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EXISTENCE OF HOMOCLINIC ORBITS FOR SECOND

ORDER HAMILTONIAN SYSTEMS WITHOUT (AR) CONDITION

LI-LI WAN

(Communicated by C. L. Tang)

Abstract. The existence of homoclinic orbits is obtained for a class of the second order Hamil-
tonian systems ü(t)−L(t)u(t)+∇W (t,u(t)) = 0, ∀t ∈ R , by the mountain pass theorem, where
W(t,x) needs not to satisfy the global (AR) condition.

1. Introduction and main result

Let us consider the second order Hamiltonian systems

ü(t)−L(t)u(t)+∇W(t,u(t)) = 0, ∀t ∈ R, (1)

where L ∈C(R,RN2
) is a symmetric matrix valued function, W ∈C1(R×R

N ,R) and
∇W (t,x) = ∂W

∂x (t,x) . We say that a solution u of problem (1) is homoclinic (to 0) if
u ∈ C2(R,RN) , u(t) → 0 as |t| → ∞ . Homoclinic orbits of dynamical systems are
important in the applications. From their existence and under certain conditions, one
may infer the existence of chaos nearby or the bifurcation behavior of periodic orbits.

With the variational methods, the existence and multiplicity of homoclinic orbits
of problem (1) have been obtained by many papers (see [1–4, 6–20]). But in most
superquadratic cases, there is a so-called global (AR) condition on W , that is, there
exists a constant μ > 2 such that

0 < μW (t,x) � (∇W (t,x),x), ∀t ∈ R, ∀x ∈ R
N \ {0}, (2)

which is very important to guarantee the boundedness of the (PS)c sequence (see [1],
[2], [4], [6], [8], [14], [15]).

Since the domain is unbounded, there is a lack of compactness of the Sobolev
embedding. Many papers consider the periodic (autonomous, asymptotically periodic)
problems (see [1], [2], [4], [7], [8], [14], [15]). Some papers treat the symmetric case
(see [10], [11]). Recently the coercive case has been dealt with, that is,

the smallest eigenvalue of L(t) → +∞ as |t| → ∞, (3)

(see [6], [12], [13], [15], [16], [19], [20]).
Without (2), we study the existence of homoclinic orbits of problem (1) without

any periodic, symmetric or coercive assumption.
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THEOREM 1.1. Assume that L ∈C(R,RN2
) and W ∈C1(R×R

N,R) satisfy:

(V1) L(t) is uniformly positive definite;
(V2) there exist a bounded set B ⊂ R with int(B) �= /0 and μ > 2, θ > μ

μ−2 such that:

(i) 0 < μW (t,x) � (∇W (t,x),x), ∀t ∈ B, ∀x ∈ R
N \ {0} ,

(ii) 0 � 2W (t,x) � (∇W (t,x),x) � 1
θ (L(t)x,x), ∀t �∈ B, ∀x ∈ R

N ;

(V3) |∇W (t,x)|/|x| → 0 as |x| → 0 uniformly in t .

Then problem (1) has at least one nontrivial homoclinic orbit.

REMARK 1.1. Note that W here needs not to satisfy (2) and L needs not to satisfy
the condition (3).

REMARK 1.2. Condition (V2) is inspired by Condition (g3) in [5].

EXAMPLE 1.1. There exist the functions W (t,x) and L(t) which satisfy the con-
ditions of Theorem 1.1 but do not satisfy (2) and (3) respectively. For example, let
L(t) ≡ 12, μ = 3, θ = 4, and

f (x) =

⎧⎪⎨
⎪⎩
|x|3, |t| � 1, x ∈ R

N ,

|x|3, |t| > 1, |x| � 1,

|x|2, |t| > 1, |x| > 2.

2. Proof of Theorem 1.1

Define

H =
{

u ∈ H1(R,RN) :
∫

R

(|u̇|2 +(L(t)u,u))dt < +∞
}

.

Then H is a Hilbert space equipped with the following norm:

‖u‖ =
(∫

R

(|u̇|2 +(L(t)u,u))dt

) 1
2

.

Obviously, by (V1) , the space H is continuously embedded in H1(R,RN) and so con-
tinuously embedded in Lp(R,RN) for p ∈ [2,∞] . Thus we have

‖u‖Lp � γp‖u‖ for p ∈ [2,∞] ,

where γp > 0. Set

f (u) =
1
2

∫
R

(|u̇|2 +(L(t)u,u))dt−
∫

R

W (t,u)dt =
1
2
‖u‖2−

∫
R

W (t,u)dt.

It is easy to see that f ∈C1(H,RN) and the critical point of f in H is the homoclinic
orbit of problem (1). In the following, we always denote by Ci (i ∈ N) any suitable
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positive constant.

Proof of Theorem 1.1 We divide our proof into three steps.
The first step. There are ρ > 0, δ > 0 such that

f |S � δ ,

where S = {u ∈ H | ‖u‖ = ρ} . In fact, it follows from (V3) that, for any ε > 0, there
exists ρ ′ = ρ ′(ε) > 0 such that

|∇W (t,x)| � 2ε|x|, ∀t ∈ R, ∀|x| � ρ ′,

which implies that
|W (t,x)| � ε|x|2, ∀t ∈ R, ∀|x| � ρ ′.

Then choose

ε =
1

4γ2
2

> 0, ρ =
ρ ′

γ∞
> 0 and δ =

ρ2

4
,

and we have

f (u) =
1
2
‖u‖2−

∫
R

W (t,u)dt

� 1
2
‖u‖2− ε

∫
R

|u|2dt

� 1
2
‖u‖2− εγ2

2‖u‖2 =
1
4
‖u‖2 = δ ,

for all u ∈ S .
The second step. There exists u0 ∈ H such that ‖u0‖ > ρ and f (u0) < 0. In fact,

by (V2)(i) we have

W (t,x) � C1|x|μ , ∀t ∈ B, ∀|x| � 1. (4)

Now choose ũ ∈ H \ {0} with its support contained in B , then using (V2)(i), Fatou
Lemma and (4) one has

limsup
s→+∞

f (sũ)
s2 =

1
2
‖ũ‖2− liminf

s→+∞

∫
R

W (t,sũ)
s2 dt

=
1
2
‖ũ‖2− liminf

s→+∞

∫
B\{t: |ũ(t)|=0}

W (t,sũ)ũ2

s2ũ2 dt

� 1
2
‖ũ‖2−

∫
B\{t: |ũ(t)|=0}

liminf
s→+∞

W (t,sũ)ũ2

s2ũ2 dt < 0,

so u0 exists.
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The two steps above imply that f has the mountain pass geometry and then there
exist a positive constant c and a (PS)c sequence (un) ⊂ H at the level c , that is,

f (un) → c and ‖ f ′(un)‖→ 0 as n → ∞. (5)

The third step. f satisfies the (PS)c condition. First we show that (un) is
bounded. By (5) we have

o(‖un‖) = 〈 f ′(un),un〉 =
∫

R

(|u̇n|2 +(L(t)un,un))dt−
∫

R

(∇W (t,un),un)dt,

which combined with (V2) implies that
∫

R

(|u̇|2 +(L(t)u,u))dt =
∫

R

(∇W (t,un),un)dt +o(‖un‖)

�
∫

B
(∇W (t,un),un)dt +o(‖un‖)

� μ
∫

B
W (t,un)dt +o(‖un‖). (6)

It follows from (5), (V2)(ii) and (6) that

1
2

∫
R

(|u̇n|2 +(L(t)un,un))dt �
∫

R

W (t,un)dt +C2

=
∫

B
W (t,un)dt +

∫
R\B

W (t,un)dt +C2

�
∫

B
W (t,un)dt +

1
2θ

∫
R\B

(L(t)un,un)dt +C2

� 1
μ

∫
B
(|u̇n|2 +(L(t)un,un))dt +o(‖un‖)

+
1
2θ

∫
R\B

(L(t)un,un)dt +C2. (7)

Since by (V2)(ii) one has μ
2 −1 > μ

2θ , by (7) we get

(μ
2
−1− μ

2θ

)
‖un‖2 � o(‖un‖)+C2,

that is,

‖un‖ � C3. (8)

Now passing to a subsequence if necessary, we may assume that un ⇀ u as n → ∞ for
some u ∈ H . Second, we show that the convergence is strong. It is easy to see that we
need only to prove that for any ε > 0, there exists an r = r(ε) > 0 such that

limsup
n→∞

∫
R\Br

(|u̇n|2 +(L(t)un,un))dt < ε, (9)
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where Br is the open ball with center 0 and radius r . Since B is bounded, we may
choose r large enough that B ⊂ B r

2
. Now let ηr be a cut-off function satisfying that:

ηr = 0 on B r
2
, ηr = 1 on R\Br , 0 � ηr � 1 and |η̇r| � C4

r .

It follows from (5) and (8) that

〈 f ′(un),ηrun〉 = o(1),

that is,

∫
R

((|u̇n|2 +(L(t)un,un)))ηr dt +
∫

R

(u̇n,un)η̇r dt

=
∫

R

(∇W (t,un),unηr)dt +o(1),

which combined with (V2)(ii) implies that
∫

R

((|u̇n|2 +(L(t)un,un)))ηr dt

= −
∫

R

u̇nunη̇r dt +
∫

R

(∇W (t,un),unηr)dt +o(1)

� −
∫

R

u̇nunη̇r dt +
1
θ

∫
R

(L(t)un,un)ηr dt +o(1). (10)

Now by (10), Hölder inequality and (8) one can see that
(

1− 1
θ

)∫
R\Br

(|u̇n|2 +(L(t)un,un))dt

� C4

r
‖un‖L2‖u̇n‖L2 +o(1)

� γ2C2
3C4

r
+o(1),

which implies (9) immediately. Therefore, u is the nontrivial homoclinic orbit of prob-
lem (1). The proof is complete. �
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