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ON A CONJECTURE FOR THREE-DIMENSIONAL COMPETITIVE
LOTKA-VOLTERRA SYSTEMS WITH A HETEROCLINIC CYCLE

MATS GYLLENBERG AND PING YAN

Abstract. For three-dimensional competitive Lotka-Volterra systems, Zeeman (1993) identified
33 stable equivalence classes. In this paper we show that: in the case of a heteroclinic cycle on the
boundary of the carrying simplex of three-dimensional competitive Lotka-Volterra systems (class
27 in Zeeman’s classification), the conditions (a) there is a pair of purely imaginary eigenvalues
at an interior equilibrium, (b) the first focal value vanishes, (¢ ! ) the second focal value vanishes,
and (c) the heteroclinic cycle is neutrally stable do not imply (d) the third focal value vanishes.
In particular, the conditions (a), (b), (¢’), and (c) do not imply that the interior equilibrium is a
center. This proves a conjecture by Gyllenberg and Yan (2009).
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