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BLOW–UP PROPERTIES FOR PARABOLIC

SYSTEMS WITH LOCALIZED NONLINEAR SOURCE
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Abstract. This paper deals with blow-up properties of solutions to a semilinear parabolic system
with nonlinear localized source involved a product with local terms

ut = Δu+ exp{mu(x,t)+nv(x0 ,t)}, vt = Δv+ exp{pu(x0,t)+qv(x,t)}
with homogeneous Dirichlet boundary conditions. We investigate the influence of localized

sources and local terms on blow-up properties for this system, and prove that: (i) when m, q �
0 this system possesses uniform blow-up profiles, in other words, the localized terms play a
leading role in the blow-up profile for this case; (ii) when m, q > 0 , this system presents single
point blow-up patterns, or say that local terms dominate localized terms in the blow-up profile.
Moreover, the blow-up rate estimates in time and space are obtained, respectively.

1. Introduction

In this paper, we deal with the following problem

ut = Δu+ exp{mu(x,t)+nv(x0,t)}, x ∈Ω, t > 0,
vt = Δv+ exp{pu(x0,t)+qv(x,t)}, x ∈Ω, t > 0,
u = v = 0, x ∈ ∂Ω, t > 0,
u(x,0) = u0(x), v(x,0) = v0(x), x ∈Ω,

(1.1)

where Ω⊂ R
N is a bounded domain with smooth boundary ∂Ω , p, n � 0, q, m ∈ R ,

pn �= 0 and x0 ∈ Ω is a fixed point, the initial data u0(x), v0(x) ∈ C0(Ω) are non-
negative and nontrivial functions.

Problem (1.1) describes a physical phenomenon where the reaction in a dynamic
system is driven by the temperature at a single point involved a product with local
terms see [1, 12]. Using the methods used in [4, 17] we know that (1.1) has a local
non-negative solution, and that the comparison principle is true.

The blow-up properties of solution to the following single equation

ut = Δu+ f (u(x0(t),t)), x ∈Ω, t > 0,
u(x,t) = 0, x ∈ ∂Ω, t > 0,
u(x,0) = u0(x) � 0, x ∈Ω

(1.2)
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have been discussed by many authors, see [2, 3, 17, 18, 19] and the references therein.
In particular, Souplet [18] proved that if f (u) = up with p > 1, then

lim
t→T

(T − t)1/(p−1)u(x,t) = lim
t→T

(T − t)1/(p−1)‖u(·,t)‖∞ = (p−1)−1/(p−1) (1.3)

uniformly on the compact subset of Ω , and if f (u) = eu , then

lim
t→T

| ln(T − t)|−1u(x,t) = lim
t→T

| ln(T − t)|−1‖u(·,t)‖∞ = 1 (1.4)

uniformly on the compact subset of Ω , where T is the blow-up time of u .
In [11], Lin et. al. studied the blow-up properties of solutions to the parabolic

system
ut = Δu+ ev(x0,t), vt = Δv+ eu(x0,t) x ∈Ω, t > 0,
u = v = 0, x ∈ ∂Ω, t > 0,
u(x,0) = u0(x) � 0, v(x,0) = v0(x) � 0, x ∈Ω.

(1.5)

They first proved that the solution (u,v) of (1.5) blows up in finite T . And for a special
case Ω= B(0,R) and x0 = 0, they obtain the blow-up rate estimates

− ln(T − t)− v0(0) � supu(·,t) � C(1− ln(T − t)), t ∈ [0,T ),
− ln(T − t)−u0(0) � supv(·,t) � C(1− ln(T − t)), t ∈ [0,T ). (1.6)

In [8], Li and Wang considered the following system

ut = Δu+ exp{mu(x0,t)+nv(x0,t)}, x ∈Ω, t > 0,
vt = Δv+ exp{pu(x0,t)+qv(x0,t)}, x ∈Ω, t > 0

(1.7)

with null Dirichlet boundary conditions and m, n, p, q are positive constants. They
obtain the necessary conditions and a sufficient condition for which two components
blow up simultaneously and establish the uniform blow-up profiles in the interior. Their
main results were stated as follows.

THEOREM A. (1) Suppose that the initial data (u0(x),v0(x)) satisfies Δu0(x)+
exp{mu0(x0)+ nv0(x0)} � 0, Δv0(x)+ exp{pu0(x0)+ qv0(x0)} � 0 : if u and v blow
up simultaneously, then p � m and n � q, or p < m and n < q; if p � m and n � q,
then u and v blow up simultaneously.

(2) Under the assumptions of (1), the following statements hold on any compact
subset of Ω:

(i) If p > m and n > q, then

lim
t→T

u(x, t)| ln(T − t)|−1 =
n−q

np−mq
, lim

t→T
v(x,t)| ln(T − t)|−1 =

p−m
np−mq

.

(ii) If p > m and n = q, then

lim
t→T

u(x, t){ln(| ln(T − t)|)}−1 =
1

p−m
, lim

t→T
v(x, t)| ln(T − t)|−1 =

1
q
.
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(iii) If p = m and n > q, then

lim
t→T

u(x, t)| ln(T − t)|−1 =
1
m

, lim
t→T

v(x,t){ln(| ln(T − t)|)}−1 =
1

n−q
.

(iv) If p = m and n = q, then

lim
t→T

u(x, t)| ln(T − t)|−1 =
1

m+n
, lim

t→T
v(x,t)| ln(T − t)|−1 =

1
p+q

.

(v) If p < m and n < q, then

lim
t→T

u(x, t)| ln(T − t)|−1 =
q−n

mq−np
, lim

t→T
v(x,t)| ln(T − t)|−1 =

m− p
mq−np

.

In [23], Zhao consider the following local problem

ut = Δu+λ exp{mu(x,t)+nv(x,t)}, x ∈Ω, t > 0,
vt = Δv+ μ exp{pu(x,t)+qv(x,t)}, x ∈Ω, t > 0,
u = v = 0, x ∈ ∂Ω, t > 0,
u(x,0) = u0(x), v(x,0) = v0(x), x ∈Ω,

(1.8)

where Ω= B(0;R) = {x ∈ R
N : |x| < R} , u0(x) and v0(x) are continuous nonnegative

functions on Ω vanishing on ∂Ω ; constants λ ,μ > 0 p, n � 0, q, m ∈ R and pn �= 0.
Their main results are states as follows.

THEOREM B. (1) If (n− q)(np−mq) > 0 or (p−m)(np−mq) > 0 , then the
solution of problem (1.8) blows up in finite time.

(2) If (n− q)(np−mq) < 0 and (p−m)(np−mq) < 0 , then the solution of
problem (1.8) exists globally.

In this paper, combining [8] and [23], we shall explore the influence of localized
terms and local terms in the blow-up properties of system (1.1). The main methods of
this paper is to extend Souplet’s method [18] to problem (1.1) and establish the uniform
blow-up profiles in the interior. Our main results are stated as follows.

THEOREM 1.1. If (n− q)(np−mq) > 0 or (p−m)(np−mq) > 0 , then the so-
lution of problem (1.1) blows up in finite time.

THEOREM 1.2. Assume that (u,v) is a classical solution of (1.1), which blows
up in finite time T . If m, q � 0 , then the following statements hold uniformly on any
compact subset of Ω .

(i) If m, q < 0 and pn−qm > 0 , then

limt→T (T − t)θeu(x,t) = θθ (σ/θ )n/(pn−qm),

limt→T (T − t)σev(x,t) = σσ (θ/σ)p/(pn−qm),

where σ = (p−m)/(pn−qm), θ = (n−q)/(pn−qm).
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(ii) If m = 0 and q < 0 , then

limt→T | ln(T − t)|−1u(x,t) = (n−q)/(np), limt→T | ln(T − t)|−1v(x,t) = 1/n.

(iii) If m = q = 0 , then

limt→T | ln(T − t)|−1u(x,t) = 1/p, limt→T | ln(T − t)|−1v(x,t) = 1/n.

(iv) If m < 0 and q = 0 , then

limt→T | ln(T − t)|−1u(x,t) = 1/p, limt→T | ln(T − t)|−1v(x,t) = (p−m)/(np).

REMARK 1.1. When m � 0 and q � 0, Theorem 1.2 shows that the localized
terms epu(x0,t) and env(x0,t) play a leading role in the blow-up profile.

REMARK 1.2. In the case when m > 0 and q � 0, or m � 0 and q > 0, we do
not know how to deal with the blow-up properties of system (1.1).

Next we focus on the case m, q > 0. Let us first introduce the following assump-
tions:

(H1) m, q > 0 and Ω= B(0;R) , x0 = 0;
(H2) initial data u0(x), v0(x) : B(0;R) → R

1 are nonnegative nontrivial, radially
symmetric non-increasing functions and vanish on ∂B(0;R) ;

(H3) the initial data u0(x) and v0(x) satisfy Δu0(x)+ exp{mu0(x)+nv0(0)} � 0
and Δv0(x)+ exp{pu0(0)+qv0(x)} � 0 in Ω .

REMARK 1.3. Under the assumption (H2) and Ω = B(0;R) , the solution (u,v)
of problem (1.1) is radially symmetric and non-increasing in x (see [5]). Therefore,
u(x,t) = u(r, t) , v(x, t) = v(r,t) and u(0,t) = maxΩ u(·, t) , v(0,t) = maxΩ v(·,t) .

THEOREM 1.3. Let p � m > 0 and n � q > 0 , and assumptions (H1)-(H3) hold.
Let (u,v) be a classical solution to problem (1.1) in B(0;R)× (0,T) , which blows up
in finite time T . Then u and v must blow up simultaneously.

THEOREM 1.4. Under assumptions (H1)-(H3), if (u,v) is a classical solution to
problem (1.1) in B(0;R)× (0,T ) and u, v blow up simultaneously in finite time T ,
then the parameters m, n, p and q must satisfy: (a) p � m and n � q, or (b) p < m
and n < q.

THEOREM 1.5. Let the assumptions (H1) and (H2) be satisfied. If (u,v) is a
classical solution of problem (1.1) which blows up in finite time T , then x = 0 is the
only blow-up point.

REMARK 1.4. When m > 0 and q > 0, Theorem 1.5 illustrates that the local
terms emu(x,t) and eqv(x,t) dominate the localized terms epu(x0,t) and env(x0,t) in the blow-
up profile.

When u and v blow up simultaneously, we may estimate the blow-up rate as
follows.
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THEOREM 1.6. Under the condition of Theorem 1.4, there exist constants 0 <
c � C such that the following statements hold for all 0 � t < T .

(i) If p > m and n > q, or p < m and n < q, then

lnc(T − t)−θ � u(0,t) � lnC(T − t)−θ ,

lnc(T − t)−σ � v(0,t) � lnC(T − t)−σ ,

where θ and σ are defined in Theorem 1.2.
(ii) If p > m and n = q, then

c| ln(T − t)|� exp{(p−m)u(0,t)}� C| ln(T − t)|,

c(T − t)−1 � exp{qv(0,t)}{v(0,t)} p
p−m � C(T − t)−1.

(iii) If p = m and n > q, then,

c(T − t)−1 � exp{mu(0,t)}{u(0,t)} n
n−q � C(T− t)−1,

c| ln(T − t)|� exp{(n−q)v(0,t)}� C| ln(T − t)|.
(iv) If p = m and n = q, then

c| ln(T − t)|� u(0,t) � C| ln(T − t)|,

c| ln(T − t)|� v(0,t) � C| ln(T − t)|.
REMARK 1.5. If m = q, n = p and u0(x) = v0(x) , then the system (1.1) turns

to a single equation. From Theorems 1.2-1.5, we draw a complete conclusion on the
blow-up profiles. More precisely, the problem possesses uniformly blow-up profile if
and only if m � 0.

Furthermore, for problem (1.1) with suitable initial data, its blow-up rate in space
can be evaluated as follows.

THEOREM 1.7. Let (H1) and (H2) be satisfied. Suppose further that there exists
some constant c > 0 such that u′0(r) � −cr and v′0(r) � −cr in [0,R] . If the classical
solution (u,v) of problem (1.1) blows up in finite time T , then

u(r, t) � ln(Cr−α ), v(r,t) � ln(Cr−β ), (r,t) ∈ (0,R]× [0,T)

holds for some constant C > 0 and for any α > 2/m, β > 2/q.

REMARK 1.6. For the following coupled equations with the same initial and
boundary condition as system (1.1)

ut =Δu+exp{mu(0, t)+nv(x,t)}, vt =Δv+exp{pu(x,t)+qv(0,t)}, x∈B(0;R), t > 0,

the assertion of Theorems 1.3-1.4 and 1.6 are still true only if we keep assumption (H2)
and replace assumptions (H1) and (H3) by (A1) and (A3) respectively,
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(A1) The initial data u0(x) and v0(x) satisfy Δu0(x)+ exp{mu0(0)+nv0(x)} � 0
and Δv0(x)+ exp{pu0(x)+qv(0)}� 0 in B(0;R) .

(A3) n > 0 and p > 0.

REMARK 1.7. A simple modification of our proofs, we can get the similar results
(that is, replacing p with p|Ω| and q with q|Ω| in Theorems 1.2-1.7, where |Ω| is the
measure of Ω) to the following nonlocal semilinear parabolic systems

ut = Δu+ exp{mu(x,t)+n
∫
Ω v(x,t)}, x ∈Ω, t > 0,

vt = Δv+ exp{p
∫
Ω u(x,t)+qv(x,t)}, x ∈Ω, t > 0,

u = v = 0, x ∈ ∂Ω, t > 0,
u(x,0) = u0(x), v(x,0) = v0(x), x ∈Ω.

(1.9)

Similarly, as Remark 1.6, we can consider the following problem

ut = Δu+ exp{m∫
Ω u(x,t)+nv(x,t)}, x ∈Ω, t > 0,

vt = Δv+ exp{pu(x,t)+q
∫
Ω v(x,t)}, x ∈Ω, t > 0,

u = v = 0, x ∈ ∂Ω, t > 0,
u(x,0) = u0(x), v(x,0) = v0(x), x ∈Ω.

(1.10)

There are many known results about blow-up properties for parabolic equations,
we refer to [6, 7, 8, 9, 10, 11, 13, 15, 16, 24] and the references therein. We remark
a recent paper [22], in which, Xiang et. al. considered the following Cauchy problem
with moving source

ut = Δu+λ exp{mu(x0(t),t)+nv(x0(t),t)}, x ∈ R
N , t > 0,

vt = Δv+ μ exp{pu(x0(t),t)+qv(x0(t),t)}, x ∈ R
N , t > 0,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ R
N ,

(1.11)

where x0 : R
+ → R

N is Hö lder continuous, and λ , μ > 0, m, n, p, q are constants
with pn > 0. They first give the blow-up criterion, and then deal with the possibilities of
simultaneous blow-up or non-simultaneous blow-up under some suitable assumptions.
Moreover, when simultaneous blow-up occurs, they also establish the precise blow-up
rate estimates.

This paper is organized as follows. In the next section, we consider the uniform
blow-up profile to problem (1.1) and prove Theorems 1.1 and 1.2. In Section 3, we
prove Theorems 1.3-1.7.

2. Proofs of Theorems 1.1 and 1.2

In this section, we investigate the blow-up profiles of (1.1) and prove Theorem 1.1
and 1.2.

2.1. Proof of Theorem 1.1

We use the results of [23] (see Theorem B) and comparison principle (see [14]
and [15]) to prove Theorem 1.1. Without loss of generality we may assume that
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u0(x), v0(x) > 0 in Ω . And hence u, v > 0 in Ω× [0,T ) , T being the maximal
existence time of (u,v) .

Let B(x0,d) be the ball centered at x0 with radius d > 0 such that B(x0,d) ⊂Ω .
Let (u,v) be the solution of the auxiliary problem

ut = Δu+ exp{mu(x,t)+nv(x,t)}, x ∈ B(x0,d), t > 0,
vt = Δv+ exp{pu(x,t)+qv(x,t)}, x ∈ B(x0,d), t > 0,
u = v = 0, x ∈ ∂B(x0,d), t > 0,
u(x,0) = u0(x), v(x,0) = v0(x), x ∈ B(x0,d),

(2.1)

where u0(x) and v0(x) are non-negative smooth symmetric, radially non-increasing
functions which are less than u0(x) and v0(x) on B(x0,d) respectively. Then u(·,t) and
v(·,t) are radially symmetric non-increasing. By the comparison principle, u � u, v � v
as long as (u,v) and (u,v) exist. By Theorem B, (u,v) blows up in finite time, and so
does (u,v) . The proof of Theorem 1.1 is complete. �

2.2. Proof of Theorem 1.2

In what follows we intend to verify Theorem 1.2. For convenience, denote

f (t) = epu(x0,t), F(t) =
∫ t

0
f (s)ds, g(t) = env(x0,t), G(t) =

∫ t

0
g(s)ds. (2.2)

Before we prove Theorem 1.2, we claim that if (u,v) is a classical solutions of system
(1.1) which blows up in finite time T , that is

‖u(·,t)‖∞+‖v(·,t)‖∞ → ∞ as t → T, (2.3)

then u and v blow up simultaneously if m � 0 and q � 0. In fact, we have

LEMMA 2.1. Let f , F, g, and G be the functions defined in (2.2). Assume that
(u,v) is a classic solution of problem (1.1), which blows up in finite time T . Let m � 0
and q � 0 , then

lim
t→T

g(t) = lim
t→T

G(t) = ∞, lim
t→T

f (t) = lim
t→T

F(t) = ∞. (2.4)

Moreover, u and v blow up simultaneously.

Proof. Since (u,v) blows up in finite time T , it can be deduced that

‖u(·,t)‖∞ → ∞ or ‖v(·,t)‖∞ → ∞ as t → T.

Without loss of generality we may assume ‖u(·,t)‖∞ → ∞ as t → T . Suppose in the
contrary, that limt→T g(t) < ∞ . So, from the equation of u in system (1.1), we know
that u exists globally, since m � 0, this is a contradiction. Therefore, limt→T g(t) =∞ .

Combining limt→T g(t) =∞ and g(t) = env(x0,t) yields that v(x0, t)→∞ as t → T .
Namely, u and v blow up simultaneously.
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Next, we infer that limt→T G(t) = ∞ . Set U(t) = maxx∈Ω u(x,t) , then U(t) is
Lipschitz continuous and

U ′(t) � emU(t)g(t) a.e. in [0,T ). (2.5)

By integrating (2.5) we get

− 1
me−mU(t) �

∫ t
0 g(s)− 1

me−mU(0) = G(t)− 1
me−mU(0) if m < 0,

U(t) �
∫ t
0 g(s)+U(0) = G(t)+U(0) if m = 0

from limt→T U(t) =∞ , it follows that limt→T G(t) = ∞ .
Furthermore, because if limt→T ‖v(·,t)‖ = ∞ which was showed above, applying

similar arguments as above to the equation of v in system (1.1), it is reasonable that
limt→T f (t) = ∞ and limt→T F(t) = ∞ . The proof of Lemma 2.1 is complete. �

LEMMA 2.2. Let f , F, g, and G be the functions defined in (2.2). Under the
conditions of Theorem 1.2, the following statements hold uniformly on any compact
subset of Ω .

(i) If m < 0 and q < 0 then u(x,t)∼− 1
m ln[−mG(t)], v(x,t)∼− 1

q ln[−qF(t)].
(ii) If m = 0 and q < 0 then u(x,t) ∼ G(t), v(x,t) ∼− 1

q ln[−qF(t)].
(iii) If m = q = 0 then u(x,t) ∼ G(t), v(x,t) ∼ F(t).
(iv) If m < 0 and q = 0 then u(x,t) ∼− 1

m ln[−mG(t)], v(x,t) ∼ F(t),
here the notation u ∼ v means u/v→ 1 as t → T .

Proof. (i) Let m < 0 and q < 0. Direct computations demonstrate

− 1
m

d
dt e

−mu = − 1
mΔe−mu + 1

memu|∇e−mu|2 +g(t),
− 1

q
d
dt e

−qv = − 1
qΔe−qv + 1

q eqv|∇e−qv|2 + f (t). (2.6)

Since emu � 1 and eqv � 1 for u, v � 0 and m, q < 0, we have

− 1
m

d
dt e

−mu � − 1
mΔe−mu +m|∇(− 1

me−mu)|2 +g(t),
− 1

q
d
dt e

−qv � − 1
qΔe−qv +q|∇(− 1

qe−qv)|2 + f (t). (2.7)

Consequently, (− 1
me−mu,− 1

qe−qv) is a super-solution of the problem below

wt = Δw+m|∇w|2 +g(t), zt = Δz+q|∇z|2 + f (t), (x,t) ∈Ω× (0,T),
w = z = 0, (x,t) ∈ ∂Ω× (0,T ),
w(x,0) = − 1

me−mu0(x), z(x,0) = − 1
qe−qv0(x), x ∈Ω,

(2.8)

where g(t) = env(x0,t), f (t) = epu(x0,t) . A simple modification of Theorem 4.1 in [18]
asserts that uniformly on any compact subset of Ω hold

lim
t→T

w(x, t)
G(t)

= lim
t→T

‖w(·,t)‖∞
G(t)

= 1, lim
t→T

z(x,t)
F(t)

= lim
t→T

‖z(·,t)‖∞
F(t)

= 1. (2.9)
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By comparison methods, we obtain that

− 1
m

e−mu � w(x,t), −1
q
e−qv � z(x,t), (x, t) ∈Ω× [0,T). (2.10)

Hence, from (2.9) it follows that, uniformly on any compact subset of Ω holds

liminft→T
e−mu(x,t)

−mG(t) � 1, liminft→T
e−qv(x,t)

−qF(t) � 1,

liminft→T
‖e−mu(·,t)‖∞
−mG(t) � 1, liminft→T

‖e−qv(·,t)‖∞
−qF(t) � 1.

(2.11)

On the other hand, we know that U ′(t) � emU(t)g(t) and V ′(t) � eqV (t) f (t) a.e. in
[0,T ) , where U(t) = maxx∈Ω u(x,t) , V (t) = maxx∈Ω v(x,t) . In view of limt→T F(t) =
limt→T G(t) = ∞ and m, q < 0, we see that

lim sup
t→T

e−mU(t)

−mG(t)
� 1, lim sup

t→T

e−qV(t)

−qF(t)
� 1. (2.12)

So, (2.11) and (2.12) guarantee that, uniformly in any compact subset of Ω

lim
t→T

e−mu

−mG(t)
= lim

t→T

‖e−mu(·,t)‖∞
−mG(t)

= 1, lim
t→T

e−qv

−qF(t)
= lim

t→T

‖e−qv(·,t)‖∞
−qF(t)

= 1. (2.13)

(ii) Let m = 0 and q < 1. Analogous to case (i), we find that (u,− 1
qe−qv) is a super-

solution of (2.8) with w(x,0) = u0(x), z(x,0) = − 1
qe−qv0(x) . Proceeding as case (i) we

arrive at the corresponding conclusion.
Cases (iii) and (iv) can be treated similarly. The proof of Lemma 2.2 is complete.

�

LEMMA 2.3. Let f , F, g, and G be the functions defined in (2.2). Under the
assumption of Theorem 1.2, for any given constants δ , ε and τ satisfying 0 < δ , ε < 1
and τ > 1 , there exists T̃ such that for all t ∈ [T̃ ,T ) , the following statements hold.

(i) If m < 0 and q < 0 then

εδ− n
q (p−m)[−qF(t)]

n−q
−q � τ−

p
m (n−q)[−mG(t)]

p−m
−m ,

εδ− p
m (n−q)[−mG(t)]

p−m
−m � τ−

n
q (p−m)[−qF(t)]

n−q
−q .

(ii) If m = 0 and q < 0 then

εδ− n
q p[−qF(t)]

n−q
−q � τ(n−q)epG(t), δ (n−q)epG(t) � ε−1τ−

n
q p[−qF(t)]

n−q
−q .

(iii) If m = q = 0 then

εδ penF(t) � τnepG(t), δnepG(t) � ε−1τ penF(t).

(iv) If m < 0 and q = 0 then

δ (p−m)enF(t) � ε−1τ−
p
m n[−mG(t)]

p−m
−m , εδ− p

m n[−mG(t)]
p−m
−m � τ(p−m)enF(t).
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Proof. (i) If m < 0 and q < 0. Observe that F ′(t) = f (t) = epu(x0,t) and G′(t) =
g(t) = env(x0,t) . By (i) of Lemma 2.2, we know that for chosen positive constants δ <
1 < τ , there exists t0 < T such that

[−δmG(t)]p/(−m) � F ′(t) � [−τmG(t)]p/(−m), t ∈ [t0,T ),
[−δqF(t)]n/(−q) � G′(t) � [−τqF(t)]n/(−q), t ∈ [t0,T ).

(2.14)

And thus,

[−δmG(t)]p/(−m)

[−τqF(t)]n/(−q) � dF
dG

� [−τmG(t)]p/(−m)

[−δqF(t)]n/(−q) , t ∈ [t0,T ). (2.15)

In view of the right-hand side of (2.15)

[−δqF(t)]n/(−q)dF � [−τmG(t)]p/(−m)dG, t ∈ [t0,T ). (2.16)

Integrating the above inequalities yields that for t0 � t < T ,

q(−δq)n/(−q)

q−n F
q−n
q (s)|tt0 � m(−τm)p/(−m)

m−p G
m−p

m (s)|tt0
� m(−τm)p/(−m)

m−p G
m−p

m (t).
(2.16)

Due to limt→T F(t) = ∞ and q < 0, for given constant 0 < ε < 1, there exists t̃0 : t0 �
t̃0 < T such that F (q−n)/q(t0) � (1−ε)F(q−n)/q(t) for all t ∈ [t̃0,T ) . Hence from (2.16)
it can be deduced that for t̃0 � t < T

εδ− n
q (p−m)[−qF(t)]

q−n
q � τ−

p
m (n−q)[−mG(t)]

m−p
m . (2.17)

Application of similar analysis as above to the left-hand side of (2.15) guarantees that
there exists t∗0 < T such that for t∗0 � t < T ,

εδ− p
m (n−q)[−mG(t)]

m−p
m � τ−

n
q (p−m)[−qF(t)]

q−n
q . (2.18)

Set T̃ = max{t̃0, t∗0} , then (2.17) and (2.18) ensures (i) of Lemma 2.3. Analogous of
case (i), we can draw other conclusions of Lemma 2.3. The proof of Lemma 2.3 is
complete.�

Proof of Theorem 1.2. Choose {δi}∞i=1 , {εi}∞i=1 , {τi}∞i=1 satisfying 0 < δi, εi < 1
and τi > 1 with δi, εi, τi → 1 as i → ∞ . Putting (δ ,ε,τ) = (δi,εi,τi) in Lemma 2.3,
we get T̃i < T such that the corresponding (i)-(iv) of Lemma 2.3 hold for all T̃i � t < T .

(i) Let m < 0 and q < 0. From (i) of Lemma 2.2 if follows that for such sequences
{δi}∞i=1 and {τi}∞i=1 , there exists {ti}∞i=1 : ti < T with ti → T as i → ∞ such that

− 1
m

ln[−δimG(t)] � u(x0,t) � − 1
m

ln[−τimG(t)], ti � t < T. (2.19)

Denote T ∗
i = max{ti, T̃i} , then (2.19) and (i) of Lemma 2.3 assert that for T ∗

i � t < T ,

F ′(t) � δ p/(−m)
i [−mG(t)]p/(−m)

� δ
− pθ

qσ
i (δi/τi)

− p2

m(p−m) (εiσ/θ )
p

p−m [−qF(t)]−
pθ
qσ ,

(2.20)
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F ′(t) � τ
− pθ

qσ
i (τi/δi)

− p2

m(p−m) (σ/(εiθ ))
p

p−m [−qF(t)]−
pθ
qσ . (2.21)

Notice that 1+ pθ
qσ = pn−qm

q(p−m) = 1
qσ < 0 if pn > qm . Integrating (2.20) and (2.21) from

t to T and using of limt→T F(t) = ∞ , we obtain that, for T ∗
i � t < T ,

C−1
i σ(σ/θ )−

p
p−m � (T − t)[−qF(t)]−

1
qσ � c−1

i σ(σ/θ )−
p

p−m , (2.22)

where

ci = δ
− pθ

qσ
i (δi/τi)

− p2

m(p−m) ε
p

p−m
i , Ci = τ

− pθ
qσ

i (τi/δi)
− p2

m(p−m) ε
− p

p−m
i .

Since ci → 1 and Ci → 1 on the account of δi, εi, τi → 1 and T ∗
i → T as i → ∞ , by

letting i → ∞ in (2.22) we find

[−qF(t)]1/(−q) ∼ σσ (θ/σ)p/(pn−qm)(T − t)−σ . (2.23)

Similar as above, it can be inferred that

[−mG(t)]1/(−m) ∼ θθ (σ/θ )n/(pn−qm)(T − t)−θ . (2.24)

From (i) of Lemma 2.2, (2.23) and (2.24), we know that

(T − t)θeu(x,t) ∼ θθ (σ/θ )n/(pn−qm), (T − t)σev(x,t) ∼ σσ (θ/σ)p/(pn−qm) (2.25)

uniformly on any compact subset of Ω . That is, uniformly on any compact subset of Ω
holds

lim
t→T

(T − t)θeu(x,t) = θθ (σ/θ )n/(pn−qm), lim
t→T

(T − t)σev(x,t) = σσ (θ/σ)p/(pn−qm).

(2.26)
(ii) Let m = 0 and q < 0. Analogous as the proof of case (i), it follows from (ii)

of Lemma 2.2 and (iii) of Lemma 2.3 that for T ∗
i � t < T

G′(t) � δ n/(−q)
i [−qF(t)]n/(−q)

� δ n/(−q)
i [εiδiτ

n/q
i p−1(n−q)]

n
n−q exp{ np

n−qG(t)}

= δ
n(n−2q)
−q(n−q)
i τ

n2
q(n−q)
i [εi p−1(n−q)]

n
n−q exp{ np

n−qG(t)},

G′(t) � τ
n(n−2q)
−q(n−q)
i δ

n2
q(n−q)
i [(εi p)−1(n−q)]

n
n−q exp{ np

n−qG(t)}.

(2.27)

And hence, for T ∗
i � t � T

exp{− np
n−qG(t)}G′(t) � δ

n(n−2q)
−q(n−q)
i τ

n2
q(n−q)
i [εi p−1(n−q)]

n
n−q ,

exp{− np
n−qG(t)}G′(t) � τ

n(n−2q)
−q(n−q)
i δ

n2
q(n−q)
i [(εi p)−1(n−q)]

n
n−q .

(2.28)

Define A =− ln(np)− q
n−q ln(n−q) . Integrating (2.28) from t to T and using limt→T G(t)=

∞ , we deduce that for t ∈ [T ∗
i ,T ) ,

ĉi + | ln(T − t)|� np
n−q

G(t) � Ĉi + | ln(T − t)|, (2.29)
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where
ĉi = A+ n(n−2q)

q(n−q) lnτi + n
n−q ln[pεiδ

n/(−q)
i ],

Ĉi = A+ n(n−2q)
q(n−q) lnδi + n

n−q ln[pε−1
i δ n/(−q)

i ].

By joining (2.29) and (ii) of Lemma 2.3, it follows that for T ∗
i � t < T ,

ci + | ln(T − t)| � −n
q

ln(−qF(t)) � Ci + | ln(T − t)|, (2.30)

where

ci = ĉi − n
n−q ln[δ−1

i ε−1
i τ

− n
q

i
p

n−q ], Ci = Ĉi − n
n−q ln[εiτ−1

i δ
− n

q
i

p
n−q ].

Consequently, (2.29) and (2.30) guarantee that for T ∗
i � t < T ,

ĉi + | ln(T − t)|
| ln(T − t)| � npG(t)

(n−q)| ln(T − t)| � Ĉi + | ln(T − t)|
| ln(T − t)| ,

ci + | ln(T − t)|
| ln(T − t)| � n ln[−qF(t)]

−q| ln(T − t)| � Ci + | ln(T − t)|
| ln(T − t)| .

(2.31)

Note that ĉi, Ĉi →A+ n
n−q ln p , and ci, Ci →− ln(np)+ ln(n−q) because of δi, εi, τi →

1 as i → ∞ . By letting i → ∞ in (2.31), we get

lim
t→T

ln[−qF(t)]| ln(T − t)|−1 = −q
n
, lim

t→T
G(t)| ln(T − t)|−1 =

n−q
np

. (2.32)

Therefore, it can be deduces from (ii) of Lemma 2.2 and (2.32) that uniformly on any
compact subset of Ω ,

u(x, t) ∼ G(t) ∼ n−q
np

| ln(T − t)|, v(x,t) ∼−1
q

ln[−qF(t)] ∼ 1
n
| ln(T − t)|. (2.33)

And therefore, uniformly on any compact subset of Ω ,

lim
t→T

| ln(T − t)|−1u(x,t) = (n−q)/(np), lim
t→T

| ln(T − t)|−1v(x,t) = 1/n. (2.34)

Finally, we can verify the cases (iii) and (iv) by similar means of cases (i) and (ii). So,
we complete the proof of Theorem 1.2. �

3. Proofs of Theorems 1.3-1.7

In this section, we pay attention to system (1.1) with m, q > 0. By the results of
[4] and [20], applying standard methods we find from the assumptions (H2) and (H3)
that the following results are true:

(R1) u(x, t) > 0 and v(x,t) > 0 in B(0;R)× (0,T ) , where T is the maximal exis-
tence time of the solution (u,v) to problem (1.1).

(R2) u(x, t)= u(r,t), v(x,t)= v(r,t) and ur(r,t) � 0, vr(r,t) � 0 in (0,R)×(0,T ) .
(R3) ut � 0 and vt � 0 for (x,t) ∈ B(0;R)× (0,T) .
To prove Theorems 1.3-1.6, we begin with an elementary lemma, which will play

an important role in the following proof.



BLOW-UP PROPERTIES FOR PARABOLIC SYSTEMS 297

LEMMA 3.1. Let assumptions (H1)-(H3) be satisfied. Suppose that (u,v) is a
classical solution of problem (1.1) which blows up in finite time T , then for some t1 <
T , there exists a positive constant ε � 1 such that

ut �ε exp{mu(x, t)+nv(0,t)}, vt �ε exp{pu(0,t)+qv(x,t)}, x ∈ B(0;R), t1 � t < T.
(3.1)

In addition,

ut(0, t) � exp{mu(0,t)+nv(0,t)}, vt(0,t) � exp{pu(0,t)+qv(0,t)}, 0 < t < T.
(3.2)

Proof. By the result (R2) listed above

u(0, t) = max
x∈B(0;R)

u(x,t), v(0,t) = max
x∈B(0;R)

v(x,t), 0 < t < T. (3.3)

Hence, Δu(0, t) � 0, Δv(0,t) � 0 for any 0 < t < T . And thus

ut(0, t) � exp{mu(0,t)+nv(0,t)}, vt(0,t) � exp{pu(0,t)+qv(0,t)}, 0 < t < T.
(3.4)

which is just the assertion (3.2).
Next, we infer the assertion (3.1). Since (u,v) blows up in finite time T , and

ut , vt � 0 for all (x, t) ∈ B(0;R)× (0,T) , it can be deduced that for any t0 : 0 < t0 <
T, ut(x, t0) �≡ 0 or vt(x,t0) �≡ 0 in B(0;R) . Otherwise, (u,v) can not blow up in finite
time. Denote ϕ = ut , ψ = vt , then

ϕt = Δϕ+ exp{mu(x,t)+nv(0,t)}(mϕ(x,t)+nψ(0,t)), x ∈ B(0;R), t0 � t < T ,
ψt = Δψ+ exp{pu(0,t)+qv(x,t)}(pϕ(0,t)+qψ(x,t)), x ∈ B(0;R), t0 � t < T ,
ϕ(x, t) = ψ(x, t) = 0, |x| = R, t0 � t < T ,
ϕ(x, t0) �, �≡ 0, ψ(x,t0) �, �≡ 0, x ∈ B(x;R).

(3.5)
The maximal principle shows that

ϕ(x, t) > 0, ψ(x,t) > 0, ∀(x,t) ∈ B(0;R)× (t0,T ),
∂ϕ
∂η < 0, ∂ψ

∂η < 0, ∀(x,t) ∈ ∂B(0;R)× (t0,T ),
(3.6)

where η is the unit outward normal. By the standard method it follows that for any
t1 : t0 < t1 < T , there exists 0 < ε � 1 such that

ϕ(x, t1) �ε exp{mu(x,t1)+nv(0,t1)}, ψ(x,t1) �ε exp{pu(0,t1)+qv(x,t1)}, x ∈ B(0;R),
(3.7)

i.e., for x ∈ B(0;R)

Δu(x, t1)+ exp{mu(x,t1)+nv(0,t1) � ε exp{mu(x,t1)+nv(0,t1)},
Δv(x, t1)+ exp{pu(0,t1)+qv(x,t1) � ε exp{pu(0,t1)+qv(x,t1).

(3.8)
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Since w(x, t) = ut(x, t)−ε exp{mu(x,t)+nv(0,t)} , zt = vt −ε exp{pu(0,t)+qv(x,t)} .
By using the ideas of [5, 21], we are sure that w(x,t) � 0, z(x,t) � 0. Indeed,

wt −Δw = (ut −Δu)t − εmexp{mu(x,t)+nv(0,t)}(ut −Δu)
−εnexp{mu(x,t)+nv(0,t)}vt(0,t)
+εm2 exp{mu(x,t)+nv(0,t)}|∇u|2
� (ut −Δu)t − εmexp{mu(x,t)+nv(0,t)}(ut −Δu)
−εnexp{mu(x,t)+nv(0,t)}vt(0,t)
� mexp{mu(x,t)+nv(0,t)}w, x ∈ B(0;R), t1 < t < T,

zt −Δz � qexp{pu(0,t)+qv(x,t)}z, x ∈ B(0;R), t1 < t < T,
w(x, t1) = Δu(x,t1)+ exp{mu(x,t1)+nv(0,t1)}

−ε exp{mu(x,t1)+nv(0,t1)}�0, x ∈ B(0;R),
z(x, t1) = Δv(x,t1)+ exp{pu(0,t1)+qv(x,t1)}

−ε exp{pu(0,t1)+qv(x,t1)} � 0, x ∈ B(0;R),
w(x, t) = z(x, t) = 0, |x| = R, t1 < t < T.

(3.9)

The maximum principle implies that w, z � 0. Therefore,

ut �ε exp{mu(x, t)+nv(0,t)}, vt �ε exp{pu(0,t)+qv(x,t)}, x ∈ B(0;R), t1 � t < T,
(3.10)

which means the assertion (3.1) is true. The proof of Lemma 3.1 is complete. �

3.1. Proofs of Theorems 1.3, 1.4 and 1.5.

In this subsection, we prove Theorems 1.3 and 1.4.
Proof of Theorem 1.3. Assume on the contrary that u blows up in finite time T

and v is bounded in B(0;R)× (0,T) . By (3.1) and (3.2) in Lemma 3.1, we have

ε exp{mu(0, t)+nv(0,t)}� ut(0,t) � exp{mu(0,t)+nv(0,t)}, t ∈ [t1,T ),
ε exp{pu(0, t)+qv(0,t)}� vt(0,t) � exp{pu(0,t)+qv(0,t)}, t ∈ [t1,T ). (3.11)

As v is non-negative and bounded in B(0,R)× (0,T ) , we claim that v(0, t) � c > 0,
where c is a constant. Indeed, let w be the solution of the heat equation wt = Δw with
null Dirichlet boundary condition and w(x,0) = v0(x) , then the comparison principle
asserts that v � w in B(0,R)× (0,T) . Since 0 ∈ B(0;R) and v0(x) � 0, �≡ 0, for any
fixed t1 ∈ (0,T ) , there exists some constant c = c(t1,T ) > 0 such that w(0,t) � c for
all t1 � t � T , and so does v . Without loss of generality, we assume that t1 = 0, thus
v(0,t) � c > 0 for all t ∈ [0,T ) . Therefore, there exist positive constants C1 � C2 and
C3 � C4 such that for all t ∈ [t1,T ) ,

C2e
mu(0,t) � ut(0,t) � C1e

mu(0,t), C4e
pu(0,t) � vt(0, t) � C5e

pu(0,t). (3.12)

Due to m > 0 and limt→T u(0,t) = ∞ , integrating the first equation of (3.12) yields

mC2(T − t) � e−mu(0,t) � mC1(T − t), t1 � t < T. (3.13)

Consequently, for t ∈ [t1,T )

C4[C1m(T − t)]−
p
m � vt(0,t) � C3[C2m(T − t)]−

p
m . (3.14)
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As p � m > 0, it can be deduced that limt→T v(0,t) = ∞ . This is a contradiction.
Therefore, Theorem 1.3 is completed. �

Proof of Theorem 1.4. By (3.1) and (3.2) in Lemma 3.1, we have

ε exp{(m− p)u(0,t)}
exp{(q−n)v(0,t)} � du(0,t)

dv(0,t)
� exp{(m− p)u(0,t)}

ε exp{(q−n)v(0,t)}. (3.15)

In view of the right-hand side of (3.15)

ε exp{(p−m)u(0,t)}du(0,t)� exp{(n−q)v(0,t)}dv(0,t), (3.16)

when p � m , suppose on the contrary that n < q . By integrating (3.16), we see that

u(0,s)|tt1 � 1
ε(n−q) exp{(n−q)v(0,s)}|tt1 � 1

ε(q−n) exp{(n−q)v(0,t1)}, if p = m,
1

p−m exp{(p−m)u(0,s)}|tt1 � 1
ε(q−n) exp{(n−q)v(0,t1)}, if p > m.

(3.17)
Since limt→T u(0, t) = ∞ , taking t → T in the above leads to a contradiction. Conse-
quently, n � q . When n � q , by using of analogous argument, we can show p � m .
Similarly, we may conclude (b) of Theorem 1.4. �

Proof of Theorems 1.5. Assume on the contrary that (u,v) blows up at another
point x∗ �= 0. Furthermore, we may consider without loss of generality that u blows
up at the point x∗ as t → T , i.e. limsupt→T u(x∗,t) = ∞ . Set r∗ = |x∗| , then r∗ > 0.
Since u(x, t) = u(r, t) is non-increasing in r , limsupt→T u(r,t) = ∞ for any r ∈ [0,r∗]
with r = |x| .

Let a be fixed number satisfying a = r∗/3 and

B+
a (0;R) = B(0;R)∩{x ∈ R

N |x1 > a} = {x ∈ B(0;R)|x1 > a}.
Define

J(x, t) = ux1(x,t)+ c(x1)exp{m0u(x,t)}, (x,t) ∈ B
+
a (0;R)× [0,T), (3.18)

where 0 < m0 < m , and c(x1) = ε(x1 −a)2 with ε > 0 is a small constant to be deter-
mined.

A straight computation yields

Jt −ΔJ = (ut −Δu)x1 +m0c(x1)exp[m0u(x,t)](ut −Δu)− c′′(x)exp[m0u(x,t)]
−2m0 exp[m0u(x,t)]c′(x1)ux1 −m2

0c(x1)exp[m0u(x,t)]|∇u|2
� {mexp[mu(x,t)+nv(0,t)]−4εm0(x1 −a)exp[m0u(x,t)]}J
−c(x1)exp[m0u(x,t)]{(m−m0)exp[mu(x, t)+nv(0,t)]}
−c(x1)exp[m0u(x,t)]{−4εm0(x1 −a)exp[m0u(x, t)]+2(x1−a)−2}
� bJ− c(x1)exp[m0u(x,t)]{(m−m0)exp[mu(x,t)+nv(0, t)]}
−c(x1)exp[m0u(x,t)]{−4εm0Rexp[m0u(x, t)]+2R−2},

(3.19)
where b≡mexp[mu(x,t)+nv(0,t)]−4εm0(x1−a)exp[m0u(x, t)]. Remember that v(r,t)>
0 in [0,R)× [0,T ) and v(0,t) = max0�r�R v(r,t) for t ∈ [0,T ) , then v(0, t) > c > 0 for
some constant c . By m0 < m , there exists ε1 so small that for 0 < ε � ε1

(m−m0)exp[mu(x,t)+nv(0,t)]−4εm0Rexp[m0u(x,t)]+2R−2 � 0, (3.20)
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in B+
a (0;R)× (0,T) . Consequently, from (3.19) and (3.20) follows

Jt −ΔJ−bJ � 0, (x,t) ∈ B+
a (0;R)× (0,T). (3.21)

Moreover, since u0r �, �≡ 0 (otherwise, u0 ≡ 0, which contradicts the assumption on
u0 ), by standard methods one can deduce that ur < 0 provided that r �= 0 and t > 0.
And thus, ux1(x, t) < 0 for (x,t) ∈ B

+
a (0;R)× (0,T ) . Replacing [0,T ) by [t∗,T ) for

some t∗ ∈ (0,T ) in following discussion, we may assume that ux1(x,t) < 0 holds on
B

+
a (0;R)× [0,T) . Hence, there exists ε2 so small that for 0 < ε � ε2 ,

J(x, t) � ux1(x,t)+ ε(R−a)2 � 0, (x,t) ∈ ∂B+
a (0;R)× (0,T). (3.22)

On the other hand,

J(x,0) = ux1(x,0)+ c(x1)exp{m0u0(x)}
� ux1(x,0)+ εR2 maxx∈B(0;R) exp{m0u0(x)}
� 0, ∀x ∈ B+

a (0;R).
(3.23)

Provided that 0 < ε � ε3 for some sufficiently small ε3 .
Set ε = min{1,ε1,ε2,ε3} , then (3.21) and (3.23) hold. Application of the maxi-

mum principle to (3.21)-(3.23) ensures that

J(x,t) � 0, (x,t) ∈ B+
a (0;R)× (0,T). (3.24)

Namely
−exp{−m0u(x,t)}ux1 � c(x1), (x,t) ∈ B+

a (0;R)× (0,T). (3.25)

Taking y = (2a,0,0, · · ·,0) and z = (r∗,0,0, · · ·,0) , then y, z ∈ B+
a (0;R) . Integrating

(3.25) yields that

0 <

∫ z

y
c(x1)dx1 � 1

m0
exp{−m0u(z,t)}, 0 < t < T. (3.26)

The fact that limsupt→T u(z,t) = ∞ and m0 > 0 leads to a contradiction. Therefore,
u blows up at a single point x = 0, and so does the solution (u,v) of system (1.1).
Consequently, we conclude the Theorem 1.5. �

3.2. Proof of Theorem 1.6.

In this subsection, we prove Theorem 1.6 by introducing a lemma first, which
shows the relationship between u(0,t) and v(0,t) .

LEMMA 3.2. Under the conditions of Theorem 1.4, for any given 0 < δ < 1 , there
exists t1 � T0 < T such that the following statements hold for all t ∈ [T0,T ).

(i) If p > m and n > q, or p < m and n < q, then

δεσ exp[(n−q)v(0, t)] � θ exp[(p−m)u(0,t)], δεθ exp[(p−m)u(0,t)] �σ exp[(n−q)v(0, t)].
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(ii) If p > m and n = q, then

δε(p−m)v(0, t) � exp[(p−m)u(0,t)], δε exp[(p−m)u(0,t)] � (p−m)v(0,t).

(iii) If p = m and n > q, then

δε exp[(n−q)v(0,t)] � (n−q)u(0,t), δε(n−q)u(0,t) � exp[(n−q)v(0,t)].

(iv) If p = m and n = q, then δεv(0,t) � u(0,t), δεu(0,t) � v(0, t).

Proof. (i) (a) Let p > m and n > q . One can deduce from the right-hand side of
(3.15) that

1
p−m

exp[(p−m)u(0,s)]|tt1 � 1
ε(n−q)

exp[(n−q)v(0,s)]|tt1 � exp[(n−q)v(0,t)]
ε(n−q)

.

(3.27)
Notice that limt→T u(0,t) = ∞ and p > m , for given 0 < δ < 1, there exists t2 : t1 �
t2 < T such that exp[(p−m)u(0,t1)] � (1−δ )exp[(p−m)u(0,t)] for t2 � t < T , thus
(3.27) ensures δ

p−m exp[(p−m)u(0,t)] � 1
ε(n−q) exp[(n−q)v(0,t)] for t ∈ [t2,T ) , i.e.,

δε(n−q)exp[(p−m)u(0,t)] � (p−m)exp[(n−q)v(0,t)], t ∈ [t2,T ). (3.28)

On the other hand, application of similar analysis to left-hand side of (3.15) derives that
for given 0 < δ < 1, there exists t∗2 : t1 � t∗2 < T such that

δε(p−m)exp[(n−q)v(0,t)] � (n−q)exp[(p−m)u(0,t)], t ∈ [t∗2 ,T ). (3.29)

Define T0 = max{t2, t∗2} , then we come to the conclusion (i) from (3.28), (3.29) and the
definition of θ and σ . Analogously, we can demonstrate other cases. �

Proof of Theorem 1.6. (i) We need only prove the case (a) p > m and n > q , since
the case (b) p < m and n < q can be treated similarly. Combining the first inequality
of (3.2) and (i) of Lemma 3.2, we see that

ut(0,t) � [θ/(δεσ)]n/(n−q) exp[(m+nσ/θ )u(0,t)]. (3.30)

Since −m−nσ/θ = −m−n p−m
n−q = − pn−qm

n−q = −1/θ < 0 and limt→T u(0,t) = ∞ , by
integrating (3.30) we find that there exists constant c1 > 0 such that

u(0,t) � ln[c1(T − t)−θ ], T0 � t < T. (3.31)

Applying the above argument to the first inequality of (3.1) and using (i) of Lemma 3.2
show that there exists a constant C1 > 0 such that

u(0,t) � ln[C1(T − t)−θ ], T0 � t < T. (3.32)

Consequently, it follows from (3.31) (3.32) and (i) of Lemma 3.2 that there exist posi-
tive constants 0 < c2 � C2 such that

ln[c2(T − t)−σ ] � v(0,t) � ln[C2(T − t)−σ ]. (3.33)
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Let c = min{c1,c2} and C = max{C1,C2} , the (3.31)-(3.33) imply the desired conclu-
sion (i) of Theorem 1.6.

(ii) Let p > m and n = q . By joining the second inequality of (3.2) and (ii) of
Lemma 3.2, we have

vt(0, t) � [(p−m)/(δε)]p/(p−m)[v(0,t)]p/(p−m) exp[qv(0,t)], T0 � t < T. (3.34)

Observe that limt→T v(0,t) = ∞ , it follows (3.34) that∫ ∞

v(0,t)
e−qss−p/(p−m)ds � [(p−m)/(δε)]p/(p−m)(T − t), T0 � t < T. (3.35)

Similarly, in view of the second inequality of (3.1) and (ii) of Lemma 3.2 we have∫ ∞

v(0,t)
e−qss−p/(p−m)ds � ε[δε(p−m)]p/(p−m)(T − t), T0 � t < T. (3.36)

Since

lim
t→T

∫ ∞
v(0,t) e

−qss−p/(p−m)ds

e−qv(0,t)(v(0,t))−p/(p−m)

⇔ lim
v(0,t)→∞

∫ ∞
v(0,t) e

−qss−p/(p−m)ds

e−qv(0,t)(v(0,t))−p/(p−m)

= lim
v→∞

−e−qvv−p/(p−m)

−qe−qvv−p/(p−m)− p
p−me−qvv−1−p/(p−m)

= lim
v→∞

−1
−q− p

p−mv−1 =
1
q
,

(3.37)

i.e.,

q
∫ ∞

v(0,t)
e−qss−p/(p−m)ds ∼ e−qv(0,t)(v(0, t))−p/(p−m). (3.38)

Therefore, by (3.38) there exists T1 < T such that for all t ∈ [T1,T )

exp[−qv(0,t)]
2[v(0, t)]p/(p−m) � q

∫ ∞

v(0,t)
e−qss−p/(p−m)ds � 2exp[−qv(0,t)]

[v(0, t)]p/(p−m) . (3.39)

If T ∗ = max{T0,T1} , then it can be deduce from (3.35), (3.36) and (3.39) that there
exist come positive constants c � C such that

c(T − t)−1 � exp[qv(0,t)][v(0,t)]p/(p−m) � C(T − t)−1, T ∗ � t < T. (3.40)

In addition, on account of the first inequalities of (3.1) and (3.2), and n=q

ε exp[qv(0, t)] � exp[−mu(0,t)]ut(0,t) � exp[qv(0,t)], T ∗ � t < T. (3.41)

Hence, (ii) of Lemma 3.2, (3.40) and (3.41) ensure that exist some constants c1 � C1

such that

c1(T − t)−1 � exp[(p−m)u(0,t)]ut(0,t) � C1(T − t)−1, T ∗ � t < T. (3.42)
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Due to p > m , for some constant c � C , integrating (3.42) in [T ∗,t) yields

c| ln(t − t)|� exp[(p−m)u(0,t)] � C| ln(t− t)|, T ∗ � t < T. (3.43)

Therefore, we come to the conclusion (ii) of Theorem 1.6 from (3.40) (3.43) and n = q .
(iii) If p = m and n > q , the conclusion (iii) of Theorem 1.6 follows the similar

way as case (ii).
(iv) When p = m and n = q , it follows from (3.1), (3.2) and (iv) of Lemma 3.2

that

ε exp[(m+nδε)u(0,t)] � ut(0,t) � exp[(m+n/(δε))u(0,t)], T0 � t < T. (3.44)

Recall limt→T u(0, t) = ∞ , integrating the above yields that for T0 � t < T

ln[(T − t)(mδε+n)/(δε)]−
δε

mδε+n � u(0,t) � ln[ε(m+nδε)(T − t)]−
1

m+nδε . (3.45)

Consequently, for some positive constants c � C , there exists T0 � T ∗ < T such that

c| ln(T − t)|� u(0,t) � C| ln(T − t)|. (3.46)

Moreover, from (3.46) and (iv) of Lemma 2.3 that there exist positive constants c � C
such that

c| ln(T − t)|� v(0,t) � C| ln(T − t)|. (3.47)

Therefore, (3.46) and (3.37) imply the conclusion (iv) of Theorem 1.6. �

3.3. Proof of Theorem 1.7

Similar as in subsection 3.2, we will apply the ideas of [5] to proceed our discus-
sion for Theorem 1.7. We only need to verify the estimate of u , since the estimate
of v can be obtained analogously. Set J(r,t) = ur(r,t) + c(r)exp[m0u(r,t)], (r,t) ∈
[0,R]× (0,T ) , where 0 < m0 < m and c(r) = εr1+δ with any constant δ > 0 and
small ε to be defined. Direct computation for J shows that in (0,R)× (0,T ) ,

Jt −N−1
r Jr − Jrr

= (ut − N−1
r ur −urr)r +m0c(r)exp[m0u(r,t)](ut − N−1

r ur −urr)
−(N−1)r−1c′(r)exp[m0u(r,t)]− c′′(r)exp[m0u(r,t)]
−2m0c′(r)exp[m0u(r,t)]ur −m2

0c(r)exp[m0u(r,t)](ur)2

� {mexp[mu(r, t)+nv(0,t)]−2εm0(1+δ )rδ exp[m0u(r, t)]}ur−c′′(r)exp[m0u(r,t)]
+m0c(r)exp[(m+m0)u(r,t)+nv(0,t)]− (N−1)r−1c′(r)exp[m0u(r, t)]
� bJ− c(r)exp[m0u(r,t)]{(m−m0)exp[mu(r,t)+nv(0,t)]+ δ (N−1+ δ )R−2}
−c(r)exp[m0u(r,t)]{−2εm0(1+ δ )Rδ exp[m0u(x,t)]},

(3.48)
where b ≡ mexp[mu(r,t)+nv(0,t)]−2εm0(1+δ )rδ exp[m0u(r,t)] . Note that v(r,t) > 0
in [0,R)× [0,T ) and v(0,t) = max0�r�R v(r,t) for t ∈ [0,T ) , then v(0, t) > c1 > 0 for
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some constant c1 . Consequently, by 0 < m0 < m , we know that there exists ε1 > 0
small enough such that for 0 < ε � ε1

(m−m0)exp[mu(r, t)+nv(0,t)]+δ (N−1+δ )R−2−2εm0(1+δ )Rδ exp[m0u(r, t)] � 0
(3.49)

in (0,R)× (0,T ) . Thus from (3.48) and (3.49), we get

Jt − N−1
r

Jr − Jrr −bJ � 0, (r,t) ∈ (0,R)× (0,T). (3.50)

In addition, as u(r, t) > 0 for (r,t) ∈ (0,R)× (0,T ) and u(R,t) = 0 for all t ∈ (0,T ) ,
the strong maximum principle for parabolic equations guarantees that ur(R,t) < 0 for
t ∈ (0,T ) . Hence, there exists ε2 > 0 small enough such that for 0 < ε � ε2

J(0, t) = ur(0,t) = 0, J(R,t) = ur(R,t)+ εR1+δ � 0, t ∈ (0,T ). (3.51)

J(r,0) = u′0(r)+ εr1+δ exp[m0u0(r)] � −cr+ εrRδ exp[m0u0(0)] � 0, r ∈ (0,R),
(3.52)

provided that ε � ε3 = cR−δ exp[−m0u0(0)] . Therefore, choose ε = min{1,ε1,ε2,ε3} ,
then (3.50)-(3.52) hold. Application of the maximum principle to (3.50)-(3.52) asserts
that J(r, t) � 0, (r, t) ∈ (0,R)× (0,T) . That is

−exp[−m0u(r,t)]ur � εr1+δ , (r,t) ∈ (0,R)× (0,T). (3.53)

Integrating this inequality we obtain that

u(r, t) � ln(
εm0

2+ δ
r2+δ + e−m0u(0,t))−1/m0 � ln{[εm0/(2+ δ )]−1/m0r

− 2+δ
m0 }. (3.54)

Since δ > 0 is arbitrary and 0 < m0 < m , it is obvious that (2+ δ )/m0 > 2/m , and
(2+ δ )/m0 > 2/m can be made arbitrarily to 2/m . Consequently, (3.54) implies the
assertion of u . So, we conclude Theorem 1.7. �
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