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Abstract. In the present paper the Dirichlet problem for semilinear elliptic and parabolic equa-
tions in general form is considered. New condition guaranteeing the global solvability of this
problem for a wide class of superlinear sources, including e u and |u|p−1u , p > 1 , is formulated.
For sublinear case (for example ln(1+ |u|) or |u|p−1u , p < 1) this condition is automatically
fulfilled. Our approach gives new a priori estimate of the solution for superlinear, sublinear and
linear case as well.

0. Introduction and Main Results

I. Elliptic case.

Consider semilinear strictly elliptic equation

n

∑
i, j=1

ai j(x)uxix j +
n

∑
i=1

bi(x)uxi + c(x)g(u) = f (x) in Ω, (0.1)

coupled with boundary condition

u(x)
∣∣∣
∂Ω

= φ(s). (0.2)

Here Ω is a bounded domain in Rn . Concerning the nonlinear term g we assume that

|g(ξ )|� g(η) for all ξ and η such that |ξ | � η . (0.3)

For example, functions g(u) = |u|q with q ∈ (0,1) , g(u) = ln(1 + |u|) , g(u) = up

for p � 1 integer, or g(u) = |u|p−1u for arbitrary p � 0 as well as g(u) = eu satisfy
condition (0.3).

Recall that (0.1) is strictly elliptic if

n

∑
i, j=1

ai j(x)ξiξ j � ε|ξ |2 for any x ∈Ω, ξ ∈ Rn, (0.41)
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where ε is a positive constant. We are interested in the existence of classical solution of
problem (0.1), (0.2), i.e. the solution from C2+α(Ω)∩C0(Ω) for some α ∈ (0,1) . It is
well known that the classical solvability of problem (0.1), (0.2) with smooth coefficients
follows from the a priori estimate of max |u(x)| . There are a lot of different sufficient
conditions guaranteeing the needed a priori estimate (see [2], [4]). In the present paper
we develop a new approach in order to obtain a new condition in which we take into
account the influence of all coefficients of the equation. This approach gives new results
for sublinear, superlinear as well as linear case.

Without loss of generality suppose that

Ω⊂ {(x1, ...,xn) ∈ Rn : |xi| � di, i = 1, ...,n}
where di are arbitrarily given positive numbers. Define the quantities αi by the follow-
ing:

0 < αi < min
Ω

aii, for i = 1, ...,n. (0.42)

Consider the coefficients bi . Assume that bi are strictly positive functions for i =
1, ...,m , strictly negative functions for i = m + 1, ...,k and bi ≡ 0 for i = k + 1, ..., l ,
where 0 � m � k � l � n . Define βi by the following:

βi = min
Ω

bi > 0 for i = 1, ...,m, (0.51)

−βi = max
Ω

bi < 0 for i = m+1, ...,k, (0.52)

βi = bi ≡ 0, for i = k+1, ..., l, (0.53)

βi = max
Ω

|bi| > 0 for i = l +1, ...,n. (0.54)

Here m = 0 means that there are no strictly positive bi , as a consequence (0.51) is
absent and in (0.52) i = 1, ...,k ((0.53) , (0.54) remain the same);
k = m means that there are no strictly negative bi , i. e. (0.52) is absent, and in (0.53)
i = m+1, ..., l ((0.51) , (0.54) remain the same);
l = k means that there are no identically equal to zero bi , in this case (0.53) is absent,
in (0.54) i = k+1, ...,n ((0.51) , (0.52) remain the same);
finally, n = l means that there are no changing sign coefficients bi .

Put λ = max{λ−,λ+} where

λ+ =
{

maxΩ c(x), if maxΩ c(x) � 0
0, if maxΩ c(x) < 0,

λ− =
{

0, if maxΩ c(x) � 0
−maxΩ c(x), if maxΩ c(x) < 0.

Obviously
−λ− � c(x) � λ+, |c(x)| � λ . (0.6)

Before we pass to the strict formulation of the result let us briefly describe it. The
key role plays the constant K which depends on αi,βi and di . This constant we find
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in the explicit form (see (1.1) in Section 1), here we only mention that K → +∞ when
at least for one value of i (say i0 ) αi0 → +∞ or βi0 → +∞ or di0 → 0. Consider the
relation KM−λg(M+max∂Ω |φ |) . For nondecreasing g(u) we take λ+ instead of λ .
If there exists a constant M such that

KM−λg(M +max
∂Ω

|φ |) � max
Ω

| f |

then (under smoothness assumptions) we prove the existence of a classical solution of
problem (0.1), (0.2) such that |u|� M . Obviously in sublinear case such M always ex-
ists. In superlinear case we need some additional restrictions. Let us give two examples
(for details see Examples 2 and 4 from Section 3). Consider the case g(u) = |u|p−1u,
p > 1 (or g(u) = up if defined) and φ ≡ 0. If

max
Ω

| f (x)| �
( K

pλ

) 1
p−1

K
p−1

p

then there exists at least one solution for which the estimate

|u(x)| �
( K

pλ

) 1
p−1

takes place. Let us take g(u) = eu and φ ≡ 0. If c(x) � 0 (i.e. λ+ = 0) then for
arbitrary (smooth) f (x) we prove the existence of at least one solution and for this
solution the estimate

|u(x)| � maxΩ | f (x)|
K

holds. If K > λ+ > 0 then we prove the existence of at least one solution under the
assumption

max
Ω

| f (x)| � K ln
K
λ+ −K +λ+,

moreover this solution satisfies the estimate

|u(x)| � ln
K
λ+ .

In particular for the equation
Δu+ eu = 0

with zero boundary conditions we guarantee (for details see Section 3 Example 3) the
existence of at least one solution if

d1 �
√

2
e
,

this solution satisfies the inequality

|u(x)| � 1.
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Let us now formulate the result. Denote

f0 = max
Ω

| f (x)|, φ0 = max
∂Ω

|φ(s)|.

THEOREM I. 1. Let Ω be a bounded domain in Rn satisfying an exterior sphere
condition at each point of the boundary. Assume that ai j(x), bi(x), c(x), f (x) ∈
Cα(Ω), g(z) ∈Cα

loc and φ(s) ∈C0(∂Ω) for some α ∈ (0,1) . Suppose that conditions
(0.3) , (0.41) hold and there exists a positive constant M such that

KM−λg(M +φ0) � f0, (0.7)

then there exists a classical solution of problem (0.1), (0.2) such that

max
Ω

|u(x)| � M +φ0.

If function g(u) is nondecreasing, then condition (0.7) can be substituted by the
following one

KM−λ+g(M +φ0) � f0. (0.8)

2. If c(x)< 0 and g(u) is a strictly increasing function then the solution is unique.

COROLLARY. Assume that conditions of the Theorem concerning the smoothness
of ai j, bi, c, g, ∂Ω, φ are fulfilled. Suppose that conditions (0.3) , (0.41) hold. If g

is nondecreasing function and c � 0 , then for any f (x) ∈Cα(Ω) there exists a classical
solution of problem (0.1), (0.2) and

max
Ω

|u(x)| � f0
K

.

This Corollary immediately follows from (0.8), since λ+ = 0 if c(x) � 0.

II. Parabolic case.

This approach can be easily extended to the parabolic case. Consider the following
equation

n

∑
i, j=1

ai j(t,x)uxix j +
n

∑
i=1

bi(t,x)uxi +c(t,x)g(u)−ut = f(t,x) in QT = (0,T )×Ω, (0.9)

coupled with conditions

u(0,x) = u0(x) for x ∈Ω, u(t,x)
∣∣∣
ST

= φ(t,s), (0.10)

here ST = (0,T )× ∂Ω . Similarly to the elliptic case we suppose that

n

∑
i, j=1

ai j(t,x)ξiξ j � ε|ξ |2 for any (t,x) ∈ QT , ξ ∈ Rn, (0.111)
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0 < αi < min
QT

aii for i = 1, ...,n. (0.112)

Assume that b i are strictly positive functions for i = 1, ...,m , strictly negative functions
for i = m+1, ...,k and b i ≡ 0 for i = k+1, ..., l ,

βi = min
QT

bi > 0 for i = 1, ...,m, (0.121)

−βi = max
QT

bi < 0 for i = m+1, ...,k, (0.122)

−βi = bi ≡ 0 for i = k+1, ..., l. (0.123)

−βi = max
QT

|bi| > 0 for i = l +1, ...,n. (0.124)

Concerning m, k and l see the elliptic case.
Put λ = max{λ−,λ+} where

λ+ =

{
maxQT

c(t,x), if maxQT
c(t,x) � 0

0, if maxQT
c(t,x) < 0,

λ− =

{
0, if maxQT

c(t,x) � 0
−maxQT

c(t,x), if maxQT
c(t,x) < 0.

Similarly to the elliptic case, the global solvability of problem (0.9), (0.10) fol-
lows from the a priori estimate of max |u(t,x)| (see [3]). It is well known that the
phenomenon of blowing up of the solution may occur (see [6]), i.e. |u(t,x∗)| → +∞
when t → t∗ at least for one x ∈Ω . The preventive effect of the linear diffusion and of
the convection was investigated in [8] (see also the references therein). The Theorem
below extends these results to the equation in general form, moreover here we take into
account the effect of the diffusion and of the convection in all directions simultaneously.
Concerning the preventive effect of the nonlinear diffusion see [7] and [9].

Let us formulate the result. Denote

f0 = max
QT

|f(t,x)|, φ0 = max
ST

|φ(t,s)|, m = max
Ω

|u0(x)|.

THEOREM II. 1. Let Ω and g(z) are as in Theorem I. Assume that a i j(t,x),
bi(t,x), c(t,x), f(t,x)∈Cα/2,α

t,x (QT ), g(z)∈Cα
loc and φ(t,s)∈C0(∂Ω×(0,T )) , u0(x)∈

C0(Ω) for some α ∈ (0,1) . Suppose that conditions (0.3) , (0.111) hold and there ex-
ists a positive constant M such that

KM−λg(M+m+φ0) � f0, (0.13)

then there exists a classical solution of problem (0.9) , (0.10) such that

max
QT

|u(t,x)| � M +m+φ0.
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If function g(u) is nondecreasing, then condition (0.13) can be substituted by the
following one

KM−λ+g(M +m+φ0) � f0. (0.14)

2. If g(u) is Lipschitz continuous function then the solution is unique.

By classical solution we mean function from C1+α/2,2+α
t,x (QT )∩C0(QT ) .

REMARK. The estimate of the solution is independent of T .
Consider the following equation

ut +b ·∇u = αΔu+ |u|p−1u in (0,T )×{|x|< d0} (0.15)

where α > 0, b = (b, ...,b) and the constant b �= 0 and p > 1, with initial boundary
conditions

u(0,x) = u0(x) for x ∈Ω, u = 0 on ST . (0.16)

From Theorem II it follows (for details see Example 7 from Section 3) that if

α +b
2d0(1+d0)

� pp

(p−1)p−1 mp−1,

then there exists a global (i.e. for all t > 0) solution of problem (0.15), (0.16) and

max
QT

|u(t,x)| � p
p−1

m.

Actually this means that for the given initial data and domain the solution of prob-
lem (0.15), (0.16) can not blow up if convection or diffusion or the sum of convection
and diffusion are big enough.

In the first section we define in the explicit form the constant K , in the second we
prove Theorems I and II and in the last section we give several examples demonstrating
the results of the paper for linear, sublinear and superlinear equations.

1. Definition of the constant K(αi,βi,di)

Suppose that k � 1, we put

K =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxri
∑n

i=1 ri(αi+βi)
∑n

i=1 ri2di(1+di)
if n = l = k,

maxri
∑k

i=1 ri(αi+βi)+∑n
i=k+1 riαi

∑k
i=1 ri2di(1+di)+∑n

i=k+1 rid2
i /2

if n = l > k,

maxri
∑k

i=1 ri(αi+βi)+∑n
i=k+1 riαi

∑k
i=1 ri2di(1+di)+∑n

i=k+1
ri
γi

(e2γidi−2γidi−1)
if n > l = k,

maxri
∑k

i=1 ri(αi+βi)+∑l
i=k+1 riαi+∑n

i=l+1 riαi

∑k
i=1 ri2di(1+di)+∑l

i=k+1 rid2
i /2+∑n

i=l+1
ri
γi

(e2γidi−2γidi−1)
if n > l > k,

(1.11)
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for k = 0 we put

K =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

maxri
∑n

i=1 riαi

∑n
i=k+1 rid2

i /2
if n = l > 0,

maxri
∑n

i=1 riαi

∑n
i=1

ri
γi

(e2γidi−2γidi−1)
if n > l = 0,

maxri
∑l

i=1 riαi+∑n
i=l+1 riαi

∑l
i=1 rid2

i /2+∑n
i=l+1

ri
γi

(e2γidi−2γidi−1)
if n > l > 0,

(1.12)

here γi = βi
αi

for i = l +1, ...,n and ri = 0 or 1 for i = 1, ...,n . Denote

d =
k

∑
i=1

ri2di(1+di)+
l

∑
i=k+1

rid
2
i /2+

n

∑
i=l+1

ri

γi
(e2γidi −2γidi−1), (1.2)

where ri (0 or 1) are defined from (1.1). If the definition of K gives several sets of
numbers {r1, ...,rn} for which the maximum in (1.1) is obtained, then we select the set
which gives minimum for d . Consider several examples in order to explain (1.1), (1.2).

i) Suppose that di = d0 , αi = α0 , βi = β0 for i = 1, ...,n , i. e. n = l = k � 1,
then

K = max
ri

∑n
i=1 ri(α0 +β0)

∑n
i=1 ri2d0(1+d0)

=
α0 +β0

2d0(1+d0)

and
d = 2d0(1+d0).

ii) Consider the equation:

3

∑
i, j=1

ai j(x)uxix j + c(x)g(u) = f (x).

In this case k = 0, n = l , i.e.

K = max
ri

2∑3
i=1 riαi

∑3
i=1 rid2

i

=

2max
{α1

d2
1

,
α2

d2
2

,
α3

d2
3

,
α1 +α2

d2
1 +d2

2

,
α1 +α3

d2
1 +d2

3

,
α2 +α3

d2
2 +d2

2

,
α1 +α2 +α3

d2
1 +d2

2 +d2
3

}
.

For example,

K = 2
α1 +α2 +α3

d2
1 +d2

2 +d2
3

means that maximum is obtained when r1 = r2 = r3 = 1 and we take

d = d2
1 +d2

2 +d2
3 .

If
2
α1 +α2 +α3

d2
1 +d2

2 +d2
3

= 2
α1 +α2

d2
1 +d2

2

= 2
α2

d2
2

,
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i.e. maximum is obtained when r1 = r2 = r3 = 1, as well as when r1 = r2 = 1, r3 = 0
or r1 = 0, r2 = 1, r3 = 0, then we take

K = 2
α2

d2
2

, d = d2
2 ,

i.e. r1 = 0, r2 = 1, r3 = 0.
Suppose that d1 = min{d1,d2,d3} and α1 = α2 = α3 . In this case we have

K = max
ri

2∑3
i=1 riαi

∑3
i=1 rid2

i

=
2α1

d2
1

, d = d2
1 .

iii) Consider the equation:

3

∑
i, j=1

ai j(x)uxix j +
3

∑
i=1

bi(x)uxi + c(x)g(u) = f (x) in Ω⊂ R3.

Assume that b1 � β1 > 0, b2 � −β2 < 0, max |b3| > 0. In this case n > l = k (n = 3,
k = 2) i. e.

K = max
ri

r1(α1 +β1)+ r2(α2 +β2)+ r3α3

r12d1(1+d1)+ r22d2(1+d2)+ r3
γ3

(e2γ3d3 −2γ3d3−1)

= max
{ α1 +β1

2d1(1+d1)
,

α2 +β2

2d2(1+d2)
,

α3γ3
(e2γ3d3 −2γ3d3−1)

,

α1 +α2 +β1 +β2

2d1(1+d1)+2d2(1+d2)
,

α1 +β1 +α3

2d1(1+d1)+ e2γ3d3−2γ3d3−1
γ3

,
α2 +β2 +α3

2d2(1+d2)+ e2γ3d3−2γ3d3−1
γ3

,

α1 +α2 +α3 +β1 +β2

2d1(1+d1)+2d2(1+d2)+ e2γ3d3−2γ3d3−1
γ3

}
.

For example,

K =
α1 +β1

2d1(1+d1)
means that maximum is obtained when r1 = 1, r2 = r3 = 0 and we put

d = 2d1(1+d1).

Suppose that
α1 +β1

2d1(1+d1)
=

α2 +β2

2d2(1+d2)
,

i.e. maximum is obtained when r1 = 1, r2 = r3 = 0 and r1 = 0, r2 = 1, r3 = 0. If
d1 > d2 we take

K =
α2 +β2

2d2(1+d2)
, d = 2d2(1+d2),

otherwise

K =
α1 +β1

2d1(1+d1)
, d = 2d1(1+d1).
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2. Proof of Theorems I and II

Consider the auxiliary equation

n

∑
i, j=1

ai j(x)uxix j +
n

∑
i=1

bi(x)uxi + c(x)gM(u) = f (x) in Ω⊂ Rn, (2.1)

where

gM(u) =

⎧⎨
⎩

g(u), for |u| � M +φ0

g(M +φ0), for u � M +φ0

g(−M−φ0), for u � −M−φ0.
(2.2)

For |u| � M + φ0 equations (2.1) and (0.1) coincide. Our goal is to establish the
a priori estimate |u| � M + φ0 for the solution of problem (2.1), (0.2) and by this to
reduce the solvability of problem (0.1), (0.2) to the solvability of problem (2.1), (0.2).
If ∂Ω ∈ C2+α and φ ∈ C2+α(∂Ω) then the estimate |u| � M + φ0 of the solution of
problem (2.1), (0.2) implies the estimate of the solution of this problem in C2+α(Ω)
(due to the Schauder estimates) depending only on the data of the problem. Hence the
classical solvability of problem (2.1), (0.2) follows from the Leray-Schauder theorem
(see [3, Chapter 11]). For the continuous boundary value and the domain satisfying
only the exterior sphere condition the basic procedure is to approximate the function
φ by smooth functions and the domain by smooth domains (for more details see [3,
Sections 15.5, 15.16]).

LEMMA 1. Assume that all conditions of Theorem I except of the condition on
monotonicity of g(u) are fulfilled. Then for any classical solution of problem (2.1) ,
(0.2) the following estimate holds

|u(x)| � M +φ0.

The constant M is defined in (0.7) .

Proof. Denote

M̃ =
M
d

,

d was defined in (1.2). Introduce nonnegative functions hi(xi) by the following:
for i = 1, ...,m we put

hi(xi) = M̃
(d2

i − x2
i

2
− (1+di)(xi −di)

)
,

(
h′′i = −M̃, h′i � −M̃)

)
;

for i = m+1, ...,k

hi(xi) = M̃
(d2

i − x2
i

2
+(1+di)(xi +di)

)
,

(
h′′i = −M̃, h′i � M̃)

)
;

for i = k+1, ..., l

hi(xi) = M̃
d2

i − x2
i

2
,

(
h′′i = −M̃

)
,
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and for i = l +1, ...,n we take

hi(xi) =
M̃

γ2
i

(
e2γidi − eγi(di−xi) − γi(xi +di)

)
,

(
h′′i = −M̃− γih′i, h′i � 0

)
.

Put

v(x) ≡ u(x)−h(x), h(x) ≡
n

∑
i=1

rihi(xi)+φ0 � φ0,

ri were defined in (1.1), (1.2). For

L ≡
n

∑
i, j=1

ai j(x)
∂ 2

∂xi∂x j

we have

Lu = f (x)−
n

∑
i=1

bi(x)uxi − c(x)gM(u);

Lh =
n

∑
i=1

aii(x)rih
′′
i (xi) = −M̃

l

∑
i=1

riaii(x)−
n

∑
i=l+1

riaii(x)(M̃ + γih′i(xi)).

It is clear (due to (0.42)) that

Lv = f (x)−
n

∑
i=1

bi(x)uxi − c(x)gM(u)+ M̃
n

∑
i=1

riaii(x)+
n

∑
i=l+1

riaii(x)γih′i(xi)

> f (x)−
n

∑
i=1

bi(x)uxi − c(x)gM(u)+ M̃
n

∑
i=1

riαi +
n

∑
i=l+1

riαiγih′i.

Suppose that at the point N = (N1, ...,Nn) ∈ Ω \ ∂Ω function v(x) attains its positive
maximum. At this point we have v > 0, ∇v = 0 or:

u(N) > h(N) � φ0, uxi(N) = rih
′
i(Ni) i = 1, ...,n.

Taking into account conditions (0.5) and the fact that h′i � −M̃ for i = 1, ...,m , h′i � M̃
for i = m+1, ...,k and h′i(xi) � 0, αiγi = βi � |bi| for i = l +1, ...,n , we conclude

Lv
∣∣∣
N

> f (N)+ M̃
k

∑
i=1

riβi +
n

∑
i=l+1

rih
′
i(Ni)(αiγi −bi(N))− c(N)gM(u(N))+ M̃

n

∑
i=1

riαi

� f (N)+ M̃
k

∑
i=1

riβi + M̃
n

∑
i=1

riαi − c(N)gM(u(N))

= f (N)+MK− c(N)gM(u(N)). (2.3)

Recall that c � λ+ (see 0.6), now due to the fact that gM(u) � 0 for u � 0, we obtain

c(N)gM(u(N)) � λ+gM(u(N)).
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Moreover gM(u) � g(M +φ0) for u � 0. In fact, if u > M +φ0 , then gM(u) = g(M +
φ0) , if 0 � u � M + φ0 , then gM(u) = g(u) � g(M + φ0) . Thus, due to the fact that
g(u) is nondecreasing function for u � 0,

λ+gM(u(N)) � λ+g(M +φ0)

and from (2.3)

Lv
∣∣∣
N

> f (N)+MK− c(N)gM(u(N)) � f (N)+MK−λ+g(M +φ0)

� f (N)+MK−λg(M +φ0) � 0. (2.4)

This contradicts the assumption that v(x) attains its positive maximum at N . From
inequality u(x)−h(x) � 0 on ∂Ω we conclude that

u(x)−h(x) � 0 in Ω.

Obviously,

h(x) =
n

∑
i=1

rihi(xi)+φ0

�
m

∑
i=1

rihi(−di)+
k

∑
i=m+1

rihi(di)+
l

∑
i=k+1

rihi(0)+
n

∑
i=l+1

rihi(di)+φ0

= M̃
[ k

∑
i=1

ri2di(1+di)+
l

∑
i=k+1

rid
2
i /2+

n

∑
i=l+1

ri
1

γ2
i

(e2γidi −2γidi −1)
]
+φ0 = M +φ0.

Finally,
u(x) � M +φ0 in Ω.

Now let us obtain the estimate u(x) � −M−φ0 . Consider function

w(x) ≡ u(x)+h(x).

Due to (0.42) we have

Lw = f (x)−
n

∑
i=1

bi(x)uxi − c(x)gM(u)− M̃
n

∑
i=1

riaii(x)−
n

∑
i=l+1

riaii(x)γih′i(xi)

< f (x)−
n

∑
i=1

bi(x)uxi − c(x)gM(u)− M̃
n

∑
i=1

riαi −
n

∑
i=l+1

riαiγih′i(xi).

Suppose that at the point N′ = (N′
1, ...,N

′
n) ∈Ω\ ∂Ω function w(x) attains its negative

minimum. At this point we have w < 0, ∇w = 0 or:

u(N′) < −h(N′) � −φ0 � 0, uxi(N
′) = −rih

′
i(N

′
i ), i = 1, ...,n.
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Similarly to the previous case we obtain

Lw
∣∣∣
N′ < f (N′)− M̃

k

∑
i=1

riβi−
n

∑
i=l+1

rih
′
i(N

′
i )(αiγi −bi(N′))− c(x)gM(u(N′))− M̃

n

∑
i=1

riαi

� f (N′)−MK− c(N′)gM(u(N′)). (2.5)

We have
gM(u(N′)) � −g(M +φ0).

In fact, if −M−φ0 � u(N′) < 0, then, due to (2.2) and (0.3),

gM(u(N′)) = g(u(N′)) � −g(M +φ0),

if u(N′) � −M−φ0 , then

gM(u(N′)) = g(−M−φ0) � −g(M +φ0).

Assume that c(N′) � 0, then c(N′)gM(u(N′)) � −c(N′)g(M +φ0) and

MK + c(N′)gM(u(N′)) � MK− c(N′)g(M +φ0)

� MK−λ+g(M +φ0) � MK−λg(M+φ0).

If c(N′) � 0, then c(N′)gM(u) � c(N′)g(M +φ0) (because gM(u) � g(M +φ0)) and

MK + c(N′)gM(u(N′)) � MK + c(N′)g(M +φ0)

� MK−λ−g(M +φ0) � MK−λg(M+φ0).

Hence from (2.5) we obtain

Lw
∣∣∣
N′ < f (N′)−MK +λg(M +φ0) � 0.

This contradicts the assumption that w(x) attains its negative minimum at N′. Taking
into account that u+h � 0 on ∂Ω we conclude that

u(x) � −h(x) � −M−φ0 in Ω.

Finally
|u(x)| � M +φ0.

Lemma is proved.

LEMMA 2. Suppose that conditions of Lemma 1 are fulfilled and g(u) is nonde-
creasing function, then for any classical solution of problem (2.1) , (0.2) the following
estimate holds

|u(x)| � M +φ0.

The constant M is defined in (0.8).
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Proof. Similarly to (2.4) we obtain

Lv
∣∣∣
N

> f (N)+MK−λ+g(M +φ0) � 0

and as a consequence
u(x) � M +φ0.

Let us obtain the estimate from the below. Similarly to (2.5) we have

Lw
∣∣∣
N′ < f (N′)−MK− c(N′)gM(u(N′)).

If c(N′) � 0, then (as in the proof of Lemma 1)

MK + c(N′)gM(u(N′)) � MK−λ+g(M +φ0).

Suppose now that c(N′) � 0. Due to (0.3) if g(u) is nondecreasing then g(u) � 0 for
u � 0, hence

MK + c(N′)gM(u(N′)) � MK.

Hence
Lw

∣∣∣
N′ < 0.

As a consequence we conclude that

−M−φ0 � u(x).

Lemma 2 is proved.

Thus we conclude that any solution of problem (2.1), (0.2) is at the same time the
solution of problem (0.1), (0.2).

The uniqueness can be proved by standard arguments based on the maximum prin-
ciple. Theorem I is proved.

Similarly we can prove Theorem II. The only difference here is that in the regular-
ized equation

n

∑
i, j=1

ai j(t,x)uxix j +
n

∑
i=1

bi(t,x)uxi + c(t,x)gM(u)−ut = f(t,x) in QT = (0,T )×Ω

we take

gM(u) =

⎧⎨
⎩

g(u) for |u| � M +m+φ0,
g(M +m+φ0) for u � M +m+φ0,
g(−M−m−φ0) for u � −M−m−φ0.

and in the definition of h(x)we put

h(x) ≡
n

∑
i=1

rihi(xi)+m+φ0.
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Similarly to the elliptic case we can prove that u(t,x)−h(x) can not attain its positive
maximum and u(t,x)+ h(x) its negative minimum in QT \ΓT , where ΓT = Ω∪ ST .
Taking into account that

u−h � 0, u+h � 0 on ΓT

we conclude that
−h(x) � u(t,x) � h(x)

and hence
|u(t,x)| � M +m+φ0.

3. Examples

Let us give several examples demonstrating Theorem I and Theorem II. We start
with elliptic case. Suppose that conditions of Theorem I are fulfilled.

EXAMPLE 1. Sublinear cases.
Consider equation

n

∑
i, j=1

ai j(x)uxix j +
n

∑
i=1

bi(x)uxi + c(x)|u|q = f (x) 0 < q < 1. (3.1)

Condition (0.7) takes the form: there exists M > 0 such that

KM−λ (M +φ0)q − f0 � 0.

Obviously, for q ∈ (0,1) we can always select such constant M .
For the equation

n

∑
i, j=1

ai j(x)uxix j +
n

∑
i=1

bi(x)uxi + c(x) ln(1+ |u|) = f (x) (3.2)

condition (0.7) takes the form: there exists M > 0 such that

KM−λ ln(1+M+φ0)− f0 � 0.

Here we can also select such constant M .
Thus the classical solvability of problem (3.1), (0.2) and (3.2), (0.2) for any Hölder

continuous f (x) follows immediately from Theorem I.

EXAMPLE 2. Superlinear case g(u) = eu .
Consider equation

n

∑
i, j=1

ai j(x)uxix j +
n

∑
i=1

bi(x)uxi + c(x)eu = f (x). (3.3)
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For simplicity we take here homogeneous boundary conditions

u
∣∣∣
∂Ω

= 0. (3.4)

Condition (0.8) for (3.3) takes the form: there exists M > 0 such that

MK−λ+eM � f0.

Suppose that K > λ+ > 0. Function F(z) = Kz−λ+ez for z > 0 attains its maximal
value at the point

z0 = ln
K
λ+ .

Put M = z0 . Obviously

F(M) = K ln
K
λ+ −K.

Thus if

K > λ+ > 0 and f0 � K ln
K
λ+ −K, (3.5)

then Theorem I guarantees the existence of a classical solution satisfying

|u(x)| � ln
K
λ+ .

If c(x) � 0, i.e. λ+ = 0, then condition (0.8) takes the form: there exists M > 0
such that

MK � f0.

Thus taking M = f0K−1 we conclude that there exists a classical solution for any f (x)∈
Cα(Ω) and

|u(x)| � f0
K

.

EXAMPLE 3. Consider a special case of equation (3.3):

Δu+ eu = 0. (3.6)

In [1] it was shown that there exists a positive number κ depending on the dimension
n , such that if the diameter of Ω is less than κ , then there exists at least one solution of
problem (3.6), (3.4). Let us apply Theorem I to equation (3.6). Here λ+ = 1, f0 = 0.
Condition (3.5) takes the form K > 1, 0 � K(lnK−1) or

K � e.

One can easily see from (1.1) (Section 1) that for (3.6)

K = 2max
ri

∑n
i=1 ri

∑n
i=1 d2

i

,
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i.e.

K = 2max
{ 1

d2
1

, ...,
1
d2

n
,

2

d2
1 +d2

2

, ...,
2

d2
1 +d2

n
, ...,

n

d2
1 + ...+d2

n

}
.

Without loss of generality we can assume that d1 = mini{di} and hence

K =
2

d2
1

.

Thus we see, that if the size of the domain is small enough even in one direction, namely

d1 �
√

2
e
,

then (independently of the dimension of the domain) there exists at least one solution
of problem (3.6), (3.4). Moreover, for this solution the a priori estimate |u(x)| � ln K
holds. We can take K = e to obtain the estimate

|u(x)| � 1.

EXAMPLE 4. Superlinear case g(u) = |u|p−1u and g(u) = up , p > 1.
Consider equation

n

∑
i, j=1

ai j(x)uxix j +
n

∑
i=1

bi(x)uxi + c(x)|u|p−1u = f (x). (3.7)

Condition (0.7) for (3.7) takes the form

KM−λMp � f0.

Function F(z) = Kz−λ zp for positive z attains its maximal value at the point

z0 =
( K

pλ

) 1
p−1

.

Put M = z0 , obviously

F(M) =
( K

pλ

) 1
p−1

K
p−1

p
.

We see that Theorem I guarantees the existence of the classical solution for Hölder
continuous f (x) satisfying the additional condition

f0 �
( K

pλ

) 1
p−1

K
p−1

p

and the solution in this case satisfies the inequality

|u(x)| � M =
( K

pλ

) 1
p−1

.
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Obviously, instead of g(u) = |u|p−1u we can take g(u) = up if defined.

EXAMPLE 5. Consider a special case of equation (3.7):

Δu+ μu2 = f (x). (3.8)

In [5] it was shown that problem (3.8), (3.4) with f ≡ 0 has nontrivial solution. Let us
formulate the condition guaranteeing the solvability of problem (3.8), (3.4) with f �≡ 0.
As in Example 3

K =
2

d2
1

,

where d1 = mini{di} . Thus if

f0 �
√

2

|μ |d3
1

,

then there exists at least one solution of problem (3.8), (3.4) and for this solution we
have the estimate

|u(x)| � 1

d1
√|μ | .

EXAMPLE 6. Linear case.
Consider the equation

Lu+ c(x)u = f (x), (3.9)

where

Lu ≡
n

∑
i, j=1

ai j(x)uxix j +
n

∑
i=1

bi(x)uxi .

From Theorem I it follows that if

c(x) � λ+ < K,

then there exists a solution of problem (3.9), (0.2) for an arbitrary (Hölder continuous)
f (x) . Thus we have the estimate from the below on the first eigenvalue of the operator
−L . If λ1 is the first eigenvalue of −L , i.e. there exists a nontrivial solution of the
problem

−Lu = λ1u in Ω, u = 0 on ∂Ω,

then
λ1 � K.

Condition (0.8) for (3.9) takes the form

(K−λ+)M � f0 +λ+φ0.

From Theorem I it immediately follows that if

K−λ+ > 0,
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then for an arbitrary Hölder continuous f (x) there exists a classical solution of problem
(3.8), (0.2) such that

max
Ω

|u(x)| � f0 +λ+φ0

K−λ+ +φ0.

This estimate is more precise than standard estimates for the linear elliptic equations
(see, for example, [2, Sec. 3.3] or [4, Chapter III, §1]).

Let us turn to the parabolic case. Suppose that conditions of Theorem II are ful-
filled.

EXAMPLE 7. Consider the following equation

ut +b ·∇u = αΔu+g(u) in (0,T )×{|x|< d0} (3.10)

where α > 0, b = (b, ...,b) and the constant b �= 0 with initial and boundary conditions

u(0,x) = u0(x) and u = 0 on ST . (3.11)

One can easily see (see Section 1) that in this case

K =
α +b

2d0(1+d0)
.

Condition (0.13) for g(u) = |u|p−1u , p > 1 (or g(u) = up if defined) takes the form

KM− (M +m)p � 0.

Function F(z) ≡ (z+m)pz−1 obtains its minimum at the point z = m(p−1)−1 . Let us
take

M =
m

p−1
.

From Theorem II we have that if

α +b
2d0(1+d0)

� pp

(p−1)p−1 mp−1,

then there exists a global solution of problem (3.10), (3.11) and

max
QT

|u(t,x)| � p
p−1

m.
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