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Abstract. We are interested in periodic solutions of a coupled system of two periodically forced
ordinary differential inclusions when the first differential inclusion is weakly nonlinear with re-
spect to a small parameter while the second differential inclusion is strongly nonlinear. We
investigate two cases when the second equation of the unperturbed autonomous system has ei-
ther a single or a non-degenerate family of periodic solutions parameterized by the first variable.
The second case usually occurs when the second unperturbed differential equation is symmet-
ric. A combination of the topological degree approach with the averaging method is applied to
find topological degree conditions for bifurcations of forced periodic solutions of the perturbed
system of differential inclusions for the small parameter from the above-mentioned periodic so-
lutions of the unperturbed equation. Concrete examples of discontinuous periodically forced
differential equations are also treated to illustrate the theory.

1. Introduction

In this paper we consider the following weakly coupled and periodically forced
system of ordinary differential inclusions

x′ ∈ ε f (x,y,t,ε) ,
y′ ∈ g(x,y)+ εh(x,y,t,ε) , (1.1)

where x∈R
n , y∈R

m , g∈C3(Rn+m,Rm) , f : R
n+m+2 → 2R

n \{ /0} and g : R
n+m+2 →

2R
m \ { /0} are upper semi-continuous multivalued mappings with compact and convex

set values, which are 1-periodic in t ∈ R . For ε = 0, the system (1.1) becomes into an
autonomous ordinary differential equation,

y′ = g(x,y) , (1.2)

parameterized by x ∈ R
n . For an open subset U ⊂ R

n , we consider two cases:

1. equation (1.2) has a single 1-periodic solution for any x ∈U ,

2. equation (1.2) has a nondegenerate family of 1-periodic solutions for any x ∈U .

Our aim is to find topological degree bifurcation conditions under which (1.1) has
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forced 1-periodic solutions for ε �= 0 small. For this purpose, a combination of the
Lyapunov-Schmidt method together with the Leray-Schauder degree theory for multi-
valued mappings is applied [7]. These results Theorems 2.1 and 3.1 are extensions of
similar ones for ordinary differential equations [1, 2, 3, 7, 8] to ordinary differential in-
clusion (1.1). We also present Examples 4.1 and 4.4 to illustrate our theory. Averaging
methods for symmetric ordinary differential equations are given in [4, 5, 6].

2. Bifurcations from single periodic solutions

In this part, we consider the case 1 from Introduction. More precisely, we suppose
the condition,

(H1): the equation (1.2) has a 1-periodic solution y = ϕ(t,x) for any x ∈U , where the
function ϕ ∈C1(R×U,Rm) is 1-periodic in t ∈ R .

Certainly the function ϕ ′(t,x) satisfies the variational equation

v′ = gy(x,ϕ(t,x))v . (2.1)

We also consider the dual variational system

w′ = −g∗y(x,ϕ(t,x))w . (2.2)

Next, we suppose the condition,

(H2): there are smooth bases{
v0(t,x),v1(t,x), · · · ,vr(t,x)

}
and

{
w0(t,x),w1(t,x), · · · ,wr(t,x)

}
of 1-periodic solutions of (2.1) and (2.2), respectively, for any x∈U , where we assume
that v0(t,x) = ϕ ′(t,x) .

We consider the Banach spaces:

X := {x ∈C(R,Rn) : x(t) is 1-periodic} ,

Y := {y ∈C(R,Rm) : y(t) is 1-periodic} ,

X∞ := {x ∈ L∞(R,Rn) : x(t) is 1-periodic} ,

Y∞ := {y ∈ L∞(R,Rm) : y(t) is 1-periodic} ,

W 1,∞
n :=

{
x ∈W 1,∞(R,Rn) : x(t) is 1-periodic

}
,

W 1,∞
m :=

{
y ∈W 1,∞(R,Rm) : y(t) is 1-periodic

}
,

with the usual sup-norms. Then we introduce the projections

P1 : X → X , Px : Y → Y,

defined as follows:

P1x := x(t)−
1∫

0

x(s)ds,
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Pxy := y(t)−q0w0(t,x)−q1w1(t,x)−·· ·−qrwr(t,x) ,

(q0,q1, · · · ,qr)∗ := A(x)−1

⎛⎝ 1∫
0

(y(t),w0(t,x))dt, · · · ,
1∫

0

(y(t),wr(t,x))dt

⎞⎠∗

,

where (·, ·) is the scalar product on R
m and A(x) : R

r+1 → R
r+1 is the matrix given by

A(x) :=

⎛⎝ 1∫
0

(wi(t,x),wj(t,x))dt

⎞⎠r

i, j=0

.

The meaning of these projections is the following: the nonhomogeneous variational
equation of (2.1) along ϕ(t,x) is given by

u′ = h̃1,

v′ = gy(x,ϕ(t,x))v+ h̃2.
(2.3)

From [9, Theorem 1.2, p. 411] we know that (2.3) has a 1-periodic solution in W 1,∞
n ×

W 1,∞
m for h̃1 ∈ X∞ and h̃2 ∈ Y∞ if and only if P1h̃1 = h̃1 and Pxh̃2 = h̃2 . Moreover this

solution is unique if,

P1u = u and

1∫
0

(v(t),vi(t,x)) dt = 0, for i = 0,1, · · · ,r.

Next for any h1 ∈ X∞ , h2 ∈ Y∞ we set for h̃1 := P1h1 , h̃2 := Pxh̃2 , and we denote by
(u,v) := Kx(h1,h2) the above solution of (2.3). Then

Kx : X∞×Y∞ → X ×Y

is compact and linear, since W 1,∞
n ×W 1,∞

m ⊂⊂ X ×Y is a compact embedding. More-
over, a mapping

K : U → L(X∞×Y∞,X ×Y )

defined as K (x) := Kx is continuous.
Now we shift t → t +α , α ∈R and then we make in (1.1) the changes of variables

ε → ε2, x = ε2u+ x1, u ∈ X , P1u = u, x1 ∈ R
n,

y = ϕ(t,ε2u+ x1)+ ε2v+ ε
r

∑
i=1

βivi(t,ε2u+ x1) ,

1∫
0

(v(t),vi(t,x1)) dt = 0, i = 0,1, · · · ,r ,

to derive

u′ ∈ f

(
ε2u+ x1,ϕ(t,ε2u+ x1)+ ε2v+ ε

r

∑
i=1

βivi(t,ε2u+ x1),t +α,ε2

)
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v′ −gy(x1,ϕ(t,x1))v ∈ H(u,v,x1,α,β , t,ε) , (2.4)

where β := (β1,β2, · · · ,βr) and

H(u,v, x1,α,β , t,ε) :=

1
ε2

[
g

(
ε2u+ x1,ϕ(t,ε2u+ x1)+ ε2v+ ε

r

∑
i=1

βivi(t,ε2u+ x1)

)
−g(ε2u+ x1,ϕ(t,ε2u+ x1))

−gy(ε2u+ x1,ϕ(t,ε2u+ x1))

(
ε2v+ ε

r

∑
i=1

βivi(t,ε2u+ x1)

)]
+
(
gy(ε2u+ x1,ϕ(t,ε2u+ x1))−gy(x1,ϕ(t,x1))

)
v

−
(
ε

r

∑
i=1

βivix(t,ε2u+ x1)+ϕx(t,ε2u+ x1)

)
u′

+h

(
ε2u+ x1,ε2v+ ε

r

∑
i=1

βivi(t,ε2u+ x1)+ϕ(t,ε2u+ x1),t +α,ε2

)
.

Next we set the following mapping

G : X ×Y ×U ×R
r+2× [0,1]→ 2X∞×Y∞ \ { /0}

given by

G(u,v,x1,α,β ,ε,λ ) :={
(h1,h2) ∈ X∞×Y∞ : h1(t) ∈ f

(
λε2u(t)+ x1,ϕ(t,λε2u(t)+ x1)

+λε2v(t)+λε
r

∑
i=1

βivi(t,ε2u(t)+ x1), t +α,λε2

)
,

h2(t)+

(
λε

r

∑
i=1

βivix(t,ε2u(t)+ x1)+ϕx(t,λε2u(t)+ x1)

)
h1(t)

∈ 1
ε2

[
g

(
λε2u(t)+ x1,ϕ(t,λε2u(t)+ x1)+λε2v(t)

+λε
r

∑
i=1

βivi(t,ε2u(t)+ x1)

)
−g(λε2u(t)+ x1,ϕ(t,λε2u(t)+ x1))

−λgy(λε2u(t)+ x1,ϕ(t,λε2u(t)+ x1))

(
ε2v(t)+ ε

r

∑
i=1

βivi(t,ε2u(t)+ x1)

)

− λ 2ε2

2
gyy(λε2u(t)+ x1,ϕ(t,λε2u(t)+ x1))

(
r

∑
i=1

βivi(t,ε2u(t)+ x1)

)2]
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+
1
2
gyy(λε2u(t)+ x1,ϕ(t,λε2u(t)+ x1))

(
r

∑
i=1

βivi(t,λε2u(t)+ x1)

)2

+λ
(
gy(ε2u(t)+ x1,ϕ(t,ε2u(t)+ x1))−gy(x1,ϕ(t,x1))

)
v(t)

+h

(
λε2u(t)+ x1,λε2v(t)+λε

r

∑
i=1

βivi(t,ε2u(t)+ x1)

+ϕ(t,λε2u(t)+ x1),t +α,λε2

)
for almost each (f.a.e.) t ∈ R

}
,

where the term in the brackets [· · ·] is set to 0 for ε = 0.
Now we write (2.4) as follows

(u,v,0,0) ∈ F(u,v,x1,α,β ,ε,1) , (2.5)

where the mapping

F : X ×Y ×U ×R
r+2× [0,1]→ 2X×Y×R

n+r+1 \ { /0}
is defined by

F(u,v,x1,α,β , t,ε,λ ) :=

{(
λKx1(h1,h2),

1∫
0

h1(t)dt,

1∫
0

(h2(t),w0(t,x1))dt, · · · ,
1∫

0

(h2(t),wr(t,x1))dt

)

: (h1,h2) ∈ G(u,v,x1,α,β ,t,ε,λ )

}
.

It is standard to verify that F is upper semicontinuous with compact and convex set
values [7]. Furthermore, we set

M(x1,α,β ) :={( 1∫
0

h1(t)dt,

1∫
0

(h2(t),w0(t,x1))dt, · · · ,
1∫

0

(h2(t),wr(t,x1))dt dt

)
: h1(t) ∈ f (x1,ϕ(t,x1),t +α,0) f.a.e. t ∈ R ,

h2(t)+ϕx(t,x1)h1(t) ∈
r

∑
i, j=1

βiβ jai j(t,x1)

+h(x1,ϕ(t,x1), t +α,0) f.a.e. t ∈ R

}
, (2.6)
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where

ai j(t,x1) :=
1
2
gyy(x1,ϕ(t,x1))(vi(t,x1),v j(t,x1)) .

Again the mapping

M : U ×R
r+1 → 2R

n+r+1 \ { /0}
is upper semicontinuous with compact and convex set values. Summarizing, we arrive
at the following result.

THEOREM 2.1. Suppose (H1) and (H2) hold. If there is an open bounded subset
Ω⊂Ω⊂U ×R

r+1 such that:

a) 0 /∈ M(x1,β ,α) on the boundary ∂Ω ,

b) deg(M,Ω,0) �= 0 , where deg is the Brouwer degree.

Then the system (1.1) has a 1 -periodic solution for ε > 0 small.

Proof. To solve (1.1), we need to solve (2.5), which we put in the homotopy

(u,v,0,0) ∈ F(u,v,x1,α,β ,ε,λ ) ,

for λ ∈ [0,1] . It is not difficult to find positive constants c1 and ε0 such that

(u,v,0,0) /∈ F(u,v,x1,α,β ,ε,λ )

for any (u,v,x1,α,β ) ∈ ∂O and any (ε,λ ) ∈ (0,ε0)× [0,1] , where

O := Bc1 ×Ω, Bc1 := {(u,v) ∈ X ×Y : ‖u‖+‖v‖< c1} .

Hence

deg
(
(u,v,0,0)−F(u,v,x1,α,β ,ε,1),O,0

)
= deg

(
(u,v,0,0)−F(u,v,x1,α,β ,ε,0),O,0

)
= deg

(
(u,v,−M(x1,α,β )),O,0

)
= deg(−M,Ω,0) �= 0 .

So (2.5) is solvable for any ε ∈ (0,ε0) . The proof is finished. �

3. Bifurcations from families of periodics

When the unperturbed equation (1.2) has some symmetry then in place of condi-
tion (H1) the following one may hold:

(C1): the equation (1.2) has a smooth family ϕ(t,x,θ ) of 1-periodic solutions for any
x ∈U and θ ∈ Γ , where U ⊂ R

n , Γ⊂ R
r are open bounded subsets.

Then we can repeat the above procedure to (1.1) with the next modifications: First,
(2.1) is replaced with

v′ = gy(x,ϕ(t,x,θ ))v . (3.1)
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Clearly ϕ ′(t,x,θ ) , ϕθi(t,x,θ ) , i = 1,2, · · · ,r , θ = (θ1,θ2, · · · ,θr) are 1-periodic solu-
tions of (3.1). We suppose:

(C2): the family ϕ(t,x,θ ) is non-degenerate, i.e. the functions ṽ0(t,x,θ ) := ϕ ′(t,x,θ ) ,
ṽi(t,x,θ ) := ϕθi(t,x,θ ) , i = 1,2, · · · ,r form a basis of the space of 1-periodic solutions
of (3.1).

From [9, Lemma 1.3, p. 410] we know that condition (C2) implies the existence
of a smooth basis w̃ j(t,x,θ ) , j = 0,1, · · · ,r of the space of 1-periodic solutions of the
adjoint system

w′ = −g∗y(x,ϕ(t,x,θ ))w

to (3.1).
Now, in the above procedure, we keep the projection P1 , but we replace Px with

Px,θ : Y → Y defined by:

Px,θy := y(t)− q̃0w̃0(t,x,θ )− q̃1w̃1(t,x,θ )−·· · − q̃rw̃r(t,x,θ ) ,
(q̃0, q̃1, · · · , q̃r)∗ :=

Ã(x,θ )−1

⎛⎝ 1∫
0

(y(t), w̃0(t,x,θ ))dt, · · · ,
1∫

0

(y(t), w̃r(t,x,θ ))dt

⎞⎠∗

where

Ã(x,θ ) :=

⎛⎝ 1∫
0

(w̃i(t,x,θ ), w̃ j(t,x,θ ))dt

⎞⎠r

i, j=0

is an (r+1)× (r+1)-matrix. Then changing

x = εu+ x1, u ∈ X , P1u = u, x1 ∈ R
n,

y = εv+ϕ(t,εu+ x1,θ ) ,
1∫

0

(v(t), ṽi(t,x1,θ )) dt = 0, i = 0,1, · · · ,r ,

in (1.1), we derive like above

u′ ∈ f (εu+ x1,εv+ϕ(t,εu+ x1,θ ), t +α,ε) ,

v′ −gy(x1,ϕ(t,x1,θ ))v ∈ H̃(u,v,ε,α,θ ,t) ,
(3.2)

where

H̃(u,v,ε,α,θ , t) :=
1
ε

(
g(εu+ x1,εv+ϕ(t,εu+ x1,θ ))

−g(εu+ x1,ϕ(t,εu+ x1,θ ))

)
−gy(x1,ϕ(t,x1,θ ))v

+h(εu+ x1,εv+ϕ(t,εu+ x1,θ ),t +α,ε)−ϕx(t,εu+ x1,θ )u′ .
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Furthermore, we set

M̃(x1,α,θ ) :={( 1∫
0

h1(t)dt,

1∫
0

(h2(t),w0(t,x1))dt, · · · ,
1∫

0

(h2(t),wr(t,x1))dt dt

)
: h1(t) ∈ f (x1,ϕ(t,x1,θ ),t +α,0) f.a.e. t ∈ R,

h2(t)+ϕx(t,x1,θ )h1(t) ∈ h(x1,ϕ(t,x1,θ ),t +α,0) f.a.e. t ∈ R

}
. (3.3)

The mapping

M̃ : U ×R×Γ→ 2R
n+r+1 \ { /0}

is upper semicontinuous with compact and convex set values. Consequently, we can
directly modify the method of Section 2 to derive the following result.

THEOREM 3.1. Suppose (C1) and (C2). If there is an open bounded subset Ω ⊂
Ω⊂U ×R×Γ such that:

a) 0 /∈ M(x1,α,θ ) on the boundary ∂Ω ,

b) deg(M,Ω,0) �= 0 .

Then the system (1.1) has a 1 -periodic solution for ε �= 0 small.

4. Applications to weakly coupled discontinuous nonlinear oscillators

We present in this part two examples by applying Theorems 2.1 and 3.1, respec-
tively.

EXAMPLE 4.1. We first apply Theorem 2.1 to the system

y′1 ∈ y1− y2− x2(y2
1 + y2

2)y1 + εμ1 Sgny2,

y′2 ∈ y1 + y2− x2(y2
1 + y2

2)y2 + εμ2 Sgny1 + εμ3 cost,

x′ ∈ ε (y1 cost + y2 sin t + Sgnx) ,

(4.1)

where μ1,2,3 are positive parameters and Sgn : R → 2R \ { /0} is given by

Sgny :=
{

sgny y �= 0 ,
[−1,1] y = 0 ,

where sgny := y/|y| for y = 0 and sgn0 = 0. We need to verify conditions (H1) and
(H2) for the unperturbed system (4.1) of the form

y′1 = y1− y2− x2(y2
1 + y2

2)y1,

y′2 = y1 + y2− x2(y2
1 + y2

2)y2,
(4.2)
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possessing a smooth family of 2π -periodic solutions

ϕ(t,x) =
1
x
(cost,sin t) (4.3)

for x �= 0. The linearization of (4.2) along (4.3) is as follows

v′1 = −(1+ cos2t)v1− (1+ sin2t)v2,
v′2 = (1− sin2t)v1− (1− cos2t)v2,

(4.4)

and its adjoint system is given by

w′
1 = (1+ cos2t)w1− (1− sin2t)w2,

w′
2 = (1+ sin2t)w1 +(1− cos2t)w2 .

(4.5)

One readily verifies that (4.4) has solutions

v0(t,x) = (−sin t,cost),

ṽ(x,t) =
(
e−2t cost, e−2t sin t

)
.

Hence v0(x, t) is a basis of 2π -periodic solutions of (4.4). Furthermore, the functions:

w0(t,x) = (sin t,−cost),

w̃(x,t) = e2t(cost,sin t),

are solutions of (4.5), so w0(t,x) is a basis of 2π -periodic solutions of (4.5). Conse-
quently, now we do not have parameters β . After some computations, the function M
of (2.6) for this case (4.1) has the form

M(x1,α) =
(

2π
x1

(cosα + |x1|),4sgnx1(μ1 − μ2)−πμ3 cosα
)

. (4.6)

We immediately see that (4.6) has a simple root

x̃1 =
4(μ2− μ1)

πμ3
, α̃ = arccos

[
−4|μ1− μ2|

πμ3

]
, (4.7)

provided
0 < 4|μ1− μ2| < πμ3 . (4.8)

Taking a small neighborhood Ω ⊂ R
2 of the point (x̃1, α̃) , Theorem 2.1 gives the

following result.

THEOREM 4.2. If positive parameters μ1,2,3 satisfy assumption (4.8), then the
system (4.1) has an 2π -periodic solution for any ε �= 0 small which is located in an
O(|ε|)-neighborhood of the vector function(

1
x̃1

cos(t− α̃),
1
x̃1

sin(t− α̃), x̃1

)
,

where x̃1 and α̃ are given by (4.7).
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To visualize the set given by (4.8), first we consider its section for μ1 = 1 and
μ2 ∈ (0,2] :

0.0 0.5 1.0 1.5 2.0
Μ2

0.5

1.0

1.5

2.0
Μ3

Similar figure is for the section for μ2 = 1 and μ1 ∈ (0,2] . Note if (μ1,μ2,μ3) satisfies
(4.8) then also ξ (μ1,μ2,μ3) satisfies it for any ξ > 0.

REMARK 4.3. We can repeat the above arguments to an example when (4.2) is
replaced with [8]

y′1 = (x2 +1)(y2
1 + y2

2)y2,

y′2 = −(x2 +1)(y2
1 + y2

2)y1,

possessing a smooth family of 1-periodic solutions

ϕ(t,x) =

√
2πk

x2 +1

(
sin2πkt,cos2πkt

)
for k ∈ N . Then

v0(t,x) = (cos2πkt,−sin2πkt),
w0(t,x) = (sin2πkt,cos2πkt) .

We do not perform further computations in this paper.

EXAMPLE 4.4. Finally, we consider the system

y′1 ∈ −y2 + ε
μ1

y2
2 +1

Sgny1 + εμ2 cost,

y′2 ∈ y1 + ε
μ3

y2
1 +1

Sgny2 + εμ4 cost,

x′ ∈ ε
(

Sgnx
x2 +1

+ y1 cost + y2 sin t

)
,

(4.9)

where μ1,2,3,4 are positive parameters. We verify assumptions (C1) and (C2) for its
unperturbed system

y′1 = −y2, y′2 = y1, (4.10)
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which is just the harmonic oscillator. So now

ϕ(t,x,θ ) = θ (cost,sin t),
ṽ0(t,x,θ ) = θ (−sin t,cost), ṽ1(t,x,θ ) = (cos t,sin t),
w̃0(t,x,θ ) = (−sin t,cost), w̃1(t,x,θ ) = (cost,sin t),

for θ �= 0. After some computations we derive (3.3) of the form

M̃(x1,α,θ ) =

(
2π
(

sgnx1

x2
1 +1

+θ cosα
)

,π (μ2 sinα + μ4 cosα) ,

π (μ2 cosα− μ4 sinα)+4
arctanθ
|θ | (μ1 + μ3)

)
. (4.11)

Now we need the following obvious result [7].

LEMMA 4.5. Let F1 ∈C1 (Ω1×Ω2,R
n) , F2 ∈C1 (Ω1×Ω2,R

m) , Ω1 ⊂R
n , Ω2 ⊂

R
m be open subsets. Suppose that for any y ∈ Ω2 there is a x := f (y) ∈ Ω1 such that

F1( f (y),y) = 0 and DxF1( f (y),y) : R
n → R

n is regular, i.e. F1(x,y) = 0 has a simple
root x = f (y) in Ω1 for any y ∈Ω2 . Assume that G(y) := F2( f (y),y) = 0 has a simple
root y0 ∈ Ω2 , i.e. G(y0) = 0 and DG(y0) is regular. Then (x0,y0) , x0 := f (y0) is a
simple root of F = (F1,F2)∗ , i.e. F(x0,y0) = 0 and DF(x0,y0) is regular. Note a local
uniqueness of simple roots and their smooth dependence on parameters follow from the
implicit function theorem, so we suppose that f ∈C1(Ω2,Ω1) .

Applying Lemma 4.5 to (4.11), we solve the system

sgn x̃1

x̃2
1 +1

+ θ̃ cos α̃ = 0, (4.12)

μ2 sin α̃ + μ4 cos α̃ = 0, (4.13)

π (μ2 cos α̃− μ4 sin α̃)+4
arctan θ̃
|θ̃ | (μ1 + μ3) = 0. (4.14)

Clearly (4.12) and (4.13) give

θ̃ = − sgn x̃1

cosα̃(x̃2
1 +1)

and tan α̃ = −μ4

μ2
. (4.15)

Then for α̃ ∈ (−π/2,π/2) , by inserting (4.15) into (4.14) we obtain

π
μ2

2 + μ2
4

4μ2(μ1 + μ3)
− sgn x̃1(x̃2

1 +1)arctan

√
μ2

2 + μ2
4

μ2(x̃2
1 +1)

= 0 . (4.16)

First, the equality (4.16) implies x̃1 > 0. Next, the function

z → (z2 +1)arctan

√
μ2

2 + μ2
4

μ2(z2 +1)
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is strictly increasing on [0,∞) from arctan
√

μ2
2+μ2

4
μ2

to
√

μ2
2+μ2

4
μ2

. Consequently, if

arctan

√
μ2

2 + μ2
4

μ2
<

π
4

μ2
2 + μ2

4

μ2(μ1 + μ3)
<

√
μ2

2 + μ2
4

μ2
,

which is equivalent to

π
4

√
μ2

2 + μ2
4 < μ1 + μ3 <

π
4

μ2
2 + μ2

4

μ2 arctan
√

μ2
2+μ2

4
μ2

, (4.17)

then (4.16) possesses a unique simple zero x̃1 on (0,∞) . Summarizing, by Lemma 4.5
and Theorem 3.1, we obtain the following result.

THEOREM 4.6. If positive parameters μ1,2,3,4 satisfy assumption (4.17), then the
system (4.9) has an 2π -periodic solution for any ε �= 0 small which is located in an
O(|ε|)-neighborhood of the vector function(

θ̃ cos(t− α̃), θ̃ sin(t− α̃), x̃1

)
,

where x̃1 , α̃ ∈ (−π/2,π/2) and θ̃ are given by (4.15) and (4.16).

To visualize the set given by (4.17), first we consider its section for μ2 = 1 and
μ4 ∈ (0,1] :

0.0 0.2 0.4 0.6 0.8 1.0
Μ4

1

2

3

4
Μ1 � Μ3

then for μ4 = 1 and μ2 ∈ (0,1] :

0.0 0.2 0.4 0.6 0.8 1.0
Μ2

1

2

3

4
Μ1 � Μ3
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Again note if (μ1,μ2,μ3,μ4) satisfies (4.17), then also ξ (μ1,μ2,μ3,μ4) satisfies it for
any ξ > 0.

REMARK 4.7. Finally, we can consider more complicated system than (4.9), when
the unperturbed one has the form

y′1 = y2, y′2 = −y1− (x2 +1)(y2
1 + y2

3)y1,
y′3 = y4, y′4 = −y3− (x2 +1)(y2

1 + y2
3)y3 .

(4.18)

We note that (4.18) has the form

ẅ+(1+(x2 +1)‖w‖2)w = 0, (4.19)

for w = (y1,y3) and ‖w‖ =
√

y2
1 + y2

3 . For

Γ(θ ) =
(

cosθ − sinθ
sinθ cosθ

)
,

we see that if w(t) solves (4.19), then Γ(θ )w(t) is also its solution. We know [10] that

y1(t) = v(t,x,k) =
√

2k√
(1−2k2)(x2 +1)

cn
t√

1−2k2

solves y′1 = y2 , y′2 = −y1 − (x2 + 1)y3
1 , where cn is the Jacobi elliptic function and k

is the elliptic modulus [10]. Consequently, the system (4.18) has a smooth family of
periodic solutions

y(t,x,θ ,k) =
(

cosθ v(t,x,k),cosθ v(t,x,k)′,sinθ v(t,x,k),sinθ v(t,x,k)′
)
. (4.20)

The function y(t,x,θ ,k) has the period T (k) = 4K(k)
√

1−2k2 for the complete elliptic
integral K(k) of the first kind. We note T (0) = 2π and T (

√
2/2) = 0. By numerically

solving the equation T (k) = 1, we find its unique solution k0
.= 0.700595 with T (k0)′ �=

0. So we fix k = k0 and take

ϕ(t,x,θ ) = y(t,x,θ ,k0)

to satisfy condition (C1). Condition (C2) is verified for this case in [8]. Again we do
not carry out more computations for this example.
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