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ON AN EIGENVALUE PROBLEM INVOLVING THE

p(x)–LAPLACE OPERATOR PLUS A NON–LOCAL TERM

MIHAI MIHĂILESCU AND DENISA STANCU-DUMITRU

(Communicated by J. -P. Gossez)

Abstract. We study an eigenvalue problem involving variable exponent growth conditions and a
non-local term, on a bounded domain Ω ⊂ R

N . Using adequate variational techniques, mainly
based on the mountain-pass theorem of A. Ambrosetti and P. H. Rabinowitz, we prove the exis-
tence of a continuous family of eigenvalues lying in a neighborhood at the right of the origin.

1. Introduction

Elliptic equations involving variable exponent growth conditions have been in-
tensively discussed in the last decade. A strong motivation in studying such kind of
problems is due to the fact that they can model with high accuracy various phenomena
which arise from the study of elastic mechanics (see, V. Zhikov [27]), electrorheologi-
cal fluids (see, E. Acerbi and G. Mingione [1, 2], L. Diening [5], T. C. Halsey [14], M.
Ruzicka [24, 25]) or image restoration (see, Y. Chen, S. Levine and R. Rao [4]). In that
context, eigenvalue problems involving variable exponent growth conditions represent
a starting point in analyzing more complicated equations. A first contribution in this
sense is the paper of X. Fan, Q. Zhang and D. Zhao [12] where the following eigenvalue
problem has been considered{−div(|∇u|p(x)−2∇u) = λ |u|p(x)−2u in Ω,

u = 0 on ∂Ω ,
(1)

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω , p : Ω → (1,∞) is

a continuous function and λ is a real number. The result in [12] establishes the exis-
tence of infinitely many eigenvalues for problem (1) by using an argument based on the
Ljusternik-Schnirelmann critical point theory. Denoting by Λ the set of all nonnegative
eigenvalues, the authors showed that supΛ = +∞ and they pointed out that only under
special conditions, which are somehow connected with a kind of monotony of the func-
tion p(x) , we have infΛ > 0 (this is in contrast with the case when p(x) is a constant;
then, we always have infΛ> 0).
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We notice that the above discussion is in keeping with the fact that considering the
Rayleigh quotient associated with problem (1), that is

μ1 := inf
u∈C1

0(Ω)\{0}

∫
Ω
|∇u|p(x) dx∫
Ω
|u|p(x) dx

,

we often have μ1 = 0 for general p(x) . An example in that sense is illustrated by X.
Fan and D. Zhao in [13], pages 444-445. More exactly, letting Ω = (−2,2) ⊂ R and
defining p(x) = 3 if 0 � |x| � 1, and p(x) = 4− |x| if 1 � |x| � 2 it can be proved
that μ1 = 0. A simple conclusion one can draw from this remark is that, generally, we
can not establish the existence of a positive constant C such that the following Poincaré
type inequality holds true,∫

Ω
|u|p(x) dx � C

∫
Ω
|∇u|p(x) dx, ∀ u ∈C1

0(Ω) .

Going further, another eigenvalue problem involving variable exponent growth
conditions intensively studied is the following{−div(|∇u|p(x)−2∇u) = λ |u|q(x)−2u in Ω,

u = 0 on ∂Ω ,
(2)

where Ω ⊂ R
N (N � 3) is a bounded domain with smooth boundary ∂Ω , p, q :

Ω → (1,∞) are two continuous functions and λ is a real number. In the case when
p(x) �= q(x) the competition between the growth rates involved in equation (2) is es-
sential in describing the set of eigenvalues of this problem. Thus, in the case when
minx∈Ω q(x) < minx∈Ω p(x) and q(x) has a subcritical growth M. Mihăilescu and V.
Rădulescu [21] used Ekeland’s variational principle in order to prove the existence of a
continuous family of eigenvalues which lies in a neighborhood of the origin. This re-
sult was later extended by X. Fan in [9]. In the case when maxx∈Ω p(x) < minx∈Ω q(x)
and q(x) has a subcritical growth, a mountain-pass argument, similar with that used
by Fan and Zhang [11], can be applied in order to show that any λ > 0 is an eigen-
value of problem (2). Finally, in the case when maxx∈Ω q(x) < minx∈Ω p(x) it can be
proved that the energetic functional which can be associated with the eigenvalue prob-
lem has a nontrivial minimum for any positive λ large enough (see, [11]). Clearly, in
this case, the result of M. Mihăilescu and V. Rădulescu [21] can be also applied. Con-
sequently, in this situation there exist two positive constants λ � and λ �� such that any
λ ∈ (0,λ �)∪ (λ ��,∞) is an eigenvalue of the problem.

All the results pointed out in relation to problem (2) were extended to the case
of anisotropic elliptic equations, these are equations obtained when div(|∇u|p(x)−2∇u)
is replaced by ∑N

i=1 ∂i(|∂iu|pi(x)−2∂iu) , where pi(x) > 1 are different continuous func-
tions, by M. Mihăilescu, P. Pucci and V. Rădulescu [19] and M. Mihăilescu and G.
Moroşanu [17, 18].

In an appropriate context we also point out the study of the eigenvalue problem{−div((|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u) = λ |u|q(x)−2u in Ω,
u = 0 on ∂Ω ,

(3)
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where Ω ⊂ R
N (N � 3) is a bounded domain with smooth boundary ∂Ω and p1(x) ,

p2(x) , q(x) : Ω → (1,∞) are continuous functions satisfying p2(x) < q(x) < p1(x) .
For this problem M. Mihăilescu and V. Rădulescu [22] proved the existence of two
positive constants λ0 and λ1 with λ0 � λ1 such that any λ ∈ [λ1,∞) is an eigenvalue
of problem (3) while any λ ∈ (0,λ0) is not an eigenvalue of problem (3).

For more information and connections regarding the study of eigenvalue prob-
lems involving variable exponent growth conditions we also refer to [15], (see, the
web-site of the Research group on variable exponent Lebesgue and Sobolev spaces,
http://www.math.helsinki.fi/analysis/varsobgroup/).

The goal of this paper is to study a new eigenvalue problem involving variable
exponent growth conditions and a non-local term. With that end in view, let Ω ⊂ R

N ,
(N � 3), be a bounded domain with smooth boundary ∂Ω . We analyze the eigenvalue
problem {−η [u]div(|∇u|p(x)−2∇u) = λ f (x,u) for x ∈Ω ,

u = 0, for x ∈ ∂Ω ,
(4)

where p :Ω→ (1,∞) is a continuous function, η [u] is a non-local term defined by the
following relation

η [u] = 2+
(∫

Ω

1
p(x)

|∇u|p(x) dx

)maxΩ p

minΩ p −1

+
(∫

Ω

1
p(x)

|∇u|p(x) dx

) minΩ p

maxΩ p−1

and λ is a real number and f = f (x,t) : Ω×R → R is given by the relation

f (x,t) :=
{ |t|p(x)−2t, if |t| < 1,

|t|r(x)−2t, if |t| � 1,

with r : Ω→ (1,∞) a continuous function satisfying

(max
Ω

p)2/min
Ω

p < min
Ω

r � max
Ω

r < N min
Ω

p/(N−min
Ω

p).

For problem (4) we will prove the existence of a continuous set of eigenvalues in
a neighborhood at the right of the origin by using as main argument the mountain-pass
theorem. We notice that problem (4) is connected with problem (1) since near the origin
f (x,t) = |t|p(x)−2t and also with problem (2) since far of the origin f (x, t) = |t|r(x)−2t ,
with minΩ r > maxΩ p . On the other hand, the presence of the non-local term η [u] bal-
ances the absence of homogeneity which occurs in the case of variable exponent growth
conditions. Particularly, the presence of η [u] will help us to formulate a Poincaré type
inequality which will be essential in our variational approach (see Proposition 1 below).

2. Preliminary results

In this section we point out some basic results on the theory of Lebesgue–Sobolev
spaces with variable exponent. For more details we refer to the book by J. Musielak
[23] and the papers by D. E. Edmunds et al. [6, 7, 8], O. Kovacik and J. Rákosnı́k [16],
M. Mihăilescu and V. Rădulescu [20], and S. Samko and B. Vakulov [26].
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Throughout this paper we assume that p(x) > 1, p(x) ∈C(Ω) . Set

C+(Ω) = {h; h ∈C(Ω), h(x) > 1 for all x ∈Ω}.
For any h ∈C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p(x) ∈C+(Ω) , we define the variable exponent Lebesgue space

Lp(x)(Ω) = {u : u is a measurable real-valued function and
∫
Ω
|u(x)|p(x) dx < ∞}.

We define a norm, the so-called Luxemburg norm, on this space by the formula

|u|p(x) = inf

{
μ > 0;

∫
Ω

∣∣∣∣u(x)
μ

∣∣∣∣
p(x)

dx � 1

}
.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many re-
spects: they are Banach spaces [16, Theorem 2.5], the Hölder inequality holds [16,
Theorem 2.1], they are reflexive if and only if 1 < p− � p+ < ∞ [16, Corollary 2.7]
and continuous functions are dense if p+ < ∞ [16, Theorem 2.11]. The inclusion be-
tween Lebesgue spaces also generalizes naturally [16, Theorem 2.8]: if 0 < |Ω| < ∞
and p1 , p2 are variable exponents so that p1(x) � p2(x) almost everywhere in Ω then
there exists the continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω) , whose norm does not
exceed |Ω|+1.

We denote by Lq(x)(Ω) the conjugate space of Lp(x)(Ω) , where 1/p(x)+1/q(x)=
1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) the Hölder type inequality∣∣∣∣

∫
Ω

uv dx

∣∣∣∣ �
(

1
p−

+
1
q−

)
|u|p(x)|v|q(x) (5)

holds true.
An important role in manipulating the generalized Lebesgue-Sobolev spaces is

played by the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω) →
R defined by

ρp(x)(u) =
∫
Ω
|u|p(x) dx.

If (un) , u ∈ Lp(x)(Ω) and p+ < ∞ then the following relations hold true

|u|p(x) > 1 ⇒ |u|p−p(x) � ρp(x)(u) � |u|p+

p(x) (6)

|u|p(x) < 1 ⇒ |u|p+

p(x) � ρp(x)(u) � |u|p−p(x) (7)

|un−u|p(x) → 0 ⇔ ρp(x)(un−u)→ 0. (8)

Spaces with p+ = ∞ have been studied by Edmunds, Lang and Nekvinda [6].
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Next, we define W 1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) under the norm

‖u‖ = |∇u|p(x).

The space (W 1,p(x)
0 (Ω),‖ ·‖) is a separable and reflexive Banach space. We note that if

q∈C+(Ω) and q(x) < p�(x) for all x ∈Ω then the embedding W 1,p(x)
0 (Ω) ↪→ Lq(x)(Ω)

is compact and continuous, where p�(x) = Np(x)/(N − p(x)) if p(x) < N or p�(x) =
+∞ if p(x)� N . We refer to [7, 8, 10, 13, 16] for further properties of variable exponent
Lebesgue-Sobolev spaces.

3. The main result

In this paper we seek solutions for problem (4) belonging to the space W 1,p(x)
0 (Ω)

in the sense below.

DEFINITION 1. We say u ∈W 1,p(x)
0 (Ω) is a weak solution for problem (4) if

η [u]
∫
Ω
|∇u|p(x)−2∇u∇v dx−λ

∫
Ω

f (x,u)v dx = 0,

for all v ∈W 1,p(x)
0 (Ω) . Moreover, we say that λ ∈ R is an eigenvalue of problem (4) if

the weak solution u defined above is not trivial.

In order to get our main result we define

ν1 := inf
u∈E\{0}

1∫
Ω

1
p(x)

|u|p(x) dx

[
2

∫
Ω

1
p(x)

|∇u|p(x) dx+
p−

p+

(∫
Ω

1
p(x)

|∇u|p(x) dx

) p+

p−

+
p+

p−

(∫
Ω

1
p(x)

|∇u|p(x) dx

) p−
p+

]
,

where E =W 1,p(x)
0 (Ω) . A key result regarding ν1 is given by the following proposition.

PROPOSITION 1. Assume that p : Ω → (1,∞) is a continuous function. Then
ν1 > 0 .

Remark. In the particular case when p(x) is a constant function on Ω say p(x) =
p > 1 for any x ∈Ω , then ν1 = 4λ1 , where λ1 is defined by the relation

λ1 := inf
u∈W1,p

0 (Ω)\{0}

∫
Ω
|∇u|p dx∫
Ω
|u|p dx

. (9)

The main result of our paper is given by the following theorem.
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THEOREM 1. Assume (p+)2/p− < r− � r+ < Np−/(N − p−) . Then any λ ∈
(0,ν1) is an eigenvalue of problem (4) .

In the light of the above remark, we point out the following corollary which rep-
resents a particular case of Theorem 1 obtained in the case when p(x) = p > 1 for any
x ∈Ω , where p is a constant.

COROLLARY 1. Assume p(x) = p > 1 for any x ∈ Ω , where p is a constant,
p < r− � r+ < Np/(N − p) and λ1 is defined by relation (9) . Then any λ ∈ (0,4λ1)
is an eigenvalue of problem (4) .

4. Proof of the main result

Let E denote the generalized Sobolev space W 1,p(x)
0 (Ω) and let λ ∈ (0,ν1) be

fixed. The energy functional corresponding to problem (4) is defined as J : E → R ,

J(u) = 2
∫
Ω

1
p(x)

|∇u|p(x) dx+
p−

p+

(∫
Ω

1
p(x)

|∇u|p(x) dx

) p+

p−

+
p+

p−

(∫
Ω

1
p(x)

|∇u|p(x) dx

) p−
p+

−λ
∫
Ω

F(x,u) dx,

where F(x,u) =
∫ u
0 f (x,t) dt . It is known that the operator Λ : E → R ,

Λ(u) =
∫
Ω

1
p(x)

|∇u|p(x) dx

satisfies Λ ∈C1(E,R) with

〈Λ′
(u),v〉 =

∫
Ω
|∇u|p(x)−2∇u∇v dx

for all u , v ∈ E (see e.g. [11]). Defining Λ1 , Λ2 : E → R ,

Λ1(u) =
(∫

Ω

1
p(x)

|∇u|p(x) dx

) p+

p−
and Λ2(u) =

(∫
Ω

1
p(x)

|∇u|p(x) dx

) p−
p+

we observe that

Λ1(u) = (Λ(u))
p+

p− and Λ2(u) = (Λ(u))
p−
p+ .

Thus, it is easy to verify that Λ1 ∈C1(E,R) and Λ2 ∈C0(E,R)∩C1(E \ {0},R) with

〈Λ′
1(u),v〉 =

p+

p−

(∫
Ω

1
p(x)

|∇u|p(x) dx

) p+

p− −1 ∫
Ω
|∇u|p(x)−2∇u∇v dx

and

〈Λ′
2(u),v〉 =

p−

p+

(∫
Ω

1
p(x)

|∇u|p(x) dx

) p−
p+ −1 ∫

Ω
|∇u|p(x)−2∇u∇v dx
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for all u ∈ E \ {0} , v ∈ E .
We deduce that J ∈C0(E,R)∩C1(E \ {0},R) with

〈J′(u),v〉 = η [u]
∫
Ω
|∇u|p(x)−2∇u∇v dx−λ

∫
Ω

f (x,u)v dx,

for all u∈ E \{0} , v∈ E . Thus, the weak solutions of (4) are exactly the critical points
of J . Our idea is to apply a mountain-pass argument in order to obtain a nontrivial
weak solution for problem (4), and thus, to show that λ ∈ (0,ν1) is an eigenvalue of
(4).

In order to show that Proposition 1 holds true we prove the following lemma.

LEMMA 1. There exists a positive constant C > 0 such that the following inequal-
ity holds true

∫
Ω
|u|p(x) dx � C

[
2

∫
Ω

1
p(x)

|∇u|p(x) dx+
p−

p+

(∫
Ω

1
p(x)

|∇u|p(x) dx
) p+

p−

+
p+

p−
(∫

Ω

1
p(x)

|∇u|p(x) dx
) p−

p+
]

for any u ∈ E .

Proof. Using relations (6) and (7) we deduce that for any u ∈ E we have∫
Ω
|u|p(x) dx � |u|p+

p(x) + |u|p−p(x). (10)

The Sobolev embedding of E into Lp(x)(Ω) guarantees the existence of a positive con-
stant c1 > 0 such that

|u|p(x) � c1‖u‖ (11)

for any u ∈ E .
Relations (10) and (11) imply that there exists a positive constant c2 > 0 such that∫

Ω
|u|p(x) dx � c2(‖u‖p+

+‖u‖p−), ∀ u ∈ E. (12)

On the other hand, using once again relations (6) and (7), we find that for any u ∈ E

‖u‖ �
(∫

Ω
|∇u|p(x) dx

) 1
p+

+
(∫

Ω
|∇u|p(x) dx

) 1
p−

. (13)

By (12) and (13) we have

∫
Ω
|u|p(x) dx � c2

{[(∫
Ω
|∇u|p(x) dx

) 1
p+

+
(∫

Ω
|∇u|p(x) dx

) 1
p−

]p+

+
[(∫

Ω
|∇u|p(x) dx

) 1
p+

+
(∫

Ω
|∇u|p(x) dx

) 1
p−

]p−}
(14)
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for any u ∈ E .
We remember that for any s > 0 there exists a positive constant cs > 0 such that

(α +β )s � cs(αs +β s), ∀ α, β > 0.

Relation (14) and the above inequality assure that there exists a positive constant c3 > 0
such that

∫
Ω
|u|p(x) dx � c3

[
2

∫
Ω
|∇u|p(x) dx+

(∫
Ω
|∇u|p(x) dx

) p+

p−

+
(∫

Ω
|∇u|p(x) dx

) p−
p+

]

for any u ∈ E . By the above inequality we conclude that Lemma 1 holds true. �

Remark. It is easy to see that Lemma 1 implies that Proposition 1 holds true.

In order to prove Theorem 1 we first point out certain properties which are satisfied
by function f : Ω×R → R .

(f1) There exists a constant c > 0 such that

| f (x,t)| � c(1+ |t|r(x)−1), ∀ x ∈Ω, t ∈ R ;

(f2) There exist θ > (p+)2/p− and t0 > 0 such that

0 < θF(x,t) � f (x,t)t, ∀ x ∈Ω, t ∈ R with |t| � t0 ,

where F(x, t) =
∫ t
0 f (x,s) ds ;

(f3) For any λ ∈ (0,ν1) the following relation holds true

λ f (x,t)
|t|p(x)−2t

= λ < ν1 ,

for any t ∈ R satisfying |t| � 1 and x ∈Ω .

Remark. Conditions (f1)-(f3) are useful to show that functional J is well defined
and of class C1 on E .

The next lemma shows that the functional J possesses a mountain-pass geometry.

LEMMA 2. 1. There exist a , ρ > 0 such that

J(u) � a > 0, ∀ u ∈ E with ‖u‖ = ρ .

2. There exists e ∈ E with ‖e‖ > ρ (where ρ is given above) such that

J(e) < 0.



ON AN EIGENVALUE PROBLEM 375

Proof. 1. Since f satisfies (f3) and for any λ ∈ (0,ν1) there exists ε > 0 such that
λ � ν1 − ε we have

λ f (x,t)
|t|p(x)−2t

= λ � ν1 − ε

for all x ∈Ω and t ∈ R with |t| � 1. We deduce that

λF(x,t) � 1
p(x)

(ν1 − ε)|t|p(x)

for all x ∈Ω and t ∈ R with |t| � 1.
We define

ϕ [u] = 2+
p−

p+

(∫
Ω

1
p(x)

|∇u|p(x) dx

) p+

p− −1

+
p+

p−

(∫
Ω

1
p(x)

|∇u|p(x) dx

) p−
p+ −1

. (15)

Using the above estimate and condition (f1) we have

J(u) � ϕ [u]
∫
Ω

1
p(x)

|∇u|p(x) dx− (ν1− ε)
∫
{x∈Ω; |u(x)|�1}

1
p(x)

|u|p(x) dx

− c4

∫
{x∈Ω; |u(x)|�1}

|u|r(x) dx

� ϕ [u]
∫
Ω

1
p(x)

|∇u|p(x) dx− (ν1− ε)
∫
Ω

1
p(x)

|u|p(x) dx− c4

∫
Ω
|u|r(x) dx ,

where c4 > 0 is a constant.
Provided ‖u‖< 1 the above inequality, the Sobolev embedding, Proposition 1 and

relation (6) yield

J(u) � ν1 − (ν1− ε)
ν1

ϕ [u]
∫
Ω

1
p(x)

|∇u|p(x) dx− c4

∫
Ω
|u|r+ dx− c4

∫
Ω
|u|r− dx

� 2
ε
ν1

∫
Ω

1
p(x)

|∇u|p(x) dx− c5‖u‖r+ − c6‖u‖r−

� 2
ε
ν1

‖u‖p+ − c5‖u‖r+ − c6‖u‖r− ,

where c5 and c6 are two positive constants. Since r+ > r− > p+ the above inequalities
prove the first part of the lemma.

2. By condition (f2) we deduce that F(x,t) � C|t|θ , ∀x ∈Ω , t ∈ R with |t| � t0,
where C is a positive constant.

Let u0 ∈ E be fixed, such that |{x ∈Ω; u0(x) � t0}| > 0. Let t > 1 and let M be
a real number defined by M = sup{|F(x,t)|; x ∈Ω, |t| � t0}. We have

J(tu0) = ϕ [tu0]
∫
Ω

t p(x)

p(x)
|∇u0|p(x) dx−λ

∫
Ω

F(x,t u0) dx
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�
{

2t p+
∫
Ω

1
p(x)

|∇u0|p(x) dx+
p−

p+ t(p
+)2/p−

(∫
Ω

1
p(x)

|∇u0|p(x) dx
) p+

p−

+
p+

p−
t p−

(∫
Ω

1
p(x)

|∇u0|p(x) dx
) p−

p+
}

−λC
∫
{x∈Ω; u0(x)�t0}

tθ |u0|θ dx+λM|Ω|,

where ϕ [u] was defined in relation (15). Taking into account that θ > (p+)2/p− and
passing to the limit as t → ∞ we obtain that limt→∞ J(tu0) = −∞ . We conclude that
Lemma 2 holds true. �

Proof of Theorem 1. We set Γ = {γ ∈ C([0,1],E); γ(0) = 0, γ(1) = e}, where
e ∈ E is given by Lemma 2, and

ζ = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)).

According to the second part of Lemma 2 we know that ‖e‖ > ρ so every path γ ∈ Γ
intersects the sphere ‖x‖ = ρ . Then Lemma 1 implies

ζ � inf
‖u‖=ρ

J(u) � a,

with the constant a > 0 given in Lemma 2.1, thus ζ > 0.
The mountain-pass theorem (see, e.g. [3]) implies the existence of a sequence

{un} ⊂ E such that
J(un) → ζ and J′(un) → 0. (16)

First, we show that {un} is bounded in E . Assume by contradiction the contrary.
Then, passing eventually to a subsequence, still denoted by {un} , we may assume that
‖un‖→∞ as n→∞ . Thus we may consider that ‖un‖> 1 for any integer n . Relations
(16) and (7) imply that for n large enough it holds

1+ ζ +‖un‖ � J(un)− 1
θ
〈J′(un),un〉

� 2
( 1

p+ − 1
θ

)
‖un‖p− +

( 1
p+ ‖un‖p−

) p+

p− −1
(

p−

(p+)2 −
1
θ

)
‖un‖p−

+
(

1
p+ ‖un‖p−

) p−
p+ −1 ( 1

p−
− 1
θ

)
‖un‖p−

+λ
∫
{x∈Ω; un(x)�t0}

[ 1
θ

f (x,un)un−F(x,un)
]

dx−M1|Ω|,

where M1 = ν1 sup{∣∣ 1
θ f (x,t)t − F(x,t)

∣∣; x ∈ Ω, |t| � t0}. Taking into account that
condition (f2) holds true, dividing the above inequality by ‖un‖ and passing to the
limit as n → ∞ we obtain a contradiction. It follows that {un} is bounded in E .
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Since {un} is bounded in E we deduce that there exists a subsequence, again
denoted by {un} , and u0 ∈ E such that {un} converges weakly to u0 in E . We prove
that {un} converges strongly to u0 in E .

To do that, first we point out that condition (f1) implies

| f (x,un)(un−u0)| � c(|un−u0|+ |un|r(x)−1|un−u0|), ∀ x ∈Ω. (17)

Since r+ < Np−/(N − p−) we deduce that E is compactly embedded in Lr(x)(Ω)
thus {un} converges strongly to u0 in Lr(x)(Ω) and L1(Ω) . That fact combined with
inequality (17) and Hölder’s inequality yield

lim
n→∞

∫
Ω

f (x,un)(un−u0) dx = 0. (18)

On the other hand, by relation (16) we get

lim
n→∞

〈J′(un),un−u0〉 = 0. (19)

Relations (18), (19) and the fact that {un} is bounded in E imply that

lim
n→∞

∫
Ω
|∇un|p(x)−2∇un∇(un−u0) dx = 0.

The above relation and the fact that {un} converges weakly to u0 in E enable us
to apply Theorem 3.1 in [11] in order to obtain that {un} converges strongly to u0

in E . Then, since J ∈ C0(E,R)∩C1(E \ {0},R) we conclude J(un) → J(u0) and
J′(un) → J′(u0) as n → ∞ . We find J(u0) = ζ > 0 and J′(u0) = 0 and thus u0 is a
nontrivial weak solution for problem (4). The proof of Theorem 1 is complete. �
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