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INTERVAL OSCILLATION THEOREMS FOR SECOND ORDER

NONLINEAR PARTIAL DELAY DIFFERENTIAL EQUATIONS

SHULI CUI AND ZHITING XU

(Communicated by N. Yoshida)

Abstract. Using the integral averaging method and the generalized Riccati technique, we derive
new interval oscillation criteria for second order nonlinear partial delay differential equations.
These results are different from most known ones in the sense that they are based on information
only on a sequence of subintervals of [0,∞) , rather than on the whole [0,∞) . Our results are of
a high degree of generality and sharper than the existing results in literature.

1. Introduction

Consider the second order nonlinear partial delay differential equation

∂
∂ t

(
r(t)

∂
∂ t

u(x, t)
)

+ p(t)
∂u(x,t)
∂ t

= a(t)Δu(x,t)+
s

∑
k=1

ak(t)Δu(x,t −ρk(t))

−q(x, t) f (u(x,t))−
m

∑
j=1

q j(x,t) f j(u(x,t−σ j)), (x,t) ∈Ω×R+ ≡ G (1.1)

with the Robin boundary condition

∂u(x,t)
∂ν

+g(x,t)u(x,t) = 0, (x,t) ∈ ∂Ω×R+, (1.2)

or the Dirichlet boundary condition

u(x,t) = 0, (x,t) ∈ ∂Ω×R+. (1.3)

Here Δ is the Laplacian operator in R
N , R+ = [0,∞) , Ω is a bounded domain in R

N

with piecewise smooth boundary ∂Ω , ν denotes the unit exterior normal vector to ∂Ω ,
and g(x, t) is a nonnegative continuous function on ∂Ω×R+ .

It is assumed throughout this paper that:

(H1) r ∈C1(R+,(0,∞)) , p ∈C(R+,R) ;
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(H2) q, q j ∈C(G,R+) , q(t)= min
x∈G

q(x,t) , q j(t)= min
x∈G

q j(x,t) , j ∈ Im = {1,2, · · · ,m} ;

(H3) a , ak , ρk ∈ C(R+,R+) , lim
t→∞

(t − ρk(t)) = ∞ , σ j are nonnegative constants,

j ∈ Im , k ∈ Is = {1,2, · · · ,s} ;

(H4) f ∈C1(R,R) and f j ∈C(R,R) are convex in R+ with u f j(u) > 0, u f (u) > 0
and f ′(u) � μ > 0 for u �= 0, j ∈ Im .

We need the following definitions.

DEFINITION 1.1. By a solution of the problem (1.1), (1.2) (or (1.1), (1.3)) we
mean a function u(x,t) ∈C2(G× [t−1,∞);R)∩C(G× [t̃−1,∞);R) which satisfies (1.1)
in the domain G and the corresponding condition, where

t−1 = min
{
0, min

1�k�s

{
inf
t�0

(t −ρk(t))
}}

, t̃−1 = min
{
0,− max

1� j�m
σ j

}
.

DEFINITION 1.2. The solution u(x,t) of problem (1.1), (1.2) (or (1.1), (1.3)) is
said to be oscillatory in the domain G if for any positive number T0 there exists a point
(x0,t0) ∈Ω× [T0,∞) such that u(x0,t0) = 0 holds.

The study of oscillatory behavior of solutions of partial functional differential
equations is of both theoretical and practical importance. Some applications involving
dynamics with spatial migrations, chemical reactions, control systems, combinatorics
can be found in the monograph [13]. Various results on the oscillation for different
types of second order partial delay differential equations have been obtained over the
last couple of decades. For more details, we refer reader to the monograph [1], the
papers [2-6,9-12,15] and the references therein. In particular, under the restriction

∞∫
ds
r(s)

= ∞, (1.4)

recently, Wang, Meng and Liu [11] gave the Kamenev-type oscillation criteria [7] for
Eq.(1.1) with f (x) = f j(x) = x , j ∈ Im , under the boundary condition (1.2). Further-
more, under the same restrict condition (1.4), Wang, Meng and Liu [12] also established
the interval oscillation criteria [8] for Eq.(1.1) with p(t) ≡ 0 and f (x) = f j(x) = x ,
j ∈ Im . However, the obtained results in [11,12] can not apply to Eq.(1.1).

Motivated by the ideas in [8,11,12], employing the integral averaging method and
the generalized Riccati technique, we shall derive new interval oscillation theorems
for Eq.(1.1), thereby improving the main results in [11,12] with dropping the restrict
condition (1.4). These results are different from most known ones in the sense that they
are based on information only on a sequence of subintervals of R+ , rather than on the
whole half-linear. Our results are of a high degree of generality and sharper than the
existing results in literature. In fact, by choosing appropriate functions H1 , H2 , ρ ,
Φ and φ , we shall present several easily verifiable oscillation criteria. Finally, some
examples that point out the applications of our results are also included.
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2. Main results

In the sequel, we say that a pair of functions (H1,H2) belong to a function class
H , denoted by (H1,H2) ∈ H , if H1,H2 ∈C(D,R+) satisfy

Hi(t, t) = 0, Hi(t,s) > 0 for t > s � t0, i = 1,2,

where D = {(t,s) : 0 < s � t < ∞} . Furthermore, the partial derivatives ∂H1(t,s)/∂ t
and ∂H2(t,s)/∂ s exist on D , and there are h1 , h2 ∈Cloc(D,R) such that

∂H1

∂ t
(t,s) = h1(t,s)H1(t,s) and

∂H2

∂ s
(t,s) = −h2(t,s)H2(t,s).

REMARK 2.1. Note that the functions H1 and H2 play slightly different form
here from the papers in Kong [8] and Wang, Weng, Liu [12]. The reason is that we
wish to establish more general interval oscillation theorems for Eq.(1.1).

Let ρ ∈C1(R+,(0,∞)) , θ ∈C(R+,R) , we define two integral operators Aρ
T (θ ,t)

and Bρ
T (θ , t) in term of Hi and ρ by

Aρ
T (θ , t) =

∫ t

T
H1(s,T )θ (s)ρ(s)ds and Bρ

T (θ ,t) =
∫ t

T
H2(t,s)θ (s)ρ(s)ds, t > T � 0.

To simplify notation, for functions ρ ,Φ ∈C1(R+,(0,∞)) and φ ∈C(R+,R) , set,
for (t,s) ∈ D ,

λ1 : = λ1(s,t) =
ρ ′(s)
ρ(s)

+
Φ′(s)
Φ(s)

− p(s)
r(s)

+2μφ(s)+h1(s,t),

λ2 : = λ2(t,s) =
ρ ′(s)
ρ(s)

+
Φ′(s)
Φ(s)

− p(s)
r(s)

+2μφ(s)−h2(t,s),

and

g(s) =
1
μ

r(s)Φ(s), ψ(s) = Φ(s)[q(s)+ μr(s)φ2(s)− p(s)φ(s)− (r(s)φ(s))′].

Now, we state and prove the main results of this paper.

THEOREM 2.1. If for each T � 0 , there exist (H1,H2) ∈ H , and the functions
ρ ,Φ ∈C1(R+,(0,∞)) , φ ∈C1(R+,R) , and real numbers a,b,c ∈ R+ such that T �
a < c < b and

1
H1(c,a)

Aρ
a

(
ψ− 1

4
gλ 2

1 ,c
)

+
1

H2(b,c)
Bρ

c

(
ψ− 1

4
gλ 2

2 ,b
)

> 0, (2.1)

then:
(i) every solution u(x,t) of the problem (1.1) , (1.2) is oscillatory in G;
(ii) every solution u(x,t) of the problem (1.1) , (1.3) is oscillatory in G.
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Proof. (I) First, we prove the part (i) . Suppose to the contrary that there is a
nonoscillatory solution u(x,t) of the problem (1.1), (1.2), which has no zero in Ω×
[t0,∞) for some t0 > 0. Without loss of generality we may assume that u(x,t) > 0,
u(x,t−ρk(t)) > 0 and u(x,t−σ j) > 0 in Ω× [t1,∞) , t1 � t0 , k∈ Is , j ∈ Im . Integrating
(1.1) with respect to x over the domain Ω , we have

d
dt

(
r(t)

d
dt

∫
Ω

u(x,t)dx
)

+ p(t)
d
dt

∫
Ω

u(x,t)dx

= a(t)
∫
Ω
Δu(x,t)dx+

s

∑
k=1

ak(t)
∫
Ω
Δu(x,t−ρk(t))dx

−
∫
Ω

q(x, t) f (u(x,t))dx−
m

∑
j=1

∫
Ω

q j(x,t) f j(u(x,t −σ j))dx, t � t1. (2.2)

It follows from Green’s formula and the boundary condition (1.2) that

∫
Ω
Δu(x,t)dx =

∫
∂Ω

∂u(x,t)
∂ν

ds = −
∫
∂Ω

g(x,t)u(x,t)ds � 0, (2.3)

and
∫
Ω
Δu(x, t−ρk(t))dx =

∫
∂Ω

∂u(x,t −ρk(t))
∂ν

ds

= −
∫
∂Ω

g(x,t−ρk(t))u(x,t −ρk(t))ds � 0, (2.4)

where ds denotes the surface element on ∂Ω . Moreover, from (H2), (H4), and Jensen’s
inequality, we have

∫
Ω

q(x, t) f (u(x, t))dx � q(t)
∫
Ω

f (u(x,t))dx � |Ω|q(t) f
( 1
|Ω|

∫
Ω

u(x, t)dx
)
, (2.5)

and
∫
Ω

q j(x, t) f j(u(x,t −σ j))dx � q j(t)
∫
Ω

f j(u(x, t −σ j))dx

� |Ω|q j(t) f j

( 1
|Ω|

∫
Ω

u(x,t −σ j)dx
)
, (2.6)

where |Ω| = ∫
Ω dx . Define

v(t) =
1
|Ω|

∫
Ω

u(x,t)dx, t � t1. (2.7)

In view of (2.3)-(2.7), (2.2) yields that

(r(t)v′(t))′ + p(t)v′(t)+q(t) f (v(t))+
m

∑
j=1

q j(t) f j(v(t−σ j)) � 0, t � t1. (2.8)
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Note that (H4), it follows from (2.8) that

(r(t)v′(t))′ + p(t)v′(t)+q(t) f (v(t)) � 0, t � t1. (2.9)

Put

w(t) = Φ(t)
[ r(t)v′(t)

f (v(t))
+ r(t)φ(t)

]
, t � t1. (2.10)

Then, by (2.9),

w′(t) � Φ′(s)
Φ(s)

w(t)−Φ(t)
[
q(t)+

r(t) f ′(v(t))v′2(t)
f 2(v(t))

+
p(t)v′(t)
f (v(t))

− (r(t)φ(t))′
]

� Φ′(s)
Φ(s)

w(t)−Φ(t)
[
q(t)+ μr(t)

( w(t)
r(t)Φ(t)

−φ(t)
)2

+
p(t)

r(t)Φ(t)
w(t)

− p(t)φ(t)− (r(t)φ(t))′
]

= −ψ(t)+
(Φ′(s)
Φ(s)

− p(s)
r(s)

+2μφ(s)
)
w(t)− 1

g(t)
w2(t),

i.e.,

ψ(s) � −w′(s)+
(Φ′(s)
Φ(s)

− p(s)
r(s)

+2μφ(s)
)
w(s)− 1

g(s)
w2(s). (2.11)

Applying the operator Aρ
t (·,c) to (2.11), t ∈ [a,c) , we get

Aρ
t (ψ ,c) � −H1(c,t)ρ(c)w(c)+Aρ

t (λ1w,c)−Aρ
t (g−1w2,c)

= −H1(c,t)ρ(c)w(c)−Aρ
t

(
g−1

(
w− 1

2
gλ1

)2
,c

)
+Aρ

t

(1
4
gλ 2

1 ,c
)

� −H1(c,t)ρ(c)w(c)+Aρ
t

(1
4
gλ 2

1 ,c
)
.

Letting t → a+ in above, and dividing by H1(c,a) , we obtain

1
H1(c,a)

Aρ
a

(
ψ− 1

4
gλ 2

1 ,c
)

� −ρ(c)w(c). (2.12)

Similarly, applying the operator Bρ
c (·,t) to (2.11), t ∈ [c,b) , and proceeding as in the

proof of (2.12), we have

1
H2(b,c)

Bρ
c

(
ψ− 1

4
gλ 2

2 ,b
)

� ρ(c)w(c). (2.13)

We now claim that every nontrivial solution of the differential inequality (2.8) has
at least one zero in (a,b) .

Suppose the contrary. Without loss of generality we may assume that there is a
solution of (2.8) that v(t) > 0 for t ∈ (a,b) . Adding (2.12) and (2.13), we get the
inequality which contradicts the assumption (2.1). Thus the claim holds.
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Pick up a sequence {Ti}⊂ [t0,∞) such that Ti →∞ as i→∞ . By the assumptions,
for each i ∈ N , there exist ai , bi,ci ∈ R+ such that Ti � ai < ci < bi , and (2.1) holds
with a,b,c replaced by ai,bi,ci , respectively. From that, every nontrivial solution v(t)
of (2.8) has at least one zero ti ∈ (ai,bi) . Noting that ti > ai � Ti , i ∈ N , we see
that every solution v(t) has arbitrarily large zero. This contradicts the fact that v(t) is
nonoscillatory by (2.8) and the assumption u(x,t) > 0 in Ω× [t0,∞) for some t0 > 0.
Hence, every solution of problem (1.1), (1.2) is oscillatory in G .

(II) To prove the part (ii) , the following fact will be used, see [14]. The smallest
eigenvalue λ of the Dirichlet problem,

⎧⎨
⎩
Δu(x)+λu(x) = 0, x ∈Ω,

u(x) = 0, x ∈ ∂Ω,
(2.14)

is positive and the corresponding eigenfunction ϕ(x) is positive in Ω .
Next we prove the part (ii) . Suppose to the contrary that there is a nonoscillatory

solution u(x, t) of the problem (1.1), (1.3), which has no zero in Ω× [t0,∞) for some
t0 > 0. Without loss of generality we may assume that u(x,t) > 0,u(x,t −ρk(t)) > 0
and u(x, t−σ j)> 0 in Ω× [t1,∞) , t1 � t0 , k∈ Is , j ∈ Im . Multiplying (1.1) by ϕ(x) > 0
and integrating with respect to x over the domain Ω , we have, for t � t1 ,

d
dt

(
r(t)

d
dt

∫
Ω

u(x, t)ϕ(x)dx
)

+ p(t)
d
dt

∫
Ω

u(x,t)ϕ(x)dx

= a(t)
∫
Ω
Δu(x,t)ϕ(x)dx+

s

∑
k=1

ak(t)
∫
Ω
Δu(x,t−ρk(t))ϕ(x)dx

−
∫
Ω

q(x, t) f (u(x,t))ϕ(x)dx−
m

∑
j=1

∫
Ω

q j(x,t) f j(u(x,t −σ j))ϕ(x)dx. (2.15)

It follows from Green’s formula and the boundary condition (1.3) that
∫
Ω
Δu(x, t)ϕ(x)dx =

∫
Ω

u(x,t)Δϕ(x)dx = −λ
∫
Ω

u(x,t)ϕ(x)dx � 0, (2.16)

and
∫
Ω
Δu(x,t−ρk(t))ϕ(x)dx =

∫
Ω

u(x,t−ρk(t))Δϕ(x)dx

= −λ
∫
Ω

u(x,t−ρk(t))ϕ(x)dx � 0. (2.17)

Moreover, from (H2), (H4), and Jensen’s inequality, we have
∫
Ω

q(x, t) f (u(x,t))ϕ(x)dx � q(t)
∫
Ω

f (u(x,t))ϕ(x)dx

�
[
q(t)

∫
Ω
ϕ(x)dx

][
f
(∫

Ω
u(x,t)ϕ(x)dx

(∫
Ω
ϕ(x)dx

)−1)]
, (2.18)
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and
∫
Ω

q j(x, t) f j(u(x,t−σ j))ϕ(x)dx � q j(t)
∫
Ω

f j(u(x,t−σ j))ϕ(x)dx

�
[
q j(t)

∫
Ω
ϕ(x)dx

][
f j

(∫
Ω

u(x,t−σ j)ϕ(x)dx
(∫

Ω
ϕ(x)dx

)−1)]
. (2.19)

Define

v(t) =
(∫

Ω
u(x,t)ϕ(x)dx

)(∫
Ω
ϕ(x)dx

)−1
, t � t1. (2.20)

In view of (2.16)-(2.20), (2.15) yields that

(r(t)v′(t))′ + p(t)v′(t)+q(t) f (v(t))+
m

∑
j=1

q j(t) f j(v(t −σ j)) � 0, t � t1. (2.21)

From (H4) and (2.21), we obtain

(r(t)v′(t))′ + p(t)v′(t)+q(t) f (v(t)) � 0, t � t1. (2.22)

The remainder of the proof is similar to that of the part (I), we omit the details. Hence,
the proof of Theorem 2.1 is complete. �

REMARK 2.2. As far as the author knows, most relevant results in literature sup-
pose H1(t,s) = H2(t,s) , i.e., the same weighting function is used in the obtained oscil-
lation criteria, see [8,12]. Hence, the results established in current paper is more general
than the existing results [12]. Moreover, our theorems also take the Dirichlet boundary
condition (1.3) into account.

As an immediate consequence of Theorem 2.1 we get the following oscillation
criterion.

THEOREM 2.2. For some functions (H1,H2) ∈ H , ρ ,Φ ∈C1(R+,(0,∞)) , φ ∈
C1(R+,R) , and for each T � 0 , if

limsup
t→∞

Aρ
T

(
ψ− 1

4
gλ 2

1 ,t
)

> 0, (2.23)

and

limsup
t→∞

Bρ
T

(
ψ− 1

4
gλ 2

2 ,t
)

> 0, (2.24)

then the conclusions of Theorem 2.1 hold.

Proof. For any T � 0, let a = T . In (2.23), we choose T = a . Then there exists
c > a such that

Aρ
a

(
ψ− 1

4
gλ 2

1 ,c
)

> 0. (2.25)
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In (2.24), we choose T = c . Then there exists b > c such that

Bρ
c

(
ψ− 1

4
gλ 2

2 ,b
)

> 0. (2.26)

Combining (2.25) and (2.26), we obtain (2.1) holds. The conclusions thus come from
Theorem 2.1, and the proof is completed. �

The case when (H1,H2)∈H with Hi := Hi(t−s) , i = 1,2, we define the subclass
of the class H containing such (H1,H2) by H0 . Applying Theorem 2.1 to (H1,H2) ∈
H0 , we obtain the following result.

THEOREM 2.3. If for each T � 0 , there exist functions (H1,H2) ∈ H0 , Φ ∈
C1(R+,(0,∞)) , and φ ∈C1(R+,R) such that T � a < c and

1
H1(c−a)

∫ c

a
ρ(s)H1(s−a)

[
ψ(s)− 1

4
g(s)h2

1(s−a)
]
ds

+
1

H2(c−a)

∫ c

a
ρ(2c− s)H2(s−a)

[
ψ(2c− s)− 1

4
g(2c− s)h2

2(s−a)
]
ds > 0,

(2.27)

where

ρ(s)Φ(s) = exp
(∫ s

t0

( p(t)
r(t)

−2μφ(t)
)
dt

)
,

then the conclusions of Theorem 2.1 hold.

Proof. In view of the definition of ρ(t) , we get

λ1(s,t) = h1(s,t) and λ2(t,s) = −h2(t,s).

On the other hand, let b = 2c−a . Then

Hi(b− c) = Hi(c−a) = Hi

(1
2
(b−a)

)
, i = 1,2.

So that for any W ∈ L[a,b] , we have
∫ c

a
W (s)ds =

∫ b

c
W (2c− s)ds.

Thus, that (2.27) holds implies that (2.1) hold for (H1,H2)∈H0 . Hence, the conclusion
of Theorem 2.3 follows from Theorem 2.1. �

COROLLARY 2.1. If there exists two constants α,β > 1 such that for all T � 0 ,

limsup
t→∞

∫ t

T
exp

(∫ s

t0

p(τ)
r(τ)

dτ
)[

(s−T )αq(s)− α2

4μ
r(s)(s−T )α−2

]
ds > 0, (2.28)

and

limsup
t→∞

∫ t

T
exp

(∫ s

t0

p(τ)
r(τ)

dτ
)[

(t− s)βq(s)− β 2

4μ
r(s)(t − s)β−2

]
ds > 0, (2.29)

then the conclusions of Theorem 2.1 hold.
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Proof. In Theorem 2.2, let

ρ(t) = exp

(∫ t

t0

p(τ)
r(τ)

dτ
)

, Φ(t) = 1, φ(t) = 0,

H1(t,s) = (t − s)α , and H2(t,s) = (t− s)β .

Then

ψ(t) = q(t), g(t) =
1
μ

r(t), h1(t,s) =
α

t− s
, and h2(t,s) =

β
t− s

.

Therefore, by Theorem 2.2, the conclusions of Corollary 2.1 hold. �

Next, we define:

ρ(t) = exp

(∫ t

t0

p(τ)
r(τ)

dτ
)

, R(t) =
∫ t

t0

ds
r(s)ρ(s)

,

H1(t,s) = [R(t)−R(s)]α , and H2(t,s) = [R(t)−R(s)]β .

COROLLARY 2.2. Let lim
t→∞

R(t) = ∞ . If there exist constants α,β > 1 such that

for all T � 0 ,

limsup
t→∞

1
Rα−1(t)

∫ t

T
q(s)[R(s)−R(T )]α exp

(∫ s

t0

p(τ)
r(τ)

dτ
)
ds >

α2

4μ(α−1)
, (2.30)

and

limsup
t→∞

1

Rβ−1(t)

∫ t

T
q(s)[R(t)−R(s)]β exp

(∫ s

t0

p(τ)
r(τ)

dτ
)
ds >

β 2

4μ(β −1)
, (2.31)

then the conclusions of Theorem 2.1 hold.

Proof. In Theorem 2.2, let Φ(t) = 1, φ(t) = 0. Then ψ(t) = q(t) , g(t) = r(t)/μ ,
and

h1(t,s) =
α

[R(t)−R(s)]r(t)ρ(t)
, h2(t,s) =

β
[R(t)−R(s)]r(s)ρ(s)

.

Note that

Aρ
T (rλ 2

1 , t) =
α2

α−1
[R(t)−R(T)]α−1, Bρ

T (rλ 2
2 ,t) =

β 2

β −1
[R(t)−R(T)]β−1.

So that, in view of lim
t→∞

R(t) = ∞ , it follows that

lim
t→∞

1
Rα−1(t)

Aρ
T (rλ 2

1 ,t) =
α2

α−1
, (2.32)

and

lim
t→∞

1

Rβ−1(t)
Bρ

T (rλ 2
2 ,t) =

β 2

β −1
. (2.33)
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From (2.30) and (2.32), we have that

limsup
t→∞

1
Rα−1(t)

Aρ
T

(
ψ− 1

4
gλ 2

1 ,t
)

= limsup
t→∞

1
Rα−1(t)

∫ t

T
q(s)[R(s)−R(T )]α exp

(∫ s

t0

p(τ)
r(τ)

dτ
)
ds− α2

4μ(α−1)
> 0,

i.e., (2.23) holds. Similarly, (2.31) implies that (2.24) holds. By Theorem 2.2, the
conclusion of Corollary 2.2 holds. The proof is complete. �

REMARK 2.3. The theorems above presented in the form of a high degree of gen-
erality. They extend, improve, and complement a number of existing results in [11,12]
and handle some case not covered by the known criteria. They also give rather wide
possibilities of deriving different explicit oscillation criteria for (1.1), (1.2) (or (1.1),
(1.3)) with appropriate choices of the functions Hi , ρ , Φ and φ .

REMARK 2.4. We drop the restriction “
∞∫
1/r(s)ds = ∞” in [11,12].

3. Examples

In final section, we give three examples to illustrate the applications of the main
results established in precede section.

EXAMPLE 3.1. Consider the equation

∂
∂ t

(1
t
∂
∂ t

u(x, t)
)

+
2
t2
∂u(x,t)
∂ t

=
1
t
Δu(x,t)+

1
t2
Δu(x,t− 3

2
π)

+
2
t
Δu(x, t−π)− 2

t
u(x,t)− 2

t2
u(x,t− π

2
), (x,t) ∈ (0,π)× [1,∞)≡ G, (3.1)

with the boundary condition

u(0,t) = u(π ,t) = 0, t � 1, (3.2)

where

N = 1, s = 2, m = 1, r(t) =
1
t
, p(t) =

2
t2

, q(t) =
2
t
,

f ′(u) = 1 = μ , a(t) =
1
t
, a1(t) =

3
t2

, a2(t) =
2
t
, q1(x,t) =

2
t2

,

and ρ1(t) = 3π/2, ρ2(t)= π , and σ1 =π/2. If we take ρ(s)= s2 , Φ(t) = 1, φ(s) = 0,
and H1(t,s) = H2(t,s) = (t − s)2 , then

g(s) =
1
s
, ψ(s) =

2
s
, λ1(t,s) = −λ2(t,s) =

2
t− s

.
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It is easily computed that

limsup
t→∞

Aρ
T (ψ− 1

4
gλ 2

1 ,t) = limsup
t→∞

∫ t

T

[
2s(s−T )2 − s

]
ds

= limsup
t→∞

[1
2
t4− 4

3
t3T +

(
T 2− 1

2

)
t2 +

1
2
T 2 − 1

6
T 4

]
> 0,

and

limsup
t→∞

Bρ
T (ψ− 1

4
gλ 2

2 ,t) = limsup
t→∞

∫ t

T

[
2s(t − s)2− s

]
ds

= limsup
t→∞

[1
6
t4−

(
T 2 +

1
2

)
t2 +

4
3
tT 3 +

1
2
T 2 − 1

2
T 4

]
> 0.

Thus, (2.23) and (2.24) hold for any T � 1. Therefore, by Theorem 2.2, every solution
u(x,t) of the problem (3.1),(3.2) is oscillatory in G . For example, u(x,t) = sinxcost
is such a solution.

EXAMPLE 3.2. Consider the equation

∂ 2u(x, t)
∂ t2

= Δu(x, t)+
1
t
Δu(x,t− π

2
)+

1
t
Δu(x,t− 3

2
π)−q(t)u(x,t)[1+ εu2(x,t)]

−q(t)u(x,t−π), (x,t) ∈ (0,π)× [1,∞)≡ G, (3.3)

with the boundary condition

u(0,t) = u(π ,t) = 0, t � 1, (3.4)

where

N = 1, s = 2, m = 1, r(t) = 1, p(t) = 0,

f ′(u) = 1+3εu2 � 1 = μ , ε � 0, a(t) = 1, a1(t) = a2(t) =
1
t
,

q(x, t) = q1(x,t) = q(t), ρ1(t) =
π
2

, ρ2(t) =
3
2
π , σ1 = π ,

and for n ∈ N , q(t) is defined by

q(t) =

⎧⎪⎨
⎪⎩

5(t−3n), 3n � t � 3n+1,

5(−t +3n+2), 3n+1 < t � 3n+2,

|sin t| , 3n+2 < t � 3n+3.

For any T � 1, there exists n ∈ N , such that 3n > T . Let a = 3n,c = 3n+ 1,Φ(s) =
1,φ(s) = 0, and H1(t,s) = H2(t,s) = (t− s)2 . Then

ρ(s) = 1, g(s) = 1, ψ(s) = q(s), h1(t,s) = −h2(t,s) =
2

t− s
.
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Thus, the left-hand side of (2.27) takes the form
∫ 3n+1

3n
(s−3n)2

[
q(s)+q(6n+2− s)− 2

(s−3n)2

]
ds

=
∫ 3n+1

3n
[10(s−3n)3−2]ds =

1
2

> 0,

i.e., (2.27) holds. Hence, every solution u(x,t) of the problem (3.3),(3.4) is oscillatory
in G by Theorem 2.3. For example, if ε = 0, u(x,t) = sinxcost is such a solution.

EXAMPLE 3.3. Consider the equation

∂ 2u(x, t)
∂ t2

+
1
t
∂u(x,t)
∂ t

= Δu(x,t)+
1
t
Δu(x,t − 3

2
π)− κ

t2 ln2 t
u(x,t)[1+ εu2(x,t)]

− κ
t2 ln2 t

u(x,t−π), (x, t) ∈ (0,π)× (1,∞)≡ G, (3.5)

with the boundary condition

ux(0,t) = ux(π ,t) = 0, t > 1, (3.6)

where

N = s = m = 1, r(t) = 1, p(t) =
1
t
, q(t) = q(x,t) = q1(x,t) =

κ
t2 ln2 t

, κ > 0,

f ′(u) = 1+3εu2 � 1 = μ , ε � 0, a(t) = 1, a1(t) =
1
t
, ρ1(t) =

3
2
π , σ1 = π .

Note that ρ(t) = t and R(t) = logt . For α > 1, the left-hand side of (2.30) takes the
form

limsup
t→∞

κ
Rα−1(t)

∫ t

T
[R(s)−R(T )]α

1

s ln2 s
ds =

κ
(α−1)

(3.7)

According to Lemma 3.1 in [8], we have
∫ t

T
[R(t)−R(s)]α

1

s ln2 s
ds �

∫ t

T
[R(s)−R(T)]α

1

s ln2 s
ds. (3.8)

So, the left-hand side of (2.31) takes the form

limsup
t→∞

κ
Rβ−1(t)

∫ t

T
[R(t)−R(s)]β

1

s ln2 s
ds

� limsup
t→∞

κ
Rβ−1(t)

∫ t

T
[R(s)−R(T)]β

1

s ln2 s
ds =

κ
(β −1)

. (3.9)

By (3.7) and (3.9), for any κ > 1, there are α > 1, β > 1 such that

κ
(α−1)

>
α2

4(α−1)
and

κ
(β −1)

>
α2

4(β −1)
.

Thus, (2.30) and (2.31) hold for any T � 1. Therefore, by Corollary 2.2, every solution
u(x,t) of the problem (3.5), (3.6) is oscillatory in G for κ > 1. For example, if ε = 0,
u(x,t) = cosxsin t is such a solution.
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