x) in Ω . Hence 1 < λ1(θ ) < λ1(g′(|x|−aw∗)) .
Therefore I −G′(w∗) is invertible and then G′(w∗) has no eigenvalue in [0,1] , thus
i(Ψ,BR,Sh∗) = +1, the topological index.

Since the global topological degree is 0, we conclude that problem (5.2) has a
second solution corresponding to h = h∗ , a contradiction with the fact that h∗ ∈ N1 .
Hence N1 ⊂ ∂N.

We prove now that N2 ⊂ Int(N) . Let h1 ∈ N2 , then problem (5.1), with h = h1 ,
has two solutions u1,u2 such that u1 < u2 in Ω . Setting wi = |x|aui , i = 1,2, we get
the existence of two solutions w1 < w2 to problem (5.2). Let w∗ = w2 −w1 , then

−div(|x|−(N−2)∇w∗) = |x|−2a−2βρ(x)w∗,

where

ρ(x) =
g(|x|−aw2)−g(|x|−aw1)

|x|−a(w2 −w1)
.

Hence λ1(ρ(x)) = 1. Using the properties of g it follows that

g′(|x|−aw2(x)) < ρ(x) < g′(|x|−aw1(x)) in Ω.

Thus we conclude

λ1(g′(|x|−aw2(x))) < 1 < λ1(g′(|x|−aw1(x))).
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Now, since g′(|x|−aw2(x)) < λ2 there results that λ2(g′(|x|−aw2(x))) > 1. Hence
Φ′(w1) and Ψ(w2) are invertible. Therefore using the local Inversion Theorem, we
conclude that h∗ ∈ Int(N2) . Therefore, N2 ⊂ Int(N) .

Since N = N1 ∪N2 , N1 ⊂ ∂N and N2 ⊂ IntN , we conclude that N2 = IntN and
N1 = ∂N and the result follows.
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[3] B. ABDELLAOUI, E. COLORADO, M. SANCHÓN, Regularity of entropy solutions of quasilinear el-
liptic problems related to Hardy-Sobolev inequalities, Adv. Nonlinear Stud., 6, 4 (2006), 547–562.

[4] ABDELLAOUI, B., PERAL, I., On quasilinear elliptic equations related to some Caffarelli- Kohn-
Nirenberg inequalities, Commun. Pure Appl. Anal., 2, 4 (2003), 539–566.

[5] ABDELLAOUI, B., PERAL, I., A note on a critical problem with natural growth in the gradient, J. Eur.
Math. Soc., 8, 2 (2006), 157–170.

[6] A. AMBROSETTI, G. PRODI, On the inversion of some differentiable mappings with singularities
between Banach spaces, Ann. Mat. Pura Appl., 93, 4 (1972), 231–246.

[7] A. AMBROSETTI, G. PRODI, A primer of nonlinear analysis, Cambridge Studies in Advanced Math-
ematics 34, Cambridge University Press, Cambridge, 1993.

[8] S. ALAMA, Semilinear elliptic equations with sublinear indefinite nonlinearities, Adv. Diff. Equa-
tions, 4, 6 (1999), 813–842.

[9] H. AMANN, P. QUITTNER, Elliptic boundary value problems involving measures: existence, regular-
ity, and multiplicity, Adv. Differential Equations, 3, 6 (1998), 753–813.

[10] P. BARAS, J.A. GOLDSTEIN, The heat equation with a singular potential, Trans. Amer. Math. Soc.
284, 1 (1984), 121–139.

[11] P. BARAS, M. PIERRE, Critre d’existence de solutions positives pour des quations semi-linaires non
monotones, Ann. Inst. H. Poincar Anal. Non Linaire, 2, 3 (1985), 185–212.

[12] P. BARAS, M. PIERRE, Singularits liminables pour des quations semi-linaires, Ann. Inst. Fourier, 34,
1 (1984), 185–206.

[13] P. BNILAN, H. BREZIS, Nonlinear problems related to the Thomas-Fermi equation. Dedicated to
Philippe Bnilan, J. Evol. Equ., 3, 4 (2003), 673–770.

[14] H. BERESTYCKI, Le nombre de solutions de certains problmes semi-linaires elliptiques, J. Funct.
Anal., 40, 1 (1981), 1–29.
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