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EXISTENCE THEORY FOR QUADRATIC PERTURBATIONS OF

ABSTRACT MEASURE INTEGRO–DIFFERENTIAL EQUATIONS

BAPURAO C. DHAGE

(Communicated by S. K. Ntouyas)

Abstract. In this paper, an existence theorem for quadratic perturbations of a nonlinear abstract
measure integro-differential equation is proved via a nonlinear alternative of Leray-Schauder
type. An existence result is also proved for the extremal solutions for Carathéodory as well as
discontinuous cases of the nonlinearities involved in the equations.

1. Introduction

In what follows, let X be a real Banach space with a convenient norm ‖ · ‖ . Let
x,y ∈ X . Then the line segment xy in X is defined by

xy = {z ∈ X | z = x+ r(y− x),0 � r � 1}. (1.1)

Let x0 ∈ X be a fixed point and z ∈ X . Then for any x ∈ x0z , we define the sets Sx

and Sx in X by:

Sx = {rx|−∞< r < 1} and Sx = {rx|−∞< r � 1}. (1.2)

Let x1,x2 ∈ xy be arbitrarily given. We say x1 < x2 if Sx1 ⊂ Sx2 , or equivalently x0x1 ⊂
x0x2 . In this case we also write x2 > x1.

Let μ be a σ -finite positive measure on X and let p ∈ ca(X ,M) . We say p is
absolutely continuous with respect to the measure μ if μ(E) = 0 implies p(E) = 0 for
some E ∈ M . In this case we also write p << μ .

Let x0 ∈ X be fixed and let M0 denote the σ - algebra on Sx0 . Let z ∈ X be such
that z > x0 and let Mz denote the σ -algebra of all sets containing M0 and the sets of
the form Sx , x ∈ x0z .

Given a p ∈ ca(X ,M) with p << μ , we consider the abstract measure integro-
differential equation of the form

d
dμ

(
p(Sx)

f (x, p(Sx))

)
= g

(
x, p(Sx),

∫
Sx

k
(
t, p(St)

)
dμ
)

a.e. [μ ] on x0z. (1.3)
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and
p(E) = q(E), E ∈ M0, (1.4)

where q is a given known vector measure,

λ (Sx) =
p(Sx)

f (x, p(Sx))

is a signed measure such that λ << μ ; dλ/dμ is a Radon-Nikodym derivative of λ
with respect to μ , f : Sx ×R → R−{0} , g : Sz×R×R→ R and the map,

x �→ g

(
x, p(Sx),

∫
Sx

k
(
t, p(St)

)
dμ
)

is μ -integrable for each p ∈ ca(X ,Mz) . The details about the Radon-Nikodym deriva-
tive are given in Rudin [10].

DEFINITION 1.1. Given an initial real measure q on M0 , a vector measure p ∈
ca(Sz,Mz) (z > x0) is said to be a solution of (1.3)-(1.4), if:

(i) p(E) = q(E) , E ∈ M0,

(ii) p << μ on x0z , and
(iii) p satisfies (1.1) a.e. [μ ] on x0z .

A solution p of (1.3)-(1.4) in x0z will be denoted by p(Sx0 ,q) .

REMARK 1.1. Note that (1.3)-(1.4) is equivalent to the following abstract mea-
sure integral equation:

p(E) =
[
f (x, p(E))

](∫
E

g

(
x, p(Sx),

∫
Sx

k
(
t, p(St)

)
dμ
)

dμ
)

, if E ∈ Mz, E ⊂ x0z,

(1.5)
and

p(E) = q(E) if E ∈ M0. (1.6)

As a generalization of ordinary integro-differential equations, there is a series of
papers dealing with the abstract measure integro-differential equations in which or-
dinary derivative is replaced by the derivative of set functions, namely, the Radon-
Nikodym derivative of a measure with respect to another measure. See Dhage [2, 3],
Dhage and Bellale [6] and the references therein. In the special case, when f (x,y) = 1
for all x ∈ x0z and y ∈ R , our (1.3)-(1.4) includes the following abstract measure dif-
ferential equation considered in Dhage and Bellale [6],

dp
dμ

= g

(
x, p(Sx),

∫
Sx

k
(
t, p(St)

)
dμ
)

a.e. [μ ] on x0z, (1.7)

and
p(E) = q(E), E ∈ M0. (1.8)
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The above mentioned (1.7)-(1.8) again includes some already known abstract measure
differential equations those considered in Sharma [11, 12], Shendge and Joshi [13] and
Dhage et al. [5] as special cases. Thus, our (1.3)-(1.4) is more general and we claim that
results of the present study are new and original contribution to the theory of nonlinear
differential equations and include some of the earlier results as special cases. Here, we
apply a nonlinear alternative of Leray-Schauder type due to Dhage [4] to (1.3)-(1.4) for
proving the existence results under some weaker conditions than that given in Dhage
and O’Regan [7], while the existence of extremal solutions is obtained using the fixed
point theorems of Dhage [4] in ordered Banach algebras.

2. Auxiliary Results

Let M denote the σ -algebra of all subsets of X such that (X ,M) is a measurable
space. Let ca(X ,M) be the space of all vector measures (real signed measures) and
define a norm | · | on ca(X ,M) by

‖p‖ = |p|(X), (2.1)

where |p| is a total variation measure of p given by

|p|(X) = sup
σ

∞

∑
i=1

|p(Ei)|, Ei ⊂ X , (2.2)

where supremum is taken over all possible partition σ = {Ei : i ∈ N} of X . It is known
that ca(X ,M) is a Banach space with respect to the norm ‖ · ‖ given by (2.1). For any
non-empty subset S of X , let L1

μ(S,R) denote the space of μ -integrable real-valued
functions on S which is equipped with the norm ‖ · ‖L1

μ
given by

‖φ‖L1
μ

=
∫

S
|φ(x)|dμ . (2.3)

Let p1, p2 ∈ ca(X ,M) and define a multiplication composition ◦ in ca(X ,M) by

(p1 ◦ p2)(E) = p1(E)p2(E) (2.4)

for all E ∈ M . Then we have:

LEMMA 2.1. The Banach space ca(X ,M) is a Banach algebra with respect to the
multiplication “ ◦ ” defined by (2.4) in it.

Proof. Let p1, p2 ∈ ca(X ,M) be any two elements. Let σ = {E1, · · · ,En, · · ·} be
a disjoint partition of X . Then by (2.3)-(2.4),

‖p1p2‖ = |p1p2|(X) = sup
σ

∞

∑
i=1

|(p1 ◦ p1)(Ei)| = sup
σ

∞

∑
i=1

|p1(E1)‖p2(E1)|
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� sup
σ

(
∞

∑
i=1

|p1(Ei)|
)(

∞

∑
i=1

|p2(Ei)|
)

�
(

sup
σ

∞

∑
i=1

|p1(Ei)|
)(

sup
σ

∞

∑
i=1

|p2(Ei)|
)

= |p1|(X) |p2|(X) = ‖p1‖‖p2‖.

Hence, ca(X ,M) is a Banach algebra and lemma is proved.

The study of hybrid fixed point theorems in Banach algebras is initiated by Dhage
[1]. Below we state a hybrid fixed point theorem from Banach algebra which will be
used in what follows. Let X be a Banach algebra and let T : X → X . T is called
compact if T (X) is a compact subset of X . T is called totally bounded if for any
bounded subset S of X , T (S) is a totally bounded subset of X . T is called completely
continuous if T is continuous and totally bounded on X . Every compact operator is
totally bounded, but the converse may not be true, however, two notions are equivalent
on a bounded subset of X . The details about the completely continuous operators may
be found in Granas and Dugundji [8].

An operator T : X → X is called D -Lipschitz if there exists a continuous and
nondecreasing function ψ : R

+ → R
+ such that

‖Tx−Ty‖� ψ(‖x− y‖) (2.5)

for all x,y ∈ X , where ψ(0) = 0. The function ψ is called a D -function of T on X .
In particular, if ψ(r) = αr,α > 0, T is called a Lipschitz with the Lipschitz constant
α . Further if α < 1, then T is called a contraction with contraction constant α . Again
if ψ(r) < r for r > 0, then T is called a nonlinear contraction on X with D -function
ψ .

Now we are ready to state a hybrid nonlinear alternative which is useful in the
sequel.

THEOREM 2.1. (Dhage [4]) Let U and U denote respectively the open and closed
bounded subset of a Banach algebra X such that 0 ∈U . Let A,B : U → X be two op-
erators such that:

(a) A is D-Lipschitz,
(b) B is completely continuous, and
(c) Mφ(r) < r , r > 0 , where M = ‖B(U)‖ .

Then either:

(i) the equation AxBx = x has a solution in U , or
(ii) there is a point u ∈ ∂U such that u = λAuBu for some 0 < λ < l , where ∂U is a
boundary of U in X .

An interesting corollary to Theorem 2.1 in the applicable form is the following
one.
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COROLLARY 2.1. Let Br(0) and Br(0) denote respectively the open and closed
balls in a Banach algebra centered at origin 0 of radius r for some real number r > 0 .
Let A, B : Br(0) → X be two operators such that:

(a) A is Lipschitz with Lipschitz constant α ,
(b) B is compact and continuous, and
(c) αM < 1 , where M = ‖B(Br(0))‖ .

Then either:

(i) the operator equation AxBx = x has a solution x in X with ‖x‖ � r , or
(ii) there is an u ∈ X with ‖u‖ = r such that λAuBu = u for some 0 < λ < 1 .

We need a few order theoretic fixed point theorems in what follows. An extensive
study of such type of fixed point theorems appears in Heikkilä and Lakshmikantham [9].
We define an order relation � in ca(Sz,Mz) with the help of the cone K in ca(Sz,Mz)
given by

K = {p ∈ ca(Sz,Mz) | p(E) � 0 for all E ∈ Mz}. (2.6)

Thus for any p1, p2 ∈ ca(sz,Mz) we have

p1 � p2 if and only if p2− p1 ∈ K (2.7)

or, equivalently
p1 � p2 ⇐⇒ p1(E) � p2(E) (2.8)

for all E ∈ Mz .

Obviously the cone K is positive in ca(Sz,Mz) . To see this, let p1, p2 ∈ K . Then
p1(E) � 0 and p2(E) � 0 for all E ∈ Mz . By the multiplication composition,

(p1 ◦ p2)(E) = p1(E)p2(E) � 0

for all E ∈ Mz . As a result p1 ◦ p2 ∈ K , and so K is a positive cone in ca(Sz,Mz) .
The following lemmas follow immediately from the definition of the positive cone

K in ca(Sz,Mz) .

LEMMA 2.2. (Dhage [4]) Let K be a positive cone. If u1,u2,v1,v2 ∈ K are such
that u1 � v1 and u2 � v2 , then u1u2 � v1v2 .

LEMMA 2.3. The cone K is normal in ca(Sz,Mz) .

Proof. To finish, it is enough to prove that the norm ‖ ·‖ is semi- monotone on K .
Let p1, p2 ∈ K be such that p1 � p2 on Mz . Then we have 0 � p1(E) � p2(E) for all
E ∈ Mz .

Now for a countable partition σ = {En : n ∈ N} of Sz , one has

‖p1‖ = |p1|(Sz) = sup
σ

∞

∑
i=1

|p1(Ei)| � sup
σ

∞

∑
i=1

|p2(Ei)| = |p2|(Sz) = ‖p2‖ .
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This shows that ‖ ·‖ is a semi-monotone on K and consequently the cone K is normal
in ca(Sz,Mz) . The proof of the lemma is complete.

An operator T : X → X is called positive if the range r(T ) of T is contained in
the cone K in X .

THEOREM 2.2. (Dhage [4]) Let [u,v] be an order interval in the real Banach al-
gebra X and let A,B : [u,v] → X be positive and nondecreasing operators such that:

(a) A is Lipschitz with the Lipschitz constant α ,
(b) B is compact and continuous, and
(c) the elements u,v ∈ X with u � v satisfy u � AuBu and AvBv � v.

Further, if the cone K is positive and normal, then the operator equation AxBx = x has
a least and a greatest positive solution in [u,v] , whenever αM < 1 , where

M = ‖B([u,v])‖ = sup{‖Bx‖ : x ∈ [u,v]}.

THEOREM 2.3. (Dhage [4]) Let K be a positive cone in a real Banach algebra X
and let A,B : K → K be nondecreasing operators such that:

(a) A is Lipschitz with the Lipschitz constant α ,
(b) B is totally bounded, and
(c) there exist elements u,v ∈ K such that u � v satisfying u � AuBu and AvBv � v.

Further, if the cone K is positive and normal, then the operator equation AxBx = x has
a least and a greatest positive solution in [u,v] , whenever αM < 1 , where

M = ‖B([u,v])‖ = sup{‖Bx‖ : x ∈ [u,v]}.

In the following section we prove our main existence results of this paper.

3. Existence Result

We need the following definition in the sequel.

DEFINITION 3.1. A function β : Sz×R×R→ R is called Carathéodory if

(i) x → β (x,y1,y2) is μ -measurable for each y1,y2 ∈ R , and
(ii) the function (y1,y2) �→ β (x,y1,y2) is continuous almost everywhere [μ ] on x0z .

A Carathéodory function β on Sz×R×R is called L1
μ -Carathéodory if

(iii) for each real number r > 0 there exists a function hr ∈ Ll
μ(Sz,R+) such that

|β (x,y1,y2)| � hr(x) a.e. [μ ] on x0z.

for all y1,y2 ∈ R with |y1| � r and |y2| � r .
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A function ψ : R+ → R+ is called submultiplicative if ψ(λ r) � λψ(r) for all
real number λ > 0. Let Ψ denote the class of functions ψ : R+ → R+ such that ψ is
continuous, nondecreasing, and submultiplicative.

A member ψ ∈Ψ is called a D -function on R+. There do exist D -functions, in
fact, the function ψ : R+ →R+ defined by ψ(λ ) = λ r , λ > 0 is a D -function on R+.

We consider the following set of assumptions:

(A0) For any z > x0 , the σ -algebra Mz is compact with respect to the topology gener-
ated by the pseudo-metric d defined on Mz by

D(E1,E2) = |μ |(E1ΔE2),E1,E2 ∈ Mz.

(A1) The function x �→ | f (x,0)| is bounded with F0 = supx∈Sz
| f (x,0)| .

(A2) The function f is continuous and there exists a bounded function α : Sz → R
+

with bound ‖α‖ such that

| f (x,y1)− f (x,y2)| � α(x)|y1 − y2| a.e. [μ ], x ∈ x0z

for all y1,y2 ∈ R .
(B0) q is continuous on Mz with respect to the pseudo-metric d defined in (A0 ).
(B1) The function x �→ k(x, p(Sx)) is μ -integrable and there is a function γ ∈L1

μ(Sz,R+)
satisfying

|k(t,y)| � γ(x)|y| a.e. [μ ] on x0z

for all y ∈ R .
(B2) The function g(x,y1,y2) is Carathéodory.
(B3) There exists a function φ ∈ L1

μ(Sz,R+) such that φ(x) > 0 a.e. [μ ] on x0z and a
D -function ψ : [0,∞) → (0,∞) such that

|g(x,y1,y2)| � φ(x)ψ(|y1|+ |y2|) a.e. [μ ] on x0z

for all y1,y2 ∈ R .

We frequently use the following estimate of the function g in the subsequent part
of the paper. If the hypotheses (B1) and (B3) hold, then for any p ∈ ca(Sz,Mz) , one
has∣∣∣g(x, p(Sx),

∫
Sx

k
(
t, p(St)

)
dμ
)∣∣∣� φ(x)ψ

(
|p(Sx)|+

∫
Sx

|k(t, p(St))|dμ
)

� φ(x)ψ
(
|p|(Sz)+

∫
Sz

γ(x)|p(Sz)|dμ
)

� φ(x)ψ
(
‖p‖+

∫
Sz

γ(x)‖p‖dμ
)

� φ(x)ψ
(
‖p‖+‖γ‖L1

μ
‖p‖

)
� φ(x)

(
1+‖γ‖L1

μ

)
ψ(‖p‖).

Our first existence result is the following.
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THEOREM 3.1. Suppose that the assumptions (A0)-(A2) and (B0)-(B3) hold.
Suppose that there exists a real number r > 0 such that

r >
‖q‖+F0

[
‖φ‖L1

μ

(
1+‖γ‖L1

μ

)
ψ(r)

]
1−‖α‖

[
‖q‖+‖φ‖L1

μ

(
1+‖γ‖L1

μ

)
ψ(r)

] , (3.1)

where ‖α‖
[
‖q‖+‖φ‖L1

μ

(
1+‖γ‖L1

μ

)
ψ(r)

]
< 1 . Then (1.3)-(1.4) has a solution de-

fined on x0z.

Proof. Consider an open ball Br(0) in ca(Sz,Mz) centered at the origin 0 and of
radius r , where r satisfies the inequalities in (3.1). Define two operators

A,B : Br(0) → ca(Sz,Mz)

by

Ap(E) =

{
1, if E ∈ M0,

f (x, p(E)), if E ∈ Mz,E ⊂ x0z,
(3.2)

and

Bp(E) =

⎧⎪⎨
⎪⎩

q(E), if E ∈ M0,∫
E

g

(
x, p(Sx),

∫
Sx

k
(
t, p(St)

)
dμ
)

dμ , if E ∈ Mz,E ⊂ x0z.
(3.3)

We shall show that the operators A and B satisfy all the conditions of Corollary 2.1 on
Br(0).

Step I. First, we show that A is a Lipschitz on Br(0) . Let p1, p2 ∈ Br(0) be
arbitrary. Then by assumption (A2) ,

|Ap1(E)−Ap2(E)| = | f (x, p1(E))− f (x, p2(E))|
� α(x)|p1(E)− p2(E)|
� ‖α‖|p1− p2|(E)

for all E ∈ Mz . Hence by definition of the norm in ca(Sz,Mz) one has

‖Ap1−Ap2‖ � ‖α‖‖p1− p2‖
for all p1, p2 ∈ ca(Sz,Mz) . As a result, we have that A is a Lipschitz operator on Br(0)
with the Lipschitz constant ‖α‖.

Step II. We show that B is continuous on Br(0) . Let {pn} be a sequence of
vector measures in Br(0) converging to a vector measure p . Then by dominated
convergence theorem,

lim
n→∞

Bpn(E) = lim
n→∞

∫
E

g

(
x, pn(Sx),

∫
Sx

k
(
t, pn(St)

)
dμ
)

dμ
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=
∫

E
g

(
x, p(Sx),

∫
Sx

k
(
t, p(St)

)
dμ
)

dμ = Bp(E),

for all E ∈ Mz , E ⊂ x0z . Similarly, if E ∈ M0 , then

lim
n→∞

Bpn(E) = q(E) = Bp(E),

and so B is a continuous operator on Br(0) .

Step III. Next, we show that B is a totally bounded operator on Br(0) . Let {pn}
be a sequence of vector measures in Br(0) . Then we have ‖pn‖ � r for all n∈ N . We
shall show that the set {Bpn : n ∈ N} is uniformly bounded and equi-continuous set in
ca(Sz,Mz) . In this step, we first show that {Bpn} is uniformly bounded.

Let E ∈ Mz . Then there exists two subsets F ∈ M0 and G ∈ Mz , G ⊂ x0z such
that E = F ∪G and F ∩G = /0 . Hence by definition of B ,

|Bpn(E)| � |q(F)|+
∫

G

∣∣∣∣g
(

x, pn(Sx),
∫

Sx

k
(
t, pn(St)

)
dμ
)∣∣∣∣dμ

� ‖q‖+
∫
G
φ(x)

(
1+‖γ‖L1

μ

)
ψ(‖pn‖)dμ

� ‖q‖+
∫
E
φ(x)

(
1+‖γ‖L1

μ

)
ψ(‖pn‖)dμ

= ‖q‖+‖φ‖Ll
μ

(
1+‖γ‖L1

μ

)
ψ(‖pn‖)

for all E ∈ Mz .
From (2.1) and the above inequality, it follows that

‖Bpn‖ = |Bpn|(Sz) = sup
σ

∞

∑
i=1

|Bpn(Ei)|

= ‖q‖+‖φ‖Ll
μ

(
1+‖γ‖L1

μ

)
ψ(‖pn‖)

� ‖q‖+‖φ‖Ll
μ

(
1+‖γ‖L1

μ

)
ψ(r)

for all n ∈ N . Hence the sequence {Bpn} is uniformly bounded in B(Br(0)) .

Step IV. Next we show that {Bpn : n∈ N} is a equi- continuous set in ca(Sz,Mz) .
Let E1,E2 ∈ Mz . Then there exist subsets F1,F2 ∈ M0 and G1,G2 ∈ Mz, G1 ⊂ x0z,
G2 ⊂ x0z such that

E1 = F1∪G1 with F1∩G1 = /0

and
E2 = F2∪G2 with F2∩G2 = /0.

We know the identities

G1 = (G1 −G2)∪ (G2∩G1),
G2 = (G2 −G1)∪ (G1∩G2).

}
(3.4)
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Therefore, we have

Bpn(E1)−Bpn(E2) � q(F1)−q(F2)+
∫

G1−G2

g

(
x, pn(Sx),

∫
Sx

k
(
t, pn(St)

)
dμ
)

dμ

−
∫

G2−G1

g

(
x, pn(Sx),

∫
Sx

k
(
t, pn(St)

)
dμ
)

dμ .

Since g is Carathéodory and satisfies (B3) , we have that

|Bpn(E1)−Bpn(E2)| � |q(F1)−q(F2)|+
∫

G1ΔG2

∣∣∣g(x, pn(Sx),
∫

Sx

k
(
t, pn(St)

)
dμ
)∣∣∣dμ

� |q(F1)−q(F2)|+
∫

G1ΔG2

φ(x)
(
1+‖γ‖L1

μ

)
ψ(‖pn‖)dμ .

Assume that
d(E1,E2) = |μ |(E1ΔE2) → 0.

Then we have E1 →E2 . As a result F1 →F2 and |μ |(G1ΔG2)→ 0. As q is continuous
on compact Mz , it is uniformly continuous and so, as E1 → E2 ,

|Bpn(E1)−Bpn(E2)|
� |q(F1)−q(F2)|+

∫
G1ΔG2

φ(x)
(
1+‖γ‖L1

μ

)
ψ(‖pn‖)dμ → 0

uniformly for all E1,E2 ∈ Mz and n ∈ N . This shows that {Bpn : n ∈ N} is an equi-
continuous set in ca(Sz,Mz) . Now an application of the Arzela-Ascoli theorem yields
that B is a totally bounded operator on Br(0) . Now B is continuous and totally
bounded operator on Br(0) , so it is completely continuous operator on Br(0) .

Step V. Finally, we show that hypothesis (c) of Corollary 2.1 is satisfied. The
Lipschitz constant of A is ‖α‖ . Here, the number M in the hypothesis (c) is given by

M = ‖B(Br(0)‖ = sup{‖Bp‖ : p ∈ Br(0)} = sup{|Bp|(Sz) : p ∈ Br(0)}. (3.5)

Now let E ∈ Mz . Then, there are sets F ∈ M0 and G ∈ Mz, G ⊂ x0z such that

E = F ∪G and F ∩G = /0.

From the definition of B it follows that

Bp(E) = q(F)+
∫

G
g
(
x, p(Sx),

∫
Sx

k
(
t, p(St)

)
dμ
)

dμ .

Therefore,

|Bp(E)| � |q(F)|+
∫
G

∣∣∣g(x, p(Sx),
∫

Sx

k
(
t, p(St)

)
dμ
)∣∣∣dμ
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� ‖q‖+
∫
G
φ(x)

(
1+‖γ‖L1

μ

)
ψ(‖p‖)dμ

� ‖q‖+
∫
x0z

φ(x)
(
1+‖γ‖L1

μ

)
ψ(‖p‖)dμ

= ‖q‖+‖φ‖L1
μ

(
1+‖γ‖L1

μ

)
ψ(‖p‖).

Hence, from (2.1) it follows that

‖Bp‖ � ‖q‖+‖φ‖L1
μ

(
1+‖γ‖L1

μ

)
ψ(‖p‖)

for all p ∈ Br(0) . As a result, we have

M = ‖B(Br(0))‖ � ‖q‖+‖φ‖L1
μ

(
1+‖γ‖L1

μ

)
ψ(‖p‖).

Now
αM � ‖α‖

[
‖q‖+‖φ‖L1

μ

(
1+‖γ‖L1

μ

)
ψ(r)

]
< 1

and so, hypothesis (c) of Corollary 2.1 is satisfied.

Now an application of Corollary 2.1 yields that either the operator AxBx = x has a
solution, or there is a u∈ ca(Sz,Mz) such that ‖u‖= r satisfying u = λAxBx for some
0 < λ < 1. We show that this latter assertion does not hold. Assume the contrary. Then
we have

u(E)=

⎧⎨
⎩λ
[
f (x,u(E))

](∫
E

g
(
x,u(Sx),

∫
Sx

k
(
t,u(St)

)
dμ
)

dμ
)
, if E ∈ Mz, E ⊂ x0z,

λq(E), if E ∈ M0

for some 0 < λ < 1.

If E ∈Mz , then there sets F ∈M0 and G ∈Mz, G⊂ x0z such that E = F ∪G and
F ∩G = /0 . Then, we have

u(E) = λAu(E)Bu(E)

= λq(F)+λ
[
f (x,u(G))

](∫
G

g
(
x,u(Sx),

∫
Sx

k
(
t,u(St)

)
dμ
)

dμ

)

= λq(F)+λ
[
f (x,u(G))− f (x,0)

](∫
G

g
(
x,u(Sx),

∫
Sx

k
(
t,u(St)

)
dμ
)

dμ
)

+λ f (x,0)
(∫

G
g
(
x,u(Sx),

∫
Sx

k
(
t,u(St)

)
dμ
)

dμ
)
.

Hence,

|u(E)| � λ |q(F)|+λ (| f (x,u(G))− f (x,0)|)
(∫

G

∣∣∣g(x,u(Sx),
∫

Sx

k
(
t,u(St)

)
dμ
)∣∣∣dμ)

+ | f (x,0)|
(∫

G

∣∣∣g(x,u(Sx),
∫

Sx

k
(
t,u(St)

)
dμ
)∣∣∣dμ)
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� ‖q‖+λ
[
α(x)|u(G)|+F0

](∫
G
φ(x)

(
1+‖γ‖L1

μ

)
ψ(‖u‖)dμ

)
� ‖q‖+

[‖α‖|u|(E)|+F0
](∫

x0z

φ(x)
(
1+‖γ‖L1

μ

)
ψ(‖u‖)dμ

)

� ‖q‖+
[‖α‖‖u‖+F0

][‖φ‖L1
μ

(
1+‖γ‖L1

μ

)
ψ(‖u‖)

]
which further implies that

‖u‖ � ‖q‖+
(
‖α‖‖u‖

[
‖φ‖L1

μ

(
1+‖γ‖L1

μ

)
ψ(‖u‖)

])
+F0

[
‖φ‖L1

μ

(
1+‖γ‖L1

μ

)
ψ(‖u‖)

]

�
‖q‖+F0

[
‖φ‖L1

μ

(
1+‖γ‖L1

μ

)
ψ(‖u‖)

]
1−‖α‖

[
‖φ‖L1

μ

(
1+‖γ‖L1

μ

)
ψ(‖u‖)

]

�
‖q‖+F0

[
‖φ‖L1

μ

(
1+‖γ‖L1

μ

)
ψ(‖u‖)

]
1−‖α‖

[
‖q‖+‖φ‖L1

μ

(
1+‖γ‖L1

μ

)
ψ(‖u‖)

] .
Substituting ‖u‖ = r in the above inequality yields

r �
‖q‖+F0

[
‖φ‖L1

μ

(
1+‖γ‖L1

μ

)
ψ(r)

]
1−‖α‖

[
‖q‖+‖φ‖L1

μ

(
1+‖γ‖L1

μ

)
ψ(r)

] (3.6)

which is a contraction to the first inequality in (3.1). In consequence, the operator
equation p(E) = Ap(E)Bp(E) has a solution u(Sx0 ,q) in ca(Sz,Mz) with ‖u‖ � r .
This further implies that (1.3)-(1.4) has a solution on x0z . This completes the proof.

EXAMPLE 3.1. Given p ∈ ca(Sz,Mz) with p << μ , consider the equation,

d
dμ

(
p(Sx)

1+ |p(Sx)|

)
=

φ(x)p(Sx)
1+ p2(Sx)

a.e. [μ ] on x0z, (3.7)

p(Sx0) = q ∈ R, (3.8)

where φ : x0z → R
+ is μ -integrable. Define the functions f : Sz ×R → R \ {0} and

g : Sz×R → R by f (x,y) = 1+ |y| and

g(x,y) =
φ(x)y
1+ y2

respectively. Below we shall show that the functions f and g satisfy all the conditions
of Theorem 3.1. Obviously f is continuous on the domain of its definition. Let y1,y2 ∈
R . Then we have

| f (x,y1)− f (x,y2)| = |1+ |y1|−1−|y2| | = | |y1|− |y2| | � |y1 − y2|q ,
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which shows that f (x,y) satisfies the Lipschitz condition in y with the Lipschitz con-
stant α = 1. Obviously the function g(x,y) is Carathéodory on x0z . To see this, note
that the function x → φ(x)y/(1+ y2) is obviously μ -measurable for all y ∈ R and the
function y → φ(x)y/(1+ y2) is continuous for all x ∈ x0z . Again,

g(x,y1,y2) = g(x,y1) =
∣∣∣∣φ(x)y1

1+ y2
1

∣∣∣∣� |φ(x)| = φ(x)ψ(|y1|),

where ψ : R
+ → R

+ is defined by ψ(r) = 1.
Thus, if ‖q‖+‖φ‖L1 < 1, then all the assumptions (A0)-(A2) and (B0)-(B3) of

Theorem 3.1 are satisfied. Hence, (3.7) has a solution p(Sx0 ,q) defined on x0z .

4. Existence of Extremal Solutions

In this section, we shall prove the existence of a minimal and a maximal solutions
for (1.3)-(1.4) on x0z between the given upper and lower solutions under Carathédory
as well as discontinuous case of nonlinearity g involved in the equation.

4.1. Carathédory case

We need the following definitions in the sequel.

DEFINITION 4.1. A vector measure u ∈ ca(Sz,Mz) is called a lower solution of
(1.3)-(1.4) if

d
dμ

(
u(Sx)

f (x,u(Sx))

)
� g
(
x,u(Sx),

∫
Sx

k
(
t,u(St)

)
dμ
)

a.e. [μ ] on x0z

and
u(E) � q(E), E ∈ M0.

Similarly, a vector measure v ∈ ca(Sz,Mz) is called an upper solution to (1.3)-(1.4) if

d
dμ

(
v(Sx)

f (x,v(Sx))

)
� g
(
x,v(Sx),

∫
Sx

k
(
t,v(St)

)
dμ
)

a.e. [μ ] on x0z

and
u(E) � q(E), E ∈ M0.

A vector measure p ∈ ca(Sz,Mz) is a solution to (1.3)-(1.4) if is upper as well as lower
solution to (1.3)-(1.4) on x0z .

DEFINITION 4.2. A solution pM is called a maximal solution to (1.3)-(1.4) if for
any other solution p(Sx0 ,q) for the (1.3)-(1.4) we have that

p(E) � pM(E) ∀E ∈ Mz.

Similarly, a minimal solution pm(Sx0 ,q) of (1.3)-(1.4) is defined on x0z .



320 BAPURAO C. DHAGE

We consider the following assumptions:

(C0) f and g define the functions f : x0z×R → R
+−{0} and g : x0z×R×R → R

+ .
(C1) The functions f (x,y1) , k(x,y1) and g(x,y1,y2) are nondecreasing in y1,y2 for
each x ∈ x0z .
(C2) The equation (1.1)-(1.2) has a lower solution u and an upper solution v such that
u � v on Mz .
(C3) The function g(x,y1,y2) is L1

μ -Carathéodory.

THEOREM 4.1. Suppose that the assumptions (A0)-(A2) , (B0)-(B2) and (C0)-
(C3) hold. Further, suppose that

‖α‖(‖q‖+‖hr‖Ll
μ

)
< 1, (4.1)

where r = ‖u‖+ ‖v‖ and the function hr is defined in hypothesis (C3) . Then (1.3)-
(1.4) has a minimal and a maximal solution defined on x0z .

Proof. The equation (1.1)-(1.2) is equivalent to the abstract measure integral equa-
tion (1.3) and (1.4). Define the operators A,B : ca(Sz,Mz) → ca(Sz,Mz) by (3.2) and
(3.3) respectively. Then (1.3)-(1.4) is equivalent to the operator equation

p(E) = Ap(E)Bp(E), E ∈ Mz. (4.2)

We shall show that the operators A and B satisfy all the conditions of Theorem 2.2
on ca(Sz,Mz) . Since μ is a positive measure, from assumption (C0) it follows that A
and B are positive operators on ca(Sz,Mz) . We show that they are also nondecreasing
on ca(Sz,Mz) . To show this, let p1, p2 ∈ ca(Sz,Mz) be such that p1 � p2 on Mz . From
(C2) it follows that

Ap1(E) = f (x, p1(E)) � f (x, p2(E)) = Ap2(E)

for all E ∈ Mz, E ⊂ x0z and

Ap1(E) = 1 = Ap2(E)

for E ∈ M0 . Hence A is nondecreasing on ca(Sz,Mz) .

Similarly, we have

Bp1(E) =
∫

E
g
(
x, p1(Sx),

∫
Sx

k
(
t, p1(St)

)
dμ
)

dμ

�
∫

E
g
(
x, p2(Sx),

∫
Sx

k
(
t, p2(St)

)
dμ
)

dμ = Bp2(E)

for all E ∈ Mz, E ⊂ x0z . Again if E ∈ M0 , then

Bp1(E) = q(E) = Bp2(E).
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Therefore, the operator B is also nondecreasing on ca(Sz,Mz) . Now it can be shown
that as in the proof of Theorem 3.1 that A is a Lipschitz operator on [u,v] with the
Lipschitz constant ‖α‖ . Since the cone K is normal in X , the order interval [u,v] is
norm-bounded. Hence, there is a real number r > 0 such that ‖x‖ � ‖u‖+‖v‖= r for
all x ∈ [u,v] . As g is L1

μ -Carathéodory, there is a function hr : L1
μ(Sz,R

+) such that
|g(x,y1,y2)| � hr(x) on x0z for all y1,y2 ∈ R . Now proceeding with the arguments as
in the proof of Theorem 4.1 with Br(0) = [u,v] , γ(x) = hr(x) and ψ(r) = 1, it can be
proved that B is compact and continuous operator on [u,v] . Since u is a lower solution
of (1.3)-(1.4) we have

u(E) � [ f (x,u(E))]

(∫
E

g
(
x,u(Sx),

∫
Sx

k
(
t,u(St)

)
dμ
)

dμ

)
, E ∈ Mz, E ⊂ x0z

and
u(E) � q(E), if E ∈ M0.

From the above inequalities, it follows that

u(E) � Au(E)Bu(E), if E ∈ Mz

and so u � AuBu . Similarly, since v ∈ ca(Sz,Mz) is an upper solution of (1.3)-(1.4) , it
can be proved that Av(E)Bv(E) � v(E) for all E ∈ Mz and consequently AvBv � v on
Mz . Thus, hypothesis (a)-(c) of Theorem 2.2 are satisfied. Now, from definition of the
norm, it follows that

M = ‖B([u,v])‖ = sup{‖Bp‖ : p ∈ [u,v]}

= sup{|Bp|(Sz) : p ∈ [u,v]} = sup
p∈[u,v]

{
sup
σ

∞

∑
i=1

|B|p(Ei)

}
,

for any partition σ = {Ei : i ∈ N} of Sz such that Sz = ∪∞
i=1Ei, Ei∩Ej = /0 ∀i, j ∈ N .

Let E ∈ Mz , E ⊂ x0z . Then, for any p ∈ [u,v] , one has

|Bp|(E) � sup
σ

∞

∑
i=1

∫
Ei

∣∣∣g(x,v(Sx),
∫

Sx

k
(
t,v(St)

)
dμ
)∣∣∣dμ

� sup
σ

∞

∑
i=1

∫
Ei

hr(x)dμ =
∫

E
hr(u)dμ = ‖hr‖Ll

μ
.

Therefore, for any E ∈ Mz , there are sets F ∈ M0 and G ⊂ x0z such that E = F ∪G,
F ∩G = /0 . Hence, we obtain

M = ‖B([u,v])‖ � ‖q‖+‖hr‖Ll
μ
.

Notice that αM � ‖α‖(‖q‖+‖hr‖Ll
μ
) < 1. Thus, the operators A and B satisfy all the

conditions of Theorem 2.2 and so an application of it yields that the operator equation
ApBp = p has a maximal and a minimal solution in [u,v] . This further implies that
(1.3)-(1.4) has a maximal and a minimal solution on x0z. This completes the proof.
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4.2. Discontinuous case

Next, we obtain an existence result for extremal solutions for (1.3)-(1.4) when the
nonlinearity g is a discontinuous function in all its three variables. We consider the
following assumption:

(C4) the function h : x0z → R
+ defined by

h(x) = g
(
x,v(Sx),

∫
Sx

k
(
t,v(St)

)
dμ
)

is μ -integrable for every upper solution v of (1.3)-(1.4) on x0z .

REMARK 4.1. Assume that the hypotheses (C2) and (C4) hold. Then,∣∣∣g(x, p(Sx),
∫

Sx

k
(
t, p(St)

)
dμ
)∣∣∣� h(x)

for all p ∈ [u,v] .

THEOREM 4.2. Suppose that the assumptions (A0)-(A2) , (B0)-(B2) and (C0)-
(C2) , (C4) hold. Further, suppose that

‖α‖(‖q‖+‖h‖Ll
μ

)
< 1. (4.3)

Then (1.3)-(1.4) has a minimal and a maximal solution defined on x0z.

Proof. The proof is similar to Theorem 4.2 with appropriate modifications. Here,
the function h plays the role of hr while showing the totally boundedness of the opera-
tor B on [u,v] . Now the desired conclusion follows by an application of Theorem 2.3.

Notice that we do not need any type of continuity of the nonlinear function g in
above Theorem 4.2 for guaranteeing the existence of extremal solutions for (1.3)-(1.4)
on x0z , instead we assumed the monotonicity condition on it.
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