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EXISTENCE RESULTS FOR A SECOND ORDER

IMPULSIVE FUNCTIONAL DIFFERENTIAL

EQUATION WITH STATE–DEPENDENT DELAY

Y.-K. CHANG, M. M. ARJUNAN AND V. KAVITHA

(Communicated by M. E. Hernandez)

Abstract. In this paper, we study existence of mild solutions for a second order impulsive neutral
functional differential equations with state-dependent delay. By using a fixed point theorem for
condensing maps combined with theories of a strongly continuous cosine family of bounded
linear operators, we prove the main existence theorems. As applications of these obtained results,
some practical consequences are derived for the sub-linear growth cases. And an example is also
given to illustrate our main results.

1. Introduction

This paper is mainly concerned with the existence of mild solutions for a second
order impulsive neutral functional differential equation with state-dependent delay such
as

d
dt

[x′(t)−g(t,xt)] = Ax(t)+ f (t,xρ(t,xt)), t ∈ I = [0,a], (1.1)

x0 = ϕ ∈ B, x′(0) = ζ ∈ X , (1.2)

Δx(ti) = Ii(xti), i = 1,2, . . . ,n, (1.3)

Δx′(ti) = Ji(xti), i = 1,2, . . . ,n, (1.4)

where A is the infinitesimal generator of a strongly continuous cosine function of
bounded linear operator (C(t))t∈R defined on a Banach space X ; the function xs :
(−∞,0] → X , xs(θ ) = x(s + θ ) , belongs to some abstract phase space B described
axiomatically; 0 < t1 < · · · < tn < a are prefixed numbers; f ,g : I ×B → X , ρ :
I ×B → (−∞,a], Ii(·) : B → X , Ji(·) : B → X are appropriate functions and the
symbol Δξ (t) represents the jump of the function ξ (·) at t , which is defined by
Δξ (t) = ξ (t+)− ξ (t−) .
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The theory of impulsive differential equations has become an important area of in-
vestigation in recent years stimulated by their numerous applications to problems from
mechanics, electrical engineering, medicine, biology, ecology, etc. For more details on
impulsive differential equations and on its applications, we refer the reader to [3, 5, 29]
and the references therein. Ordinary differential equations of first and second order
with impulses have been treated in several works, see for instance [6, 13]. Abstract par-
tial differential equations with impulses have been studied by Liu [31], Rogovchenko
[34, 35], Chang et al. [8, 9, 10, 11], and Hernández et al. [18, 19, 23].

Functional differential equations with state-dependent delay appear frequently in
applications as model of equations and for this reason the study of this type of equations
has received great attention in the last years. The literature devoted to this subject is
concerned fundamentally with first order functional differential equations for which the
state belong to some finite dimensional space, see among another works [1, 4, 7, 12,
15, 16, 17].

The problem of the existence of solutions for first and second order partial func-
tional differential with state-dependent delay have treated recently in [2, 20, 21, 22, 24,
25, 26, 30, 32, 33]. The literature relative second order impulsive differential system
with state-dependent delay is very restrict, and related this matter we only cite [37] for
ordinary differential system and [24] for abstract partial differential systems. To the
best of our knowledge, the study of the existence of solutions for abstract impulsive
second order neutral functional differential equations with state-dependent delay is an
untreated topic in the literature and this fact, is the main motivation of the present work.

2. Preliminaries

In this section, we mention a few results, notations and lemmas needed to establish
our main results.

Throughout this paper, A is the infinitesimal generator of a strongly continuous
cosine function of bounded linear operators (C(t))t∈R on Banach space (X ,‖ · ‖) . We
denote by (S(t))t∈R the sine function associated with (C(t))t∈R which is defined by
S(t)x =

∫ t
0 C(s)xds, for x ∈ X and t ∈ R .

The notation [D(A)] stands for the domain of the operator A endowed with the
graph norm ‖x‖A = ‖x‖+ ‖Ax‖, x ∈ D(A) . Moreover, in this work, E is the space
formed by the vectors x ∈ X for which C(·)x is of class C1 on R . It was proved by
Kisinsky [28] that E endowed with the norm

‖x‖E = ‖x‖+ sup
0�t�1

‖AS(t)x‖, x ∈ E,

is a Banach space. The operator valued function

G(t) =
[
C(t) S(t)
AS(t) C(t)

]
is a strongly continuous group of bounded linear operators on the space E ×X gener-

ated by the operator A =
[

0 I
A 0

]
defined on D(A)×E . It follows from this that AS(t) :
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E → X is a bounded linear operator and that AS(t)x→ 0, t → 0, for each x ∈ E . Fur-
thermore, if x : [0,∞)→ X is a locally integrable function, then z(t) =

∫ t
0 S(t− s)x(s)ds

defines an E -valued continuous function. This is a consequence of the fact that∫ t

0
G(t− s)

[
0

x(s)

]
ds =

[∫ t

0
S(t− s)x(s)ds,

∫ t

0
C(t − s)x(s)ds

]T

defines an E ×X -valued continuous function.
The existence of solutions for the second order abstract Cauchy problem{

x′′(t) = Ax(t) + h(t), 0 � t � a,
x(0) = z, x′(0) = w,

(2.1)

where h : I → X is an integrable function has been discussed in [38]. Similarly, the
existence of solutions of the semilinear second order abstract Cauchy problem it has
been treated in [39]. We only mention here that the function x(·) given by

x(t) = C(t)z+S(t)w+
∫ t

0
S(t− s)h(s)ds, 0 � t � a, (2.2)

is called mild solution of (2.1) and that when z ∈ E, x(·) is continuously differentiable
and

x′(t) = AS(t)z+C(t)w+
∫ t

0
C(t− s)h(s)ds, 0 � t � a. (2.3)

For additional details about cosine function theory, we refer to the reader to [38,
39].

To consider the impulsive conditions (1.3)-(1.4), it is convenient to introduce some
additional concepts and notations.

A function u : [σ ,τ]→ X is said to be a normalized piecewise continuous function
on [σ ,τ] if u is piecewise continuous and left continuous on (σ ,τ] . We denote by
PC ([σ ,τ],X) the space of normalized piecewise continuous functions from [σ ,τ]
into X . In particular, we introduce the space PC formed by all normalized piecewise
continuous functions u : [0,a] → X such that u is continuous at t �= ti , i = 1, . . . ,n . It
is clear that PC endowed with the norm ‖ u ‖PC= sups∈I ‖ u(s) ‖ is a Banach space.

In what follows, we set t0 = 0, tn+1 = a , and for u ∈ PC we denote by ũi, for
i = 0,1, ...,n−1, the function ũi ∈C([ti,ti+1];X) given by ũi(t) = u(t) for t ∈ (ti,ti+1]
and ũi(ti) = limt→t+i

u(t) . Moreover, for a set B ⊆ PC , we denote by B̃i, for i =

0,1, ...,n−1, the set B̃i = {ũi : u ∈ B} .

LEMMA 2.1. [21] A set B ⊆ PC is relatively compact in PC if, and only if,
each set B̃i, i = 0,1, · · · ,n−1, is relatively compact in C([ti, ti+1],X) .

In this work we will employ an axiomatic definition of the phase space B , which
has been used in [21] and suitably modified to treat retarded impulsive differential equa-
tions. Specifically, B will be a linear space of functions mapping (−∞,0] into X
endowed with a seminorm ‖ · ‖B and we will assume that B satisfies the following
axioms:
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(A) If x : (−∞,σ +b]→ X , b > 0, is such that xσ ∈B and x|[σ ,σ+b] ∈PC ([σ ,σ +
b],X) , then for every t ∈ [σ ,σ +b) the following conditions hold:

(i) xt is in B ,

(ii) ‖ x(t) ‖� H ‖ xt ‖B ,

(iii) ‖ xt ‖B� K(t −σ)sup{‖ x(s) ‖: σ � s � t}+M(t−σ) ‖ xσ ‖B,

where H > 0 is a constant; K,M : [0,∞)→ [1,∞) , K is continuous, M is locally
bounded, and H,K,M are independent of x(·) .

(B) The space B is complete.

Next, we consider some examples of phase spaces.

EXAMPLE 2.1. (The phase space PCρ(X) ) A function ψ : (−∞,0]→X is said
to be normalized piecewise continuous if ψ is left continuous and the restriction of ψ
to any interval [−r,0] is piecewise continuous. Let g : (−∞,0]→ [1,∞) be a continuous
nondecreasing function which satisfies the conditions (g-1), (g-2) in the terminology
of [27]. Next, we slightly modify the definition of spaces Cg, C0

g in [27]. We denote
by PCg(X) the space formed by the normalized piecewise continuous functions ψ
such that ψ/g is bounded on (−∞,0] , and by PC 0

g (X) the subspace of PCg(X)
consisting of functions ψ such that [ψ(θ )/g(θ )]→ 0 as θ →−∞ . It is easy to see that
B = PCg(X) and B = PC 0

g (X) endowed with the norm ‖ ψ ‖B:= supθ∈(−∞,0][‖
ψ(θ ) ‖ /g(θ )] are phase spaces in the sense defined above.

EXAMPLE 2.2. (The phase space PCr × Lp(g,X) ) . Let r � 0, 1 � p < ∞
and let g : (−∞,−r] → R be a non-negative measurable function which satisfies
the conditions (g-5), (g-6) in the terminology of [27]. Briefly, this means that ρ
is locally integrable and there exists a non-negative, locally bounded function γ on
(−∞,0] such that g(ξ +θ ) � γ(ξ )ρ(θ ), for all ξ � 0 and θ ∈ (−∞,−r)\Nξ , where
Nξ ⊆ (−∞,−r) is a set with Lebesgue measure zero. The space B = PCr ×Lp(g,X)
consists of all classes of Lebesgue-measurable functions ψ : (−∞,0] → X such that
ψ |[−r,0]∈ PC ([−r,0],X) and ρ ‖ ψ ‖p is Lebesgue integrable on (−∞,−r) . The
seminorm in this space is defined by

‖ ψ ‖B= sup{‖ ψ(θ )‖ : −r � θ � 0} +
(∫ −r

−∞
g(θ ) ‖ ψ(θ ) ‖p dθ

)1/p

.

Proceeding as in the proof of [27, Theorem 1.3.8], it follows that B is a space which
satisfies the axioms (A) and (B). Moreover, when r = 0 this space coincides with C0×
Lp(g, X) and if, in addition, p = 2, we can take H = 1, M(t) = γ(−t)1/2 and K(t) =

1+
(∫ 0

−t g(θ )dθ
)1/2

for t � 0.

REMARK 2.1. Let ψ ∈ B and t � 0. The notation ψt represents the function
defined by ψt(θ ) = ψ(t +θ ) . Consequently, if the function x(·) in axiom (A) is such
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that x0 =ψ , then xt =ψt . We observe that ψt is well defined for t < 0 since the domain
of ψ is (−∞,0] . We also note that in general ψt /∈B ; consider, for example, functions
of the type xμ(t) = (t−μ)−αX(μ,0] , μ > 0, where X(μ,0] is the characteristic function
of (μ ,0] , μ < −r and α p ∈ (0,1) , in the space PCr ×Lp(g;X) .

Additional terminologies and notations used in the sequel are standard in func-
tional analysis. In particular, for Banach spaces (Z,‖ · ‖Z), (W,‖ · ‖W ) , the notation
L (Z,W ) stands for the Banach space of bounded linear operators from Z into W and
we abbreviate to L (Z) whenever Z = W . Additionally, Br(x,Z) denotes the closed
ball with center at x and radius r > 0 in Z .

Our main results are based upon the following well-known result.

LEMMA 2.2. [36, Sadovskii’s Fixed Point Theorem] Let G be a condensing op-
erator on a Banach space X . If G(D) ⊂ D for a convex, closed and bounded set D of
X , then G has a fixed point in D.

3. Existence results

In this section we discuss the existence of mild solutions for the abstract system
(1.1)-(1.4). In the rest of this paper, we always assume that N and Ñ are positive con-
stants such that ‖C(t)‖ � N and ‖S(t)‖ � Ñ , for every t ∈ I . We also suppose, that
ϕ ∈ B and that ρ : I×B → (−∞,a] is a continuous function. Additionally, we intro-
duce following conditions.

(Hϕ) : Let R(ρ−) = {ρ(s,ψ) : (s,ψ) ∈ I×B, ρ(s,ψ) � 0} . The function t → ϕt is
well defined from R(ρ−) into B and there exists a continuous and bounded function
Jϕ : R(ρ−) → (0,∞) such that ‖ ϕt ‖B� Jϕ(t) ‖ ϕ ‖B for every t ∈ R(ρ−) .

(H1) : The function f : I×B → X satisfies the following conditions:

(i) Let x : (−∞,a] → X be such that x0 = ϕ and x|I ∈ PC . The function t →
f (t,xρ(t,xt )) is measurable on I and the function t → f (s,xt ) is continuous on
R(ρ−)∪ I for every s ∈ I .

(ii) For each t ∈ I , the function f (t, ·) : B → X is continuous.

(iii) There exist an integrable function m : I → [0,∞) and a continuous nondecreasing
function W : [0,∞) → (0,∞) such that for every (t,ψ) ∈ I×B

‖ f (t,ψ) ‖ � m(t)W (‖ ψ ‖B), liminf
ξ→∞

W (ξ )
ξ

= Λ< ∞.

(H2) : The funtion g : I×B → X is continuous and there exists Lg > 0 such that

‖g(t,ψ1)−g(t,ψ2)‖ � Lg‖ψ1−ψ2‖B, (t,ψi) ∈ I×B, i = 1,2.
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(H3) : There are positive constants LIi ,LJi such that

‖Ii(ψ1)− Ii(ψ2)‖ � LIi‖ψ1−ψ2‖B, ψ j ∈ B, i = 1,2, . . . ,n,

‖Ji(ψ1)− Ji(ψ2)‖ � LJi‖ψ1−ψ2‖B, ψ j ∈ B, i = 1,2, . . . ,n.

(H4) : There exist positive constants c1,c2 such that ‖g(t,ψ)‖ � c1‖ψ‖B + c2 , for
every (t,ψ) ∈ I×B .

(H5) : The maps Ii,Ji : B → X , i = 1,2, . . . ,n are completely continuous and there
exist continuous nondecreasing functions Φi,Ψi : [0,∞) → (0,∞), i = 1,2, . . . ,n, such
that:

‖Ii(ψ)‖ � Φi(‖ψ‖B), liminf
ζ→+∞

Φi(ζ )
ζ

= ζi < ∞,

‖Ji(ψ)‖ � Ψi(‖ψ‖B), liminf
ζ→+∞

Ψi(ζ )
ζ

= ηi < ∞.

REMARK 3.1. The condition (Hϕ) is frequently satisfied by functions that are
continuous and bounded. In fact, assume that the space of continuous and bounded
functions Cb((−∞,0],X) is continuously included in B . Then, there exists L > 0 such
that

‖ ϕt ‖B� L
supθ�0 ‖ ϕ(θ ) ‖

‖ ϕ ‖B
‖ ϕ ‖B, t � 0, ϕ �= 0, ϕ ∈Cb((−∞,0] : X).

It is easy to see that the space Cb((−∞,0],X) is continuously included in PCg(X)
and PC 0

g (X) . Moreover, if g(·) verifies (g-5)-(g-6) in [27] and g(·) is integrable
on (−∞,−r] , then the space Cb((−∞,0],X) is also continuously included in PCr ×
Lp(g;X) . For complementary details related this matter, see Proposition 7.1.1 and The-
orems 1.3.2 and 1.3.8 in [27].

Motivated by (2.2) we introduce the following concept of mild solutions for the
system (1.1)-(1.4).

DEFINITION 3.1. A function x : (−∞,a] → X is called a mild solution of the
abstract Cauchy problem (1.1)-(1.4) if x0 = ϕ ,xρ(s,xs) ∈B for every s ∈ I;x(·)|I ∈PC
and

x(t) = C(t)ϕ(0)+S(t)[ζ −g(0,ϕ)]

+
∫ t

0
C(t− s)g(s,xs)ds+

∫ t

0
S(t− s) f (s,xρ(s,xs))ds

+ ∑
0<ti<t

C(t− ti)Ii(xti)+ ∑
0<ti<t

S(t− ti)Ji(xti), t ∈ I.

REMARK 3.2. In the rest of this paper, y : (−∞,a]→ X is the function defined by
y(t) = ϕ(t) on (−∞,0] and y(t) = C(t)ϕ(0)+S(t)ζ for t ∈ I . Also, ‖ y ‖a , Ma , Ka,
and Jϕ0 are the constants defined by ‖ y ‖a= sups∈[0,a] ‖ y(s) ‖ , Ma = sups∈[0,a] M(s) ,
Ka = sups∈[0,a] K(s) and Jϕ0 = supt∈R(ρ−) J

ϕ(t).
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LEMMA 3.1. [20, Lemma 2.1] Let x : (−∞,a]→X be a function such that x0 = ϕ
and x|I ∈ PC . Then

‖ xs ‖B� (Ma + Jϕ0 ) ‖ ϕ ‖B +Ka sup{‖ x(θ ) ‖; θ ∈ [0, max{0,s}]}, s ∈ R(ρ−)∪ I.

Now, we prove our main existence results.

THEOREM 3.1. Let conditions (Hϕ ), (H1)− (H4) be hold and assume that S(t)
is compact for every t ∈ R . If

Ka

[
ÑΛ

∫ a

0
m(s)ds+

n

∑
i=1

(NLIi + ÑLJi)+aNLg

]
< 1,

then the problem (1.1)-(1.4) has at least one mild solution on (−∞,a] .

Proof. On the space Y = {x ∈ PC : u(0) = ϕ(0)} endowed with the uniform
convergence topology, we define the operator Γ : Y → Y by

Γx(t) = C(t)ϕ(0)+S(t)[ζ −g(0,ϕ)]

+
∫ t

0
C(t− s)g(s, xs)ds+

∫ t

0
S(t− s) f (s, xρ(s,xs))ds

+ ∑
0<ti<t

C(t− ti)Ii(xti)+ ∑
0<ti<t

S(t− ti)Ji(xti), t ∈ I,

where x : (−∞,a] → X is such that x0 = ϕ and x = x on I . From axiom (A) and our
assumptions on ϕ , we infer that Γx ∈ PC .

Next, we prove that there exists r > 0 such that Γ(Br(y|I ,Y )) ⊆ Br(y|I,Y ) . If we
assume this property is false, then for every r > 0 there exist xr ∈ Br(y|I ,Y ) and tr ∈ I
such that r < ‖Γxr(tr)− y(tr)‖ . Then, from Lemma 3.1 we get

r < ‖Γxr(tr)− y(tr)‖

� NH‖ϕ‖B + Ñ[‖ζ‖+‖g(0,ϕ)‖]+N
∫ tr

0
‖g(s,xr

s)−g(s,ys)‖ds

+N
∫ tr

0
‖g(s,ys)‖ds+ Ñ

∫ tr

0
m(s)W (‖xr

ρ(s,(xr)s)‖B)ds

+
n

∑
i=1

N(LIi‖xti − yti‖B +‖Ii(yti)‖)+
n

∑
i=1

Ñ(LJi‖xti − yti‖B +‖Ji(yti)‖)

� NH‖ϕ‖B + Ñ[‖ζ‖+‖g(0,ϕ)‖]

+NLgKa

∫ tr

0
‖xr − y‖sds+N

∫ tr

0
(c1‖ys‖B + c2)ds

+ ÑW
(
(Ma + Jϕ0 )‖ϕ‖B +Kar+Ka ‖ y ‖a

)∫ a

0
m(s)ds

+
n

∑
i=1

N(LIiKar+‖Ii(yti)‖)+
n

∑
i=1

Ñ(LJiKar+‖Ji(yti)‖),
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and hence

1 � Ka

[
ÑΛ

∫ a

0
m(s)ds+

n

∑
i=1

(NLIi + ÑLJi)+aNLg

]
,

which is contrary to our assumption.
Let r > 0 be such that Γ(Br(y|I ,Y )) ⊂ Br(y|I ,Y ) . In order to prove that Γ is a

condensing map on Br(y|I ,Y ) into Br(y|I ,Y ) . We introduce the decomposition Γ =
Γ1 +Γ2 where

Γ1x(t) = C(t)ϕ(0)+S(t)[ζ−g(0,ϕ)]+
∫ t

0
C(t − s)g(s, xs)ds+ ∑

0<ti<t

C(t− ti)Ii(xti)

+ ∑
0<ti<t

S(t− ti)Ji(xti),

Γ2x(t) =
∫ t

0
S(t− s) f (s, xρ(s,xs))ds.

From the proof of [24, Theorem 3.4], we know that Γ2 is completely continuous. More-
over, from the estimate

‖Γ1x−Γ1z‖PC � aNLgKa‖x− z‖PC +Ka

n

∑
i=1

(NLIi + ÑLJi )‖x− z‖PC

� Ka[aNLg +
n

∑
i=1

(NLIi + ÑLJi )]‖x− z‖PC

it follows that Γ1 is contraction on Br(y|I ,Y ) , which implies that Γ is a condensing
operator on Br(y|I ,Y ) .

Finally, from Lemma 2.2, we infer that there exists a mild solution of (1.1)-(1.4).
The proof is complete.

THEOREM 3.2. Let conditions (Hϕ ), (H1), (H2), (H4), (H5) be hold and assume
that S(t) is compact for every t ∈ R . If

Ka

[
ÑΛ

∫ a

0
m(s)ds+

n

∑
i=1

(Nζi + Ñηi)+aNLg

]
< 1,

then the problem (1.1)-(1.4) admits at least one mild solution on (−∞,a] .

Proof. On the space Y = {x ∈ PC : u(0) = ϕ(0)} endowed with the uniform
convergence topology, we define the operator Γ : Y → Y by

Γx(t) = C(t)ϕ(0)+S(t)[ζ −g(0,ϕ)]

+
∫ t

0
C(t− s)g(s, xs)ds+

∫ t

0
S(t− s) f (s, xρ(s,xs))ds

+ ∑
0<ti<t

C(t− ti)Ii(xti)+ ∑
0<ti<t

S(t− ti)Ji(xti), t ∈ I,
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where x : (−∞,a] → X is such that x0 = ϕ and x = x on I . From axiom (A) and our
assumptions on ϕ , we infer that Γx ∈ PC .

Next, we prove that there exists r > 0 such that Γ(Br(y|I ,Y )) ⊆ Br(y|I,Y ) . If we
assume this property is false, then for every r > 0 there exist xr ∈ Br(y|I ,Y ) and tr ∈ I
such that r < ‖Γxr(tr)− y(tr)‖ . Then, from Lemma 3.1 we get

r < ‖Γxr(tr)− y(tr)‖
� NH‖ϕ‖B + Ñ[‖ζ‖+‖g(0,ϕ)‖]

+N
∫ tr

0
‖g(s,xr

s)−g(s,ys)‖ds+N
∫ tr

0
‖g(s,ys)‖ds

+ Ñ
∫ tr

0
m(s)W (‖xr

ρ(s,(xr)s)‖B)ds+N
n

∑
i=1

‖Ii(xti)‖+ Ñ
n

∑
i=1

‖Ji(xti)‖

� NH‖ϕ‖B + Ñ[‖ζ‖+‖g(0,ϕ)‖]

+NLgKa

∫ tr

0
‖xr − y‖sds+N

∫ tr

0
(c1‖ys‖B + c2)ds

+ ÑW ((Ma + Jϕ0 )‖ϕ‖B +Kar+Ka ‖ y ‖a)
∫ a

0
m(s)ds

+N
n

∑
i=1

Φi(‖xti‖B)+ Ñ
n

∑
i=1

Ψi(‖xti‖B).

Since Φi and Ψi are nondecreasing operators, we have

r < NH‖ϕ‖B + Ñ[‖ζ‖+‖g(0,ϕ)‖]

+NLgKa

∫ tr

0
‖xr − y‖sds+N

∫ tr

0
(c1‖ys‖B + c2)ds

+ ÑW ((Ma + Jϕ0 )‖ϕ‖B +Kar+Ka ‖ y ‖a)
∫ a

0
m(s)ds

+N
n

∑
i=1

Φi(r∗)+ Ñ
n

∑
i=1

Ψi(r∗),

where ‖xti‖B � r∗ = (Ma + Jφ0 )‖ϕ‖B +Ka(r+‖y‖a) and hence

1 � Ka

[
ÑΛ

∫ a

0
m(s)ds+

n

∑
i=1

(Nζi + Ñηi)+aNLg

]
,

which contradicts to our assumption.
Let r > 0 be such that Γ(Br(y|I ,Y )) ⊂ Br(y|I ,Y ) . In order to prove that Γ is

a condensing map on Br(y|I ,Y ) , we introduce the decomposition Γ = Γ1 + Γ2 +Γ3

where

Γ1x(t) = C(t)ϕ(0)+S(t)[ζ −g(0,ϕ)]+
∫ t

0
C(t− s)g(s, xs)ds,

Γ2x(t) =
∫ t

0
S(t− s) f (s, xρ(s,xs))ds,

Γ3x(t) = ∑
0<ti<t

C(t− ti)Ii(xti)+ ∑
0<ti<t

S(t− ti)Ji(xti).
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From the proof of [24, Theorem 3.4], we know that Γ2 is completely continuous.
In the sequel, by using Lemma 2.1, we prove that Γ3 is also completely continu-

ous. Since (C(t))t∈R,(S(t))t∈R are bounded by N,N and Ii, i = 1, · · · ,n are completely
continuous, the continuity of Γ3 can be proved standardly by using the phase space
axioms.

Let r be a positive number, Br = Br(0,PC ) and r∗ > 0 be such that ‖ xt ‖B� r∗
for every x ∈ Br and all t ∈ I . Since that the functions Ii are completely continuous
and the cosine function (C(t))t∈R is strongly continuous, for ε > 0 there exists δ > 0
such that

‖C(t +h)Ii(ψ)−C(t)Ii(ψ) ‖ � ε
n
, i = 1, ...,n, (3.1)

for every t ∈ I , 0 <| h |< δ and all ψ ∈ Br∗(0,PC ) . Consequently, for x ∈ Br ,
t ∈ [ti, ti+1] and 0 <| h |< δ with t +h ∈ [ti,ti+1] , we see that

‖ [Γ3x]i(t +h)− [Γ3x]i(t) ‖ �
n

∑
j=1

‖ (C(t +h− t j)−C(t− t j))I j(ut j ) ‖

+
n

∑
j=1

‖ (S(t +h− t j)−S(t− t j))Jj(ut j ) ‖

� ε +hN
n

∑
j=1

(Ψi(r∗)),

which proves the set of functions [Γ3Br]i is equicontinuous on [ti,ti+1] for all i =
0, ...,n−1.

On the other hand, from the relations

[Γ3x]i(t) ∈
i

∑
j=1

C(t − t j)I j(Br∗(0,B))+
i

∑
j=1

S(t− t j)Jj(Br∗(0,B)) t ∈ (ti,ti+1],

[Γ3x]i(ti) ∈
i−1

∑
j=1

C(ti − t j)I j(Br∗(0,B))+ Ii(Br∗(0,B))+
i−1

∑
j=1

S(ti − t j)Jj(Br∗(0,B)),

we infer that the set [Γ3x]i(t) is relatively compact in X for every t ∈ [ti,ti+1] and all
i = 0, ...,n− 1. Now, from Lemma 2.1 we assert that Γ3 is completely continuous.
Next, by using hypothesis (H2) , we prove that Γ1 is a contraction. Moreover, from the
estimate

‖Γ1x−Γ1z‖PC � aNLgKa‖x− z‖PC

it follows that, Γ1 is contraction on Br(y|I,Y ) , which implies that Γ is a condensing
operator on Br(y|I ,Y ) .

Finally, from Lemma 2.2, we infer that there exists a mild solution of (1.1)-(1.4).
The proof is complete.

According to Theorems (3.1)-(3.2), we can easily deduce some practical conse-
quences for sub-linear growth cases.
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COROLLARY 3.1. If all conditions of Theorem 3.1 hold except that (H1)(iii) re-
placed by
(C1) : there exist an integrable function m : J → [0,+∞) and a constant τ ∈ [0,1) such
that

‖ f (t,ψ)‖ � m(t)(1+‖ψ‖τB), for each (t,ψ) ∈ I×B,

then the problem (1.1)-(1.4) admits at least one mild solution on (−∞,a] provided
that

Ka

[ n

∑
i=1

(NLIi + ÑLJi)+aNLg

]
< 1.

COROLLARY 3.2. If all conditions of Theorem 3.2 hold except that (H5) replaced
by the following one,
(C2) : there exist positive constants ci,di,ei, li, i = 1,2, . . . ,n and constants θ ,ϑ ∈
[0,1) such that for each ψ ∈ B ,

‖Ii(ψ)‖ � ci +di(‖ψ‖B)θ , i = 1,2, . . . ,n,

and

‖Ji(ψ)‖ � ei + li(‖ψ‖B)ϑ , i = 1,2, . . . ,n,

then the problem (1.1)-(1.4) has at least one mild solution on (−∞,a] provided that

Ka

[
ÑΛ

∫ a

0
m(s)ds+aNLg

]
< 1.

COROLLARY 3.3. If all conditions of Theorem 3.2 hold except that (H1)(iii) and
(H5) replaced by (C1) and (C2) , then the problem has at least one mild solution on
(−∞,a] provided that

KaaNLg < 1.

REMARK 3.3. According to conditions (C1)-(C2), we can see that

Λ= 0, ζi = 0, ηi = 0.

4. An example

In this section, we consider an application of our abstract results. At first we intro-
duce the required technical framework. In the rest of this section, X = L2([0,π ]),B =
PC 0 × L2(g,X) is the space introduced in Example 2.2 and A : D(A) ⊂ X → X is
the operator Ax = x′′ with domain D(A) = {x ∈ X : x′′ ∈ X ,x(0) = x(π) = 0} . It is
well-known that A is the infinitesimal generator of a strongly continuous cosine family
(C(t))t∈R on X . Furthermore, A has a discrete spectrum, the eigenvalues are −n2 , for
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n ∈ N, with corresponding eigenvectors zn(τ) = (2/π)1/2 sin(nτ) , and the following
properties hold.

(a) The set {zn : n ∈ N} is an orthonormal basis of X and Az = −∑∞
n=1 n2〈z,zn〉zn, for

ϕ ∈ D(A) .

(b) For z ∈ X , C(t)z = ∑∞
n=1 cos(nt)〈z,zn〉zn . It follows from this expression that

S(t)z = ∑∞
n=1

sin(nt)
n 〈z,zn〉zn , which implies that the operator S(t) is compact, for all

t ∈ R and that ‖C(t)‖ = ‖S(t)‖ = 1, for all t ∈ R .

(c) If Φ is the group of translations on X defined by Φ(t)x(ζ ) = x̃(ζ + t) , where x̃(·)
is the extension of x(·) with period 2π , then C(t) = 1

2

[
Φ(t)+Φ(−t)

]
and A = B2 ,

where B is the infinitesimal generator of Φ and E = {x ∈ H1(0,π) : x(0) = x(π) = 0}
( see [14] for details). In particular, we observe that the inclusion ι : E → X is compact.

Consider the differential system

∂
∂ t

[ ∂
∂ t

u(t,ζ )+
∫ t

−∞

∫ π

0
b(t− s,η ,ζ )u(s,η)dηds

]
=

∂ 2

∂ζ 2 u(t,ζ )

+
∫ t

−∞
a(s− t)u(s−ρ1(t)ρ2(‖u(t)‖),ζ )ds, t ∈ I, ζ ∈ [0,π ], (4.1)

u(t,0) = u(t,π) = 0, t ∈ I, (4.2)

∂
∂ t

u(0,ζ ) = ζ (π), (4.3)

u(τ,ζ ) = ϕ(τ,ζ ), τ � 0, 0 � ζ � π , (4.4)

u(ti)(ζ ) =
∫ ti

−∞
bi(ti − s)u(s,ζ )ds, i = 1,2, . . . ,n, (4.5)

u′(ti)(ζ ) =
∫ ti

−∞
b̃i(ti − s)u(s,ζ )ds, i = 1,2, . . . ,n. (4.6)

To treat this system, let the functions ρi : [0,∞) → [0,∞); a : R → R be continuous,

Lf =
(∫ 0

−∞
(a2(s))
g(s) ds

) 1
2

< ∞ , and let the following conditions hold:

(a) The functions b(s,η ,ζ ), ∂b(s,η,ζ )
∂ζ are measurable, b(s,η ,π) = b(s,η ,0) = 0 and

Lg = max

⎧⎨⎩
(∫ π

0

∫ 0

−∞

∫ π

0

1
g(s)

(
∂ ib(s,η ,ζ )

∂ζ i

)2

dηdsdζ

) 1
2

: i = 0,1

⎫⎬⎭< ∞.

(b) The functions bi, b̃i ∈C(R,R) and LIi :=
(∫ 0

−∞
b2
i (s)
g(s) ds

) 1
2
, LJi :=

(∫ 0
−∞

b̃2
i (s)
g(s) ds

) 1
2
,

i = 1, · · · ,n, are finite.

Under these conditions, we define the functions g, f : J×B → X , ρ : I ×B →
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X , Ii : B → X and Ji : B → X by

g(ψ)(ζ ) =
∫ 0

−∞

∫ π

0
b(s,ν,ζ )ψ(s,ν)dνds,

f (t,ψ)(ζ ) =
∫ 0

−∞
a(s)ψ(s,ζ )ds,

ρ(s,ψ) = s−ρ1(s)ρ2(‖ψ(0)‖),

Ii(ψ)(ζ ) =
∫ 0

−∞
bi(−s)ψ(s,ζ )ds, i = 1,2, . . . ,n,

Ji(ψ)(ζ ) =
∫ 0

−∞
b̃i(−s)ψ(s,ζ )ds, i = 1,2, . . . ,n,

which permit to transform (4.1)-(4.6) into the abstract Cauchy problem (1.1)-(1.4).
Moreover, the maps g, f , Ii, Ji, i = 1,2, . . . ,n are bounded linear operators with

‖g(t, ·)‖L (B,X) � Lg, ‖ f (t, ·)‖L (B,X) � Lf , ‖Ii‖L (B,X) � LIi ,‖Ji‖L (B,X) � LJi .

The next results are consequence of Theorem 3.2 and Remark 3.1. We omit the
proof.

PROPOSITION 4.1. Assume ϕ ∈ B , ζ ∈ X and that the condition (Hϕ) is ver-
ified. Then there exists a mild solution u(·) of (4.1)-(4.6) . Moreover, if ϕ(0) ∈
H1

0 (0,π) and Ii(uti) ∈ H1
0 (0,π) for each i = 1,2, . . . ,n, then the conditions (4.5) and

(4.6) are verified.

COROLLARY 4.1. If ϕ is continuous and bounded, then there exists a mild solu-
tion of (4.1)-(4.6) .
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