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SHARP ESTIMATES OF BOUNDED SOLUTIONS TO A

SECOND–ORDER FORCED EQUATION WITH STRUCTURAL DAMPING

ALAIN HARAUX

(Communicated by M. Pašić)

Abstract. By using differential inequalities, an essentially optimal L∞(R,D(A)) bound of the
unique bounded solution of u′′ + cAu′ + A2u = f (t) is obtained whenever A = A∗ � λ I is a
bounded or unbounded linear operator on a real Hilbert space H and λ ,c are positive constants,
while f ∈ L∞(R,H) .

Introduction

Let H be a real Hilbert space. In the sequel we denote by (u,v) the inner product
of two vectors u,v in H and by |u| the H-norm of u . Let A : D(A) → H a possibly
unbounded self-adjoint linear operator such that

∃λ > 0,∀u ∈ D(A), (Au,u) � λ |u|2.
We consider the largest possible number satisfying the above inequality, in other terms

λ1 = inf
u∈D(A),|u|=1

(Au,u).

We also introduce
V = D(A)

endowed with the norm given by

∀u ∈V, ‖u‖ = |Au|.
It is clear that the norm just defined on V is equivalent to the graph norm of A as a
consequence of our coerciveness assumption on A .

Given f ∈ L∞(R,H) the second order evolution equation

u′′ + cAu′+A2u = f (t) (1)

is easily shown to have a unique bounded solution

u ∈Cb(R,D(A))∩C1
b(R,H). (2)
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Indeed, writing (1) as a system by introducing u′ = v it is not difficult to establish that
the homogeneous equation (i.e. problem (1) with f = 0) generates an exponentially
damped semi-group S(t) on D(A)×H , then the result follows easily from [3].

In the previous work [6] we obtained a close-to-optimal L∞(R,D(A1/2) bound of
the unique bounded solution of u′′ + cu′ +Au = f (t) by extending in the Hilbert space
setting some methods devised for the second order scalar ODE u′′+cu′+ω2u = f (t)
for which the optimal bound is known, cf [5]. However in [6] we do not recover what
would be an exact generalization of the scalar case, we lose a factor 2 or a factor

√
2

depending on the position of c compared to 2
√
λ1 . In the case of equation (1) where the

constant damping is replaced by the so-called structural damping (cf. [2]), the equation
looks more comparable to the scalar case in the sense that the ratio of the square of
the dissipation over the eigenvalue is the same for all elementary modes. It turns out
that an essentially optimal bound can then be obtained by a suitable modification of the
methods from [5, 6].

The plan of the paper is the following: Section 1 contains the statement of the
main result. Sections and 2 and 3 are devoted to the proofs. In Section 4 we give an
example of application to the size of attractors of some nonlinear plate equations in a
bounded domain.

1. Main result

Our main result is the following.

THEOREM 1.1. The bounded solution u of (1) satisfies the estimate

∀t ∈ R, ‖u(t)‖ �
max{1, 2

c}
λ1

‖ f‖L∞(R,H). (1.1)

Moreover if c � 2 we have

∀t ∈ R, |u′(t)| � (1+
2
c
)

1
λ1

‖ f‖L∞(R,H) (1.2)

and if c � 2

∀t ∈ R, |u′(t)| � 4

λ1(c+
√

c2−4)
‖ f‖L∞(R,H). (1.3)

2. The case of a small damping

This section is devoted to the proof of Theorem 1.1 when c � 2. Under this
condition we can use following variant of the energy functional already used in [4, 5,
6]:

Φ(t) = |A 1
2 u′(t)|2 + |A 3

2 u(t)|2 + c(Au(t),Au′(t)) (2.1)
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which is well-defined at least when f ∈ L∞(R,D(A)) for instance since then

u ∈ L∞(R,D(A2))∩W 1,∞(R,D(A))∩W 2,∞(R,H).

Assuming moreover f ∈ L∞(R,D(A2)) we can differentiate Φ in the classical sense
and we find

Φ′ = (u′′ +A2u,2Au′)+ c|Au′|2 + c(A2u,u′′)

= (2Au′, f − cAu′)+ c|Au′|2 + c(A2u, f −A2u− cAu′)

= −c[|Au′(t)|2 + |A2u(t)|2 + c(A2u(t),Au′(t))]+ ( f ,2Au′ + cA2u)

hence
Φ′ = −cΨ+( f ,2Au′+ cA2u) (2.2)

with
Ψ(t) := |Au′(t)|2 + |A2u(t)|2 + c(A2u(t),Au′(t)). (2.3)

We claim
∀t ∈ R, Ψ(t) � λ1Φ(t). (2.4)

Indeed setting for t fixed w = A
1
2 u′(t), z = A

3
2 u(t) we have

Ψ(t) := |Au′(t)|2 + |A2u(t)|2 + c(A2u(t),Au′(t)) = |A 1
2 w|2 + |A 1

2 z|2 + c(Aw,z)

=
∣∣∣A 1

2

(
w+

c
2
z
)∣∣∣2 +

(
1− c2

4

)
|A 1

2 w|2 � λ1

(∣∣∣w+
c
2
z
∣∣∣2 +

(
1− c2

4

)
|w|2

)
= λ1Φ(t).

On the other hand

|2Au′+ cA2u|2 = 4|Au′|2 +4c(A2u,Au′)+ c2|A2u|2 � 4Ψ

hence, using

( f ,2Au′ + cA2u) � 2
c
| f |2 +

c
8
|2Au′ + cA2u|2 � 2

c
| f |2 +

c
2
Ψ

we deduce from (2.3) and (2.4) the inequality

Φ′ � − c
2
Ψ+

2
c
| f |2 � − c

2
λ1Φ+

2
c
| f |2.

In particular, since Φ is bounded we find

∀t ∈ R, Φ(t) � 4
λ1c2 ‖ f‖2

∞

which means

∀t ∈ R, |A 1
2 u′(t)|2 + |A 3

2 u(t)|2 + c(Au(t),Au′(t)) � 4
λ1c2 ‖ f‖2

∞. (2.5)
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In particular

∀t ∈ R, λ1|Au(t)|2 + c(Au(t),Au′(t)) � 4
c2 ‖ f‖2

∞

and this means
c
2
(|Au(t)|2)′ +λ1|Au(t)|2 � 4

λ1c2 ‖ f‖2
∞.

Along with boundedness of Au(t) in H on R this implies

∀t ∈ R, |Au(t)|2 � 4

c2λ 2
1

‖ f‖2
∞

therefore (1.1) is provedwhen f is smooth. The general case follows at once by density.
Finally from (2.5) we deduce∣∣∣A 1

2 u′(t)+
c
2
A

3
2 u(t)

∣∣∣2 � |A 1
2 u′(t)|2 + |A 3

2 u(t)|2 + c(Au(t),Au′(t)) � 4
λ1c2 ‖ f‖2

∞

hence

|A 1
2 u′(t)+

c
2
A

3
2 u(t)| � 2

c
√
λ1

‖ f‖∞
therefore

|u′(t)+
c
2
Au(t)| � 2

cλ1
‖ f‖∞

and finally

|u′(t)| � (1+
2
c
)

1
λ1

‖ f‖∞
as claimed.

REMARK 2.1. If c < 2, inequality (2.5) implies in fact u ∈ L∞(R,D(A3/2))∩
W 1,∞(R,D(A1/2)) for any f ∈ L∞(R,H) . Actually, for any c > 0 it follows from [7]
that S(t) is analytic on V ×H and then for all η > 0,

u ∈Cb(R,D(A2−η))∩C1
b(R,D(A1−η )).

3. The case of a large damping

This section is devoted to the proof of Theorem 1.1 for c � 2. We shall use the
following simple lemma.

LEMMA 3.1. Let B = B∗ � 0 be a possibly unbounded linear operator on H
such that B � ηI with η > 0 . Then for each f ∈ L∞(R,H) the unique mild solution u
bounded on R with values in H of

u′ +Bu = f (3.1)

takes its values in D(B
1
2 ) and we have

∀t ∈ R, |B 1
2 u(t)| � 1√

η
‖ f‖L∞(R,H). (3.2)
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Proof. Assume first that f is smooth and let u be the (smooth) bounded solution
u of (3.1) on R . We have for almost all t ∈ J

d
dt
|B 1

2 u|2 +2(Bu,Bu) = 2( f ,Bu) � | f |2 +(Bu,Bu)

hence
d
dt
|B 1

2 u|2 +η |B1/2u|2 � d
dt
|B 1

2 u|2 + |Bu|2 � | f |2

from which (3.2) follows immediately. The result follows by density for any f ∈
L∞(R,H) . �

Proof of Theorem 1.1. continued. We introduce

α =
c+

√
c2 −4
2

; β =
c−√

c2 −4
2

=
1
α

.

For each f ∈ L∞(R,H) there is a unique bounded solution v of

v′ +αAv = f .

As a consequence of Lemma 3.1, we have v ∈ L∞(R,D(A
1
2 ) with

∀t ∈ R, |A 1
2 v(t)| � 1

α
√
λ 1

‖ f‖L∞(R,H). (3.3)

Since v is bounded there is a unique bounded solution u ∈ L∞(R,D(A
1
2 ) of

u′ +βAu = v.

As a consequence of Lemma 3.1 applied with f replaced by A
1
2 v , we have u∈L∞(R,D(A)

with

∀t ∈ R, |Au(t)| � 1

β
√
λ 1

‖A 1
2 v‖L∞(R,H)) � 1

λ1
‖ f‖L∞(R,H). (3.4)

Now when f ∈ L∞(R,D(A))) we have

u′′ = v′ −βAu′ = f −αAv−βAu′ = f −βAu′ −αA(u′+βAu) = f −Au′ −A2u.

Finally, u is the bounded solution of

u′′ +Au′+A2u = f .

The result extends by density to the general case. To estimate the norm of u′ it is now
sufficient to write

|u′| = |v−βAu|� 1√
λ 1

|A 1
2 v|+β |Au|� 2β

λ1
‖ f‖∞ =

4

λ1(c+
√

c2−4)
‖ f‖L∞(R,H).

The proof of Theorem 1.1 is now complete. �
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4. Application

Let (Ω,μ) be a finitely measured space and A a positive definite self-adjoint linear
operator as in the introduction on H = L2(Ω,dμ) . Assuming μ(Ω)<∞ , let us consider
a bounded function F : R → [−a,+a] with a > 0 and let u ∈ Cb(R,V )∩C1

b(R,H)∩
W 2,∞(R,V ′) be a solution of

u′′ + cAu′+A2u = F(u). (4.1)

Then if c � 2 we have

∀t ∈ R, ‖u(t)‖ � a
λ1

μ(Ω)1/2 (4.2)

and if c � 2 we have

∀t ∈ R, ‖u(t)‖ � 2a
cλ1

μ(Ω)1/2. (4.3)

For instance, let Ω be a bounded open domain in R
N and b � 0,c > 0,α ∈ R. We

consider the problem
u′′ +Δ2u− cΔu′ = α sinu (4.4)

with the boundary conditions

u = Δu = 0 on ∂Ω. (4.5)

It is well known that problem (4.4)–(4.5) has a compact attractor A . Our result gives
an upper bound of the size of the u−projection of A since the attractor is just the
union of the ranges of bounded solutions. More precisely we have

A ⊂
{

(u,v) ∈ (H2(Ω)∩H1
0 (Ω))×L2(Ω), |Δu|L2(Ω) �

max{1, 2
c}|α|

λ1
|Ω|1/2

}
.

(4.6)
We conjecture that for c = 2 this result is optimal.
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