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ON A CONJECTURE FOR THREE–DIMENSIONAL COMPETITIVE

LOTKA–VOLTERRA SYSTEMS WITH A HETEROCLINIC CYCLE

MATS GYLLENBERG AND PING YAN

Abstract. For three-dimensional competitive Lotka-Volterra systems, Zeeman (1993) identified
33 stable equivalence classes. In this paper we show that: in the case of a heteroclinic cycle on the
boundary of the carrying simplex of three-dimensional competitive Lotka-Volterra systems (class
27 in Zeeman’s classification), the conditions (a) there is a pair of purely imaginary eigenvalues
at an interior equilibrium, (b) the first focal value vanishes, (c ′) the second focal value vanishes,
and (c) the heteroclinic cycle is neutrally stable do not imply (d) the third focal value vanishes.
In particular, the conditions (a), (b), (c ′) , and (c) do not imply that the interior equilibrium is a
center. This proves a conjecture by Gyllenberg and Yan (2009).
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