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GENERALIZED TIME–PERIODIC SOLUTIONS TO THE
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Abstract. We introduce a notion of generalized time-periodic solutions to first-order hyperbolic
systems in one space dimension and we establish the existence of such solutions to the Euler
equations of compressible fluid dynamics for a large class of equations of state.

1. Introduction

We consider first-order systems of partial differential equations

∂tG(u)+ ∂xF(u) = 0, (1.1)

where t � 0 and x ∈ R are the dependent variables and u = (u j(t,x))1� j�p is the
unknown, while F,G : R

p → R
p are smooth given maps. Such systems arise in many

areas of continuum physics and mathematical physics. Our primary interest in this
paper is in the Euler equations of compressible fluid dynamics, discussed below.

We are interested in constructing time-periodic solutions to such systems. Rather
than looking for solutions understood in a standard sense, which would lead to a rather
narrow class of periodic solutions, we introduce here a concept of “generalized periodic
solutions”, which are motivated by the theory of quasi-periodic solutions and should
provide approximations of arbitrary solutions to (1.1).

Recall that in the past forty years, there has been an active research about pe-
riodic solutions to partial differential equations, using various techniques and meth-
ods. Research on this problem began in the 40’s and was carried out mostly by physi-
cists. Eventually, in the 60’s mathematicians began a systematic study of the existence
and qualitative properties of periodic solutions; see [1]–[4], [7,10] and the references
therein. Formal power series were introduced in order to approximate general peri-
odic solutions. The present work contributes to this investigation and describes a new
technique which applies to the Euler equations.

To tackle the above problem, we rely on the fixed point theory for compact op-
erators developed by Krasnosel’skii and Zabrejko [8]. This theory was originally in-
troduced to establish the existence of time-periodic solutions to the Korteweg-de Vries
equation [5] and was later used for a class of nonlinear parabolic equations [6].
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The notion of generalized periodic solutions to (1.1) is defined as follows. We
consider vector-valued mappings of the form u(t,x) = (a j(x)b j(t,x)) , in which a =
(a j(x)) is a given continuously differentiable, vector-valued map and b = (b j(t,x)) is
the unknown. The mapping u is called a generalized time-periodic solution to (1.1)
if for some period ω > 0 the functions t �→ b j(t,x) are ω -periodic and satisfy the
following ordinary differential equations in the variable t ,

DuG(ab)bt a+DuF(ab)ax b = 0

with ab = (a jb j) , . . . , where x is a real parameter. Actual solutions should be obtained
as suitable series based on such generalized solutions. The above notion is motivated
by the earlier work [9] where semilinear wave equations and almost periodic breathers
are dealt with.

In this paper, we focus attention on the Euler equations of compressible fluid dy-
namics

∂tρ + ∂x(ρu) = 0,

∂t(ρu)+ ∂x(ρu2 + p(ρ)) = 0.
(1.2)

Here, the main unknowns are the density ρ � 0 and the velocity u of the fluid, while
the pressure p = p(ρ) � 0 is a given smooth function.

Based on the above definition we search for solutions of the form (ρ ,u)(t,x) =(
a(x)b(t,x), f (x)g(t,x)

)
. The functions a, f being given, we need to determine two

periodic functions b = b(t,x) , g = g(t,x) that satisfy the coupled ordinary differential
system

bt

bg
= −ax f +a fx

a
,

(bg)t = −bg2
(ax

a
f +2 fx

)
− pρ(ab)

ax b
a f

.

(1.3)

Here, the independent variable is t ∈ [0,ω ] for some ω > 0, and x is a fixed parameter.

DEFINITION 1.1. A pair of functions a, f : R → R is called an admissible data if
there exist constants ω > 0, m1 ∈ (M1,1) , and m2 ∈ (M2,1) satisfying

m1ω
e(m1−M1)ω

1− e−M1ω
< 1, m2ω

e(m2−M2)ω

1− e−M2ω
< 1,

and if f ,a are continuously differentiable functions satisfying the positivity and growth
conditions

a > 0, ax < 0, f > 0, fx < 0,

M1 � −ax

a
� m1, M2 � − fx

f
� m2.

(1.4)

Our main result is as follows.
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THEOREM 1.2. (Time-periodic generalized solutions) Consider the Euler equa-
tions of isentropic fluid dynamics, in which the pressure function p : [0,∞) → R is
continuously differentiable, pρ is concave, and

kργ � pρ(ρ) � lργ (ρ � 0),

where k, l > 0 and γ ∈ (0,∞) are constants. Let a, f be admissible data associated
with the constants ω ,m1,m2 . Then, provided m1,m2 are sufficiently small (Precise
conditions are given in the proof below.), the system (1.3) admits precisely one non-
trivial, continuously differentiable, generalized periodic solution of the form

(ρ ,u) =
(
a(x)b(t,x), f (x)g(t,x)

)
, t � 0, x ∈ R, (1.5)

in which the functions b,g are positive, continuously differentiable in each variable,
and ω -periodic in time.

In particular, our theorem covers the case of linear equations of state, describing
isothermal fluids. The paper is organized as follows. In Sections 2 and 3, we formulate
the problem under consideration as a fixed-point problem. In Section 4 we provide a
proof of Theorem 1.2.

2. Formulation of the problem

From now on, the functions a and f are given admissible data. They depend
on the variable x which we regard as a fixed parameter and, in the notation, we often
suppress the dependence in x . We are also given a period ω > 0. Concerning the
pressure function p , at this stage we only need to assume that

p ∈ C 1(R+), pρ(ρ) > 0 (ρ > 0). (2.1)

Suppose that (1.5) is a positive solution to the system (1.3) and is continuous,
ω -periodic in the time variable t . Then, it is straighforward to check that

ρ = χ1(ρ ,u), u = χ2(ρ ,u), (2.2)

where, for every fixed x ∈ R ,

χ1(ρ ,u)(t,x) :=
e

a′(x)
a(x) ω

1− e
a′(x)
a(x) ω

∫ ω

0
e
− a′(x)

a(x) y
X1(t + y,x)dy,

X1(s,x) := −a′(x)
a(x)

ρ(s,x)− a′(x)
a(x)

u(s,x)ρ(s,x)− f ′(x)
f (x)

u(s,x)ρ(s,x)

and

χ2(ρ ,u)(t,x) :=
e

f ′(x)
f (x) ω

1− e
f ′(x)
f (x) ω

∫ ω

0
e
− f ′(x)

f (x) y
X2(t + y,x)dy,

X2(s,x) := − f ′(x)
f (x)

u(s,x)− f ′(x)
f (x)

u(s,x)2 − pρ(ρ)
a′(x)
a(x)

.
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Note that a and f are given functions of x , while the integrals above are performed
with respect to the time variable.

LEMMA 2.1. The function (ρ ,u) = (a(x)b(t,x), f (x)g(t,x)) is a generalized pe-
riodic solution to the Euler equations (1.1) if and only if the functions b,g satisfy the
system (2.2).

Proof. Fix x ∈ R and suppose that the function (ρ ,u) = (a(x)b(t), f (x)g(t)) sat-
isfies (1.3) for every t ∈ [0,ω ] . Then, for every t we have

b′(t) =
a′(x)
a(x)

b(t)+ X̃1(t,x),

X̃1(t,x) :=− a′(x)
a(x)

b(t)− a′(x)
a2(x)

ρ(t,x)u(t,x)− 1
a(x)

f ′(x)
f (x)

ρ(t,x)u(t,x),

g′(t) =
f ′(x)
f (x)

g(t)+ X̃2(t,x),

X̃2(t,x) :=− f ′(x)
f (x)

g(t)− f ′(x)
f 2(x)

u2(t,x)− pρ(ρ)
a′(x)
a(x)

1
f (x)

ρ(t,x).

The variable x being fixed, we consider the above equations as a system of ordinary
differential equations and we rewrite it in the form

b(t) = e
a′(x)
a(x) t

(
C1 +

∫ t
0 e

− a′(x)
a(x) y

X̃1(y,x)dy
)
,

g(t) = e
f ′(x)
f (x) t

(
C2 +

∫ t
0 e

− f ′(x)
f (x) y

X̃2(y,x)dy
)
,

where C1 and C2 are constants. From our assumptions on the function a , we see that

lim
t→−∞e

a′(x)
a(x) t = +∞

and, therefore,

C1 =
∫ 0

−∞
e
− a′(x)

a(x) y
X̃1(y,x)dy.

It follows that

b(t) =e
a′(x)
a(x) t

∫ t

−∞
e
− a′(x)

a(x) y
X̃1(y,x)dy

=e
a′(x)
a(x) t

∫ t

t−ω
e
− a′(x)

a(x) y
X̃1(y,x)dy+ e

a′(x)
a(x) t

∫ t−ω

t−2ω
e
− a′(x)

a(x) y
X̃1(y,x)dy+ . . .

By setting

J1 := e
a′(x)
a(x) t

∫ t

t−ω
e
− a′(x)

a(x) y
X̃1(y,x)dy,
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we obtain (after making the change of variable y = s−ω and using the periodicity
property)

b = J1 + e
a′(x)
a(x) ωJ1 + e

2 a′(x)
a(x) ωJ1 + · · · = 1

1−e
a′(x)
a(x) ω

J1.

A further change of variable y = s+ t−ω finally leads us to

ρ(t,x) = χ1(ρ ,u)(t,x)

for all x ∈ R and t ∈ [0,ω ] . Similarly, we can check that u(t,x) = χ2(ρ ,u) . �

3. Fixed-point argument

It will be convenient to introduce the following quantities

D−
1 := min

x∈R

0�y�ω

e
a′(x)
a(x) (ω−y)

1− e
a′(x)
a(x) ω

, D+
1 := max

x∈R

0�y�ω

e
a′(x)
a(x) (ω−y)

1− e
a′(x)
a(x) ω

,

D−
2 := min

x∈R

0�y�ω

e
f ′(x)
f (x) (ω−y)

1− e
f ′(x)
f (x) ω

, D+
2 := max

x∈R

0�y�ω

e
f ′(x)
f (x) (ω−y)

1− e
f ′(x)
f (x) ω

,

and D− = min{D−
1 ,D−

2 } , D+ = max{D+
1 ,D+

2 } . Let C (ω) be the space of real contin-
uous ω -periodic functions defined on the real line R , and let C+(ω) ⊂ C (ω) be the
subset of all positive functions.

For v = (v1,v2) ∈ C (ω)×C (ω) we use the notation

||v|| := max{ max
t∈[0,ω]

|v1(t)|, max
t∈[0,ω]

|v2(t)|},

max
t∈[0,ω]

v := max{ max
t∈[0,ω]

v1(t), max
t∈[0,ω]

v2(t)},

min
t∈[0,ω]

v := min{ min
t∈[0,ω]

v1(t), min
t∈[0,ω]

v2(t)}.

We write in short v � w with v =(v1,v2) , w =(w1,w2) whenever we have both v1 � w1

and v2 � w2 . The functional space of interest in the present problem is

C ◦
+(ω) :=

{
v ∈ C+(ω)×C+(ω) : min

t∈[0,ω]
v(t) � D−

D+ max
t∈[0,ω]

v(t)
}
.

It is straightforward to check the following properties.

LEMMA 3.1. Suppose that the functions a, f satisfy the conditions (1.4) and the
pressure function satisfies the condition (2.1). Then the operator χ := (χ1,χ2) intro-
duced in Section 2 maps C ◦

+(ω) into itself, χ : C ◦
+(ω) → C ◦

+(ω) and, moreover, is a
compact operator.
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Recall that a compact operator transforms a bounded subset of C (ω) into a com-
pact one.

Our proof of existence of non-trivial time-periodic solutions to the system (1.3)
will be based on a theory of compact operators due to Krasnosel’skii and Zabrejko [8].

The basic notion of that theory is the notion of index. For illustration recall the
definition in finite dimension. Suppose that L is a continuous vector field defined on
the closure Ω of a bounded open set Ω⊂ R

n . A point x0 ∈Ω is called a singular point
for the vector field L if Lx0 = 0. On the other hand, if Lx �= 0 for every x ∈Ω one says
that the vector field is non-degenerate. For every vector field we can define the rotation
number γ(L,Ω) as an integer satisfying the following properties:

1. If L1 and L2 are homotopic vector fields on ∂Ω , then γ(L1,Ω) = γ(L2,Ω) .
2. If L is continuous and non-degenerate and is defined on a set Ω\∪∞

j=1Ω j , with
Ω j ∩Ωi = /0 ( i �= j ), Ω j ⊂Ω , then one has γ(Ł,Ω j) �= 0 and

γ(L,Ω) = γ(L,Ω1)+ γ(L,Ω2)+ . . .

3. If Lx = x− x0 for some x0 ∈Ω , then one has γ(L,Ω) = 1.
Roughly speaking, γ(L,Ω) measures the “amount of rotation” of the vector field

L along ∂Ω . Observe that if L is a non-degenerate vector field on Ω then γ(L,Ω) = 0.
If x0 is an isolated singular point for a vector field L , then the rotation number of

L on the spheres ||x− x0|| = ρ , provided ρ > 0 is small enough, is a constant. This
rotation number is also called the index of the point x0 (with respect to the vector field
L ) and is denoted by ind(x0,L) .

In our present context, Ω is actually a infinite-dimensional Banach space Y en-

dowed with a cone Q⊂Y . The cone Q naturally generates a semi-ordering
◦
� , defined

by v
◦
� w if and only if w−v ∈Q . The index of an element v∈Y can be defined in this

situation (by suitably generalizing the definition in finite dimension) and is denoted by
ind(v,L;Q) .

We will need the following two theorems whose proof can be found in [8].

THEOREM 3.2. (Existence of fixed points. I) Let Y be a real Banach space en-
dowed with a cone Q, and L : Y → Y be a compact operator which is assumed to be
positive for the semi-ordering associated with Q. Then, the following properties hold:

i) If L(0) = 0 and, for all sufficiently small r > 0 , there exists no element y ∈ Q

such that ||y||Y = r and y
◦
� L(y) , then, one has ind(0,L;Q) = 1 .

ii) If, for all sufficiently large R > 0 , there exists no element y∈Q such that ||y||Y =

R and L(y)
◦
� y, then one has ind(∞,L;Q) = 0 .

iii) If L(0) = 0 and ind(0,L;Q) �= ind(∞,L;Q) , then the operator L has a non-trivial
fixed point in Q.
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THEOREM 3.3. (Existence of fixed points. II) Let Y be a real Banach space en-
dowed with a cone Q and L : Y → Y be a compact operator which is positive with
respect to Q. Then, the following properties hold:

i) If for all sufficiently large R > 0 there exists no element y∈Q such that ||y||Y =R

and L(y)
◦
� y, then one has ind(∞,L;Q) = 1 .

ii) If L(0) �= 0 and ind(∞,L;Q) �= 0 , then the operator L admit a non-trivial fixed
point in Q.

The uniqueness follows from the following observation.

LEMMA 3.4. (Uniqueness of fixed points) Let Y be a real Banach space endowed
with a cone Q and L : Y → Y be a compact operator which is positive with respect to
Q. Fix some element v0 ∈ Q and suppose that the operator L satisfies the following
conditions:

i) α(w)v0 � Lw � β (w)v0 for every w ∈ Q and for some reals α(w) , β (w) > 0 .

ii) L(λw) � λLw for all λ ∈ [0,1] and w ∈ Q.

iii) L(λw) �= λLw for all λ ∈ (0,1) and w > γ(w)v0 for some γ(w) > 0 .

iv) from w � z with w �= z, it follows that Lw � Lz− ε0 v0 for some ε0 > 0 .

Then, the operator L has at most one fixed point in Q.

Proof. By contradiction, suppose that the operator L has two fixed points w1 and
w2 and, without loss of generality, w1 � w2 . Let λ0 ∈ (0,1) be such that w1 � λ0w2

and w1 � λw2 for every λ � λ0 . Then, choose ε0 > 0 small enough so that λ0 −
ε0

β (w2)
> 0, where β (w2) is given by our assumptions. We can then distinguish between

the following two cases:

1) If w1 = λ0w2 then we write

w1 = Lw1 = L(λ0w2) �= λ0Lw2 = λ0w2,

which is a contradiction.

2) If w1 < λ0w2 , then we write

w1 = Lw1 � L(λ0w2)− ε0u0

� λ0Lw2 − ε0u0 � λ0Lw2 − ε0
β (w2)

Lw2

=
(
λ0− ε0

β (w2)

)
w2,

which is also a contradiction since λ0− ε0
β (w2)

< λ0 . �
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4. Time-periodic solutions

We are now in a position to provide a proof of Theorem 1.2. For the interval
γ ∈ (0,1) , we will need the condition

e(m2−M2)ω

1− e−M2ω
ω

(
m2 +m1Bl 21−γ

(1− e−m1ω

1− e−M1ω

)γ(1− e−m2ω

1− e−M2ω

))
< 1,

B := e(2m1−M1)γωe(2m2−M2)ω .

Throughout the spatial variable x∈R is fixed. We consider the whole range γ ∈ (0,∞) .
Let 1 > r > 0 be sufficiently small so that

(
(m1 +m2)

D+
2

D−
2

r+m1

)
D+

1 ω < 1, (4.1)

D+
2 ω

(
m2 +m2

D+
2

D−
2

r+m1l2
1−γ D+

1
γ

D−
1
γ
D+

2

D−
2

)
< 1 for γ ∈ (0,1], (4.2)

D+
2 ω

(
m2 +m2

D+
2

D−
2

r+m1l
rγ−1

2γ−1

D+
1
γ−1

D−
1
γ−1

D+
2

D−
2

)
< 1 for γ > 1, (4.3)

which impose that m1,m2 are sufficienty small.

Step 1. Suppose that there exists a function (ρ ,u) ∈ C ◦
+(ω) such that (ρ ,u) �

(χ1(ρ ,u),χ2(ρ ,u)) and ||(ρ ,u)|| = r . All functions under consideration are functions
of the time variable t (while the dependence in the spatial variable is omitted through-
out).

If maxt∈[0,ω] ρ(t) � r/2, then maxt∈[0,ω] u(t) � r/2 and for every t ∈ [0,ω ]

u(t) � max
t∈[0,ω]

u(t)
D+

2

D−
2

� D+
2

D−
2

r.

From this it follows that, for t ∈ [0,ω ] ,

ρ(t) � e
a′
a ω

1− e
a′
a ω

∫ ω

0
e−

a′
a y

(
−a′

a
ρ(t + y)− a′

a
u(t + y)ρ(t + y)− f ′

f
u(t + y)ρ(t + y)

)
dy

� D+
1

∫ ω

0
(m1ρ(t + y)+m1u(t + y)ρ(t + y)+m2u(t + y)ρ(t + y))dy

� D+
1

∫ ω

0

(
m1 +m1

D+
2

D−
2

r+m2
D+

2

D−
2

r
)
ρ(y)dy,

i.e.

ρ(t) � D+
1

∫ ω

0

(
m1 +m1

D+
2

D−
2

r+m2
D+

2

D−
2

r
)
ρ(y)dy.
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Now, we integrate the last inequality over the interval [0,ω ] and get

∫ ω

0
ρ(t)dt � D+

1

(
m1 +m1

D+
2

D−
2

r+m2
D+

2

D−
2

r
)
ω

∫ ω

0
ρ(y)dy,

which is a contradiction in view of (4.1).
Next, if maxy∈[0,ω] u(y) � r/2, then maxy∈[0,ω] ρ(y) � r/2 and for every t ∈ [0,ω ]

u(t) � D−
2

D+
2

max
s∈[0,ω]

u(s) � D−
2

D+
2

r
2
,

from which it follows that

r
2

� D+
2

D−
2

u(t), t ∈ [0,ω ], (4.4)

∫ ω

0
ρ(t)dt �

∫ ω

0

r
2

dt � D+
2

D−
2

∫ ω

0
u(t)dt, (4.5)

and

ρ(t) � D+
1

D−
1

max
s∈[0,ω]

ρ(s) � r
2

D+
1

D−
1

� D+
1

D−
1

D+
2

D−
2

u(t).
(4.6)

Now, we need to distinguish between several cases, depending on the value of
γ ∈ (0,∞) .

1. Case γ ∈ (0,1) . Then, we have 1−γ
γ > 0 and r

1−γ
γ < 1, and since pρ is a

decreasing function by assumption, we obtain

pρ(ρ) � pρ(r
1−γ
γ ρ) � lr1−γργ

� l21−γ
( r

2

)1−γ
ργ

and, using (4.4),

pρ(ρ) � l21−γ D+
2

1−γ

D−
2

1−γ u1−γ(t,x)ργ (t).

Therefore, taking (4.6) into account, we find

pρ(ρ) � l21−γ D+
2

1−γ

D−
2

1−γ u1−γ(t)
D+

1
γ

D−
1
γ
D+

2
γ

D−
2
γ uγ(t)

= l21−γ D+
1
γ

D−
1
γ
D+

2

D−
2

u(t)
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for every t ∈ [0,ω ] , i.e.

pρ(ρ) � l21−γ D+
1
γ

D−
1
γ
D+

2

D−
2

u(t). (4.7)

Then, we obtain

u(t) � e
f ′
f ω

1− e
f ′
f ω

∫ ω

0
e−

f ′
f y

(
− f ′

f
u(t + y)− f ′

f
u2(t + y)− pρ(ρ)

a′

a

)
dy

� D+
2

∫ ω

0

(
m2u(t + y)+m2u

2(t + y)+m1 pρ(ρ)
)

dy

� D+
2

∫ ω

0

(
m2u(t + y)+m2

D+
2

D−
2

ru(t + y)+m1 pρ(ρ)
)

dy.

So, using (4.7)

u(t) � D+
2

∫ ω

0

(
m2u(t + y)+m2

D+
2

D−
2

ru(t + y)+m1 l21−γ D+
1
γ

D−
1
γ
D+

2

D−
2

u(y)
)

dy

= D+
2

(
m2 +m2

D+
2

D−
2

r+m1l2
1−γ D+

1
γ

D−
1
γ

D+
2

D−
2

)∫ ω

0
u(y)dy,

i.e. for every y ∈ [0,ω ]

u(y) � D+
2

(
m2 +m2

D+
2

D−
2

r+m1l2
1−γ D+

1
γ

D−
1
γ
D+

2

D−
2

)∫ ω

0
u(y)dy.

It remains to integrate over the interval [0,ω ] and obtain

∫ ω

0
u(y)dy � D+

2 ω
(
m2 +m2

D+
2

D−
2

r+m1l2
1−γ D+

1
γ

D−
1
γ

D+
2

D−
2

)∫ ω

0
u(y)dy,

which is a contradiction with (4.2). Combining our conclusion with item i) of Theo-
rem 2.5, we conclude that

ind(0,χ ;C ◦
+(ω)) = 1. (4.8)

2. Case γ = 1. In this case, we have for every t ∈ [0,ω ]

u(t) � D+
2

∫ ω

0

(
m2u(t + y)+m2

D+
2

D−
2

ru(t + y)+m1lρ(t + y)
)

dy

� D+
2

∫ ω

0

(
m2u(t + y)+m2

D+
2

D−
2

ru(t + y)+m1l
D+

1

D−
1

D+
2

D−
2

u(t + y)
)

dy

= D+
2

(
m2 +m2

D+
2

D−
2

r+m1l
D+

1

D−
1

D+
2

D−
2

)∫ ω

0
u(y)dy,
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where we have used (4.6). From this inequality, we deduce that

∫ ω

0
u(y)dy � D+

2 ω
(
m2 +m2

D+
2

D−
2

r+m1l
D+

1

D−
1

D+
2

D−
2

)∫ ω

0
u(y)dy,

which is a contradiction with (4.2). From this and in view of item i) of Theorem 2.5,
we deduce that

ind(0,χ ;C ◦
+(ω)) = 1. (4.9)

3. Case γ > 1. Then, we have

u(t) � D+
2

∫ ω

0

(
m2u(t + y)+m2

D+
2

D−
2

ru(t + y)+m1lργ(t + y)
)

dy

� D+
2

∫ ω

0

(
m2u(t + y)+m2

D+
2

D−
2

ru(t + y)+m1l
rγ−1

2γ−1

D+
1
γ−1

D−
1
γ−1 ρ(y)

)
dy,

where we have used (4.6). In view of (4.5), we find

u(t) � D+
2

∫ ω

0

(
m2u(t + y)+m2

D+
2

D−
2

ru(t + y)+m1l
rγ−1

2γ−1

D+
1
γ−1

D−
1
γ−1

D+
2

D−
2

u(y)
)

dy,

from which it follows

∫ ω

0
u(y)dy � D+

2 ω
(
m2 +m2

D+
2

D−
2

r+m1l
rγ−1

2γ−1

D+
1
γ−1

D−
1
γ−1

D+
2

D−
2

)∫ ω

0
u(y)dy.

Again, this is a contradiction with (4.3) and, therefore, from item i) of Theorem 2.5 we
deduce that

ind(0,χ ;C ◦
+(ω)) = 1. (4.10)

In conclusion, in view of (4.8), (4.9), and (4.10) we see that

ind(0,χ ;C ◦
+(ω)) = 1 for any γ ∈ (0,∞). (4.11)

Step 2. Next, fix R > 2 large enough so that

R >
2D+

2

D−
2

2ωM2

, (4.12)

R >
1

D−
2 M1kω

for γ ∈ (0,1), (4.13)

R >
D+

1

kωD−
1 D−

2 M1
for γ = 1, (4.14)
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R > 2
( D+

1
γ

M1D
−
1
γD−

2 ωk

) 1
γ−1

for γ > 1. (4.15)

Let us suppose that there exists (ρ ,u) ∈ C ◦
+(ω) such that (ρ ,u) � (χ1(ρ ,u),χ2(ρ ,u))

and ||(ρ ,u)|| = R .
If maxt u(t) � R/2, then we get

u(t) � e
f ′
f ω

1− e
f ′
f ω

∫ ω

0
e−

f ′
f y

(
− f ′

f
u(t + y)− f ′

f
u2(t + y)− pρ(ρ)

a′

a

)
dy

� e
f ′
f ω

1− e
f ′
f ω

∫ ω

0
e−

f ′
f y

(
− f ′

f
u2(t + y)

)
dy

� D−
2

2

D+
2

M2
R
2

∫ ω

0
u(y)dy,

from which we deduce

∫ ω

0
u(y)dy � D−

2
2

D+
2

M2
R
2
ω

∫ ω

0
u(y)dy,

which is a contradiction with (4.12).
If, now, maxt∈[0,ω] ρ(t) � R/2, then we have maxt∈[0,ω] u(t) � R/2. If u(t) ≡ 0

then we obtain
∫ ω
0 pρ(ρ)dt � 0, which is again a contradiction. Therefore, we have∫ ω

0 u(t)dt > 0 and

u(t) � D−
2 M1

∫ ω

0
pρ(ρ)dy. (4.16)

We now distinguish between three cases.

1. Case γ ∈ (0,1) . Then, R1/γ > 1. Since pρ(ρ) is a decreasing function of ρ
we have

pρ(ρ) � pρ
(
R

1
γ max

t∈[0,ω]
ρ(t)

)
� pρ

(
R1/γ

(
max

t∈[0,ω]
ρ(t)

)1/γ)
� kR max

t∈[0,ω]
ρ(t) � kR max

t∈[0,ω]
u(t)

� kRu(t).

From this and in view of (4.16) we obtain

∫ ω

0
u(t)dt � D−

2 M1kRω
∫ ω

0
u(t)dt,

which is a contradiction with (4.13).



GENERALIZED TIME-PERIODIC SOLUTIONS TO THE EULER EQUATIONS 425

2. Case γ = 1. Since pρ(ρ) is a decreasing function of ρ , we have

pρ(ρ) � pρ(Rρ) � kRρ

� kR
D−

1

D+
1

max
t∈[0,ω]

ρ(t)

� kR
D−

1

D+
1

max
t∈[0,ω]

u(t) � kR
D−

1

D+
1

u(t).

In view of (4.16) we obtain

∫ ω

0
u(t)dt � kD−

2 M1ω
D−

1

D+
1

R
∫ ω

0
u(y)dy,

which is a contradiction with (4.14).

3. Case γ > 1. Then, we have
∫ ω

0
u(t)dt � D−

2 M1ω
∫ ω

0
pρ(ρ)dt � D−

2 M1ωk
∫ ω

0
ργ dt

� D−
2 M1ωk

(R
2

)γ−1(D−
1

D+
1

)γ ∫ ω

0
max

t∈[0,ω]
ρ(t)dt

� D−
2 M1ωk

(R
2

)γ−1(D−
1

D+
1

)γ ∫ ω

0
max

t∈[0,ω]
u(t)dt

� D−
2 M1ωk

(R
2

)γ−1(D−
1

D+
1

)γ ∫ ω

0
u(t)dt,

which is a contradiction with (4.15). Consequently, we have ind(∞,χ ;C ◦
+(ω)) and

ind(∞,χ ;C ◦
+(ω)) = 0.

From this and (4.11) and in view of Theorem 3.2, it follows that the operator χ has a
non-trivial fixed point in the cone C ◦

+(ω) . Therefore, the system (1.3) has a non-trivial
solution (ρ(t,x),u(t,x)) = (a(x)b(t,x), f (x)g(t,x)) which is positive, continuous, ω -
periodic with respect to the time variable t .

The operator χ satisfies the condition of item i) of Lemma 3.4 for v0 = 1, since

D−
1

∫ ω

0
X1 dy � χ1(ρ ,u) � D+

1

∫ ω

0
X1 dy,

D−
2

∫ ω

0
X2 dy � χ2(ρ ,u) � D+

2

∫ ω

0
X2 dy.

The operator χ satisfies the conditions of items ii) , iii) , since pρ(λρ) � λ pρ(ρ)
for every λ ∈ (0,1) and for every fixed ρ � 0. Indeed, setting g(λ ) = pρ(λρ)−
λ pρ(ρ) , we find g′(λ ) = ρ p′ρ(λρ)− pρ(ρ) � 0 for λ ∈ (0,1) and ρ � 0. Hence,
g(λ ) � g(0) = 0 for every λ ∈ (0,1) .



426 S. GEORGIEV AND P. G. LEFLOCH

Clearly, the operator χ satisfies the item iv) of Lemma 3.4 and, therefore, the
system (1.3) admits exactly one non-trivial solution

(ρ(t,x),u(t,x)) = (a(x)b(t,x), f (x)g(t,x)),

which is positive, continuous, ω -periodic.
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