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MULTIPLICITY OF 2–NODAL SOLUTIONS

FOR A SEMILINEAR ELLIPTIC EQUATION

TSUNG-FANG WU

(Communicated by C. Alves)

Abstract. In this paper, we consider the multiplicity of 2-nodal solutions of semilinear elliptic
equations. Using the generalized barycenter map, we prove that existence of multiple 2-nodal
solutions for semilinear elliptic equations in some domains with hole.

1. Introduction

In this paper, we study the multiplicity of 2-nodal solutions of semilinear elliptic
equations of the form{−Δu+u = |u|p−2u+ + |u|q−2u− in Ω,

u = 0 on ∂Ω,
(Ep,q)

where Ω is a domain in R
N , 2 < p,q < 2∗

(
2∗ = 2N

N−2 if N � 3,2∗ = ∞ if N = 2
)
,u+ =

max{0,u} and u− = min{u,0} . Associated with equation (Ep,q) , we consider the
energy functional J in the Sobolev space H1

0 (Ω) ,

J(u) =
1
2
‖u‖2 − 1

p

∫
Ω

∣∣u+∣∣p
dx− 1

q

∫
Ω

∣∣u−∣∣q dx,

where

‖u‖ =
(∫

Ω

( |∇u|2 +u2)dx
)1/2

is a standard norm in H1
0 (Ω) . It is well-known that the functional J ∈C2

(
H1

0 (Ω) ,R
)

and the solutions of equation (Ep,q) in Ω are the critical points of the energy functional
J in H1

0 (Ω) (see Ambrosetti-Rabinowitz [1] and Willem [23]).
Generally, a standard technique to find the one sign solutions of equation (Ep,q)

in Ω is using the Nehari minimization problems:

α±(Ω) = inf
v∈M±(Ω)

J(v),
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where

M±(Ω) =
{
u ∈ H1

0 (Ω)\{0} | 〈
J′ (u) ,u

〉
= 0,±u � 0

}
.

Note that α±(Ω) are positive numbers and α± (Ω1) � α± (Ω2) if Ω1 ⊂ Ω2 (see
Willem [23]). Furthermore, we call a nonzero critical point u0 of J is a least en-
ergy positive (or negative) solution of equation (Ep,q) in Ω if u0 > 0 (or < 0) and
J (u0) = α+(Ω) (or α−(Ω)).

That the existence of one sign solutions of equation (Ep,q) is affected by the shape
of the domain Ω has been the focus of a great deal of research in recent years. By
the Rellich compactness theorem, it is easy to obtain a one sign solution of equation
(Ep,q) in bounded domains. For general unbounded domains Ω, because of the lack of
compactness, the issue of existence of one sign solutions of equation (Ep,q) in Ω is very
difficult and unclear. Indeed, a by now classical result of Esteban-Lions [14] states that
for unbounded domains satisfying the condition: there exists χ ∈ R

N , ||χ || = 1 such
that n(z) ·χ � 0 and n(z) ·χ �≡ 0 on ∂Ω, where n(z) is the unit outward normal vector
to ∂Ω at the point z, equation (Ep,q) does not admit any nontrivial solution. Recently,
there has benn some progress for the existence and multiplicity of one sign solutions of
equation (Ep,q) in unbounded domains (see Ambrosetti-Rabinowitz [1], Bahri-Lions
[2], Benci-Cerami [5], Berestycki-Lions [6], Lions [20], Lien-Tzeng-Wang [19], Del
Pino-Felmer [12, 13] and Wu [24, 25], etc.). Furthermore, if Ω = R

N , then equation
(Ep,q) has a unique positive solution (see Kwong [18]). For the equation (Ep,q) in
exterior domain Ω, we can see that the Mountain Pass value is equal to the first level
of breaking down of Palais-Smale condition (see Benci-Cerami [5]) and we cannot
get a positive solution through the Mountain Pass Theorem (i.e. equation (Ep,q) does
not admit any least energy solution). However, Benci-Cerami [5] and Bahri-Lions [2]
showed the existence of at least one positive solution of equation (Ep,q) in exterior
domain Ω.

In the works mentioned above, the authors considered one sign solutions. For
other situations, Wang [21] proved the existence of a nodal (sign-changing) solution
if the domain Ω is bounded and the operator is −Δ rather than −Δ+ 1 for equation
(Ep,q) . Bartsch [3] obtained infinite nodal solutions for equation (Ep,q) in bounded
domains. Furtado [15, 16] used the Ljusternik-Schnirelmann category and showed that
the number of 2-nodal solutions of equation (Ep,q) depends on the topology and the
symmetries of a symmetric bounded domain Ω. A 2-nodal solution is a nontrivial so-
lution u such that the set {x ∈Ω : u(x) �= 0} has exactly two connected components,
and u is positive in one of them and negative in the other (see Castro-Clapp [8] or
Bartsch-Weth [4]). Bartsch-Weth [4] proved that equation (Ep,q) in a bounded domain
Ω that contains a large ball has three nodal solutions in which two are 2-nodal solu-
tions. Huang-Wu [17] proved that equation (Ep,q) in a finite strip with hole has at least
four 2-nodal solutions. Wu [26], proved that equation (Ep,q) in an infinite upper strip
with m−holes has at least m2 2-nodal solutions.

Motivated by the results of [4, 17, 26], we are interested in the relation between
the “holes” of domain and the number of 2-nodal solutions of equation (Ep,q) . Before
stating our main results, we need the following notations. Denote the infinite strip A,
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the upper half strip A+ and the finite strip A(s, l) as follows:

A =
{
(x′,xN) ∈ Θ×R : Θ is a bounded domain in R

N−1
}

;
A+ = {(x′,xN) ∈ A : xN > 0} ;
A(s, l) = {(x′,xN) ∈ A : s < xN < l} .

Then we have the following result.

THEOREM 1.1. There exists a positive number l0 such that for l > l0 and the
bounded domain Ω(l) satisfy A(−l, l) ⊂ Ω(l) ⊂ A, equation (Ep,q) in Ω(l) has at
least two 2-nodal solutions.

Let Ω(l) be a bounded domain as in Theorem 1.1 and let ω ⊂ A be a nonempty

open set such that A
(
−l̃, l̃

)
\ω is a domain in R

N for some l̃ > 0. Then [17] proved

that equation (Ep,q) in Ω(l)\ω has at least four 2-nodal solutions if l sufficiently
large. Here we will use the generalized barycenter map to improve the result of [17].
Our result is the following theorem.

THEOREM 1.2. There is l0 > l̃ such that for l > l0 equation (Ep,q) in Ω(l)\ω
has at least six 2-nodal solutions.

Next, we consider the upper infinite strip with m-holes

Dm (l) = A+\ [∪m
i=1 (ω+(0, il))] .

By Wu [26], we know that equation (Ep,q) in Dm (l) has at least m2 2-nodal solutions if
l sufficiently large. Here we can show that existence of more than m2 2-nodal solutions.
Our result is the following theorem.

THEOREM 1.3. There exists l̃0 > l̃ such that for l > l̃0, equation (Ep,q) in Dm (l)
has at least m× (m+1) 2-nodal solutions.

This paper is organized as follows. In Section 2, we set up preliminaries. In
Sections 3-5, we complete the proofs of our Theorems 1.1-1.3.

2. Preliminaries

In this section, we recall several known results will be used in later section. First,
we define the Palais-Smale (denoted by (PS)) sequences in H1

0 (Ω) for J as follows.

DEFINITION 2.1. For β ∈ R, a sequence {un} is a (PS)β -sequence in H1
0 (Ω)

for J if J(un) = β +o(1) and J′(un) = o(1) strongly in H−1 (Ω) as n → ∞.

Now, we consider the minimization problems

α± (Ω) = inf
u∈M±(Ω)

J (u) ; θ (Ω) = inf
u∈N(Ω)

J (u) ,
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where
M± (Ω) =

{
u ∈ H1

0 (Ω)\{0} | 〈
J′ (u) ,u

〉
= 0,±u � 0

}
and

N(Ω) =
{
u ∈ H1

0 (Ω) | u+ ∈ M+ (Ω) ,u− ∈ M− (Ω)
}

.

Clearly, α+ (Ω)+α− (Ω) � θ (Ω) . We need the following definition.

DEFINITION 2.2. (i) The domain Ω is called a large domain in A if Ω⊂ A and
for any n > 0 there exist s < l such that l− s = n and A(s, l) ⊂Ω;

(ii) The domain Ω is called a strictly large domain in A if Ω is a large domain in
A and Ω �= A.

Note that the infinite strip A is a large domain in itself and the upper half strip
with m-holes Dm (l) is a strictly large domain in A for all l > 0. Furthermore, by
Lien-Tzeng-Wang [19, Lemma 2.5] we have the following result.

LEMMA 2.3. If Ω is a large domain in A, then α±(Ω) = α±(A). Furthermore,
if Ω is a strictly large domain in A, then equation (Ep,q) in Ω does not admits any
least energy one sign solution.

LEMMA 2.4. If u is a nodal solution of the equation (Ep,q) in Ω and J(u) <
α+(Ω) +α−(Ω) + min{α+(Ω),α−(Ω)} , then u is a 2-nodal solution of equation
(Ep,q) in Ω.

Proof. The proof is similar to that of Proposition 3.1 in Furtado [15] (or see
Bartsch-Weth [4]. �

Now, we recall the generalized barycenter map (cf. Bartsch-Weth [4, Theorem
2.1] and Cerami-Passaseo [10]) given by Φ : Lp

(
R

N
)\{0} → R

N a continuous map
satisfying

Φ(u(z− ζ )) = ζ +Φ(u) and Φ
(
u ◦A−1) = AΦ(u)

for every ζ ∈ R
N , every orthogonal N ×N matrix A and every u ∈ LP

(
R

N
)\{0} .

Since Lp (A) ⊂ Lp
(
R

N
)

and the infinite strip A is only translation invariant and sym-
metric on xN -axis. Therefore, we may redefine a new generalized barycenter map
h : Lp (A)\{0}→ R such that for ξ ∈ R and u ∈ Lp (A)\{0} , we have

h
(
u
(
x′,xN − ξ

))
= ξ +h

(
u
(
x′,xN

))
and h

(
u
(
x′,−xN

))
= −h

(
u
(
x′,xN

))
. (1)

Then we have the following result.

LEMMA 2.5. Let Ω be a large domain in A. Then for each positive number L
there exists a positive number δ (L) such that for u ∈ N(Ω) with J (u) � θ (A)+δ (L)
we have either h(u+)− h(u−) > L or h(u−)− h(u+) > L. Furthermore, if Ω is a
strictly large domain in A, then:

(i) the function u+ satisfies either h(u+) > L or h(u+) < −L;
(ii) the function u− satisfies either h(u−) > L or h(u−) < −L.
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Proof. Suppose otherwise, then there exist L0 > 0 and a sequence {un} ⊂ N(Ω)
such that J (un) = θ (A)+o(1) ,

h(u+
n )−h(u−n ) � L0 and h(u−n )−h(u+

n ) � L0. (2)

By Lemma 2.3 and Wu [26, Theorem 1.2]

lim
n→∞

J (un) = θ (A) = α+ (A)+α− (A)

and
J (un) = J

(
u+

n

)
+ J

(
u−n

)
� α+ (A)+α− (A) .

This implies limn→∞ J (u±n ) = α± (A) . Since u±n ∈ M± (Ω) ⊂ M± (A) , by Wang-Wu
[22, Lemma 7], {u±n } are (PS)α±(A) -sequences in H1

0 (A) for J. Clearly, {u±n } are
bounded sets in H1

0 (A) . Then by using a similar argument as in Lien-Tzeng-Wang
[19, Theorem 4.1], there exist R,C0 > 0 and {y±n } ⊂ R with |y±n | → ∞ such that∫

A(−R,R)−(0,y±n )

(
u±n

)2
dx � C0 for all n ∈ N.

Moreover, by Lien-Tzeng-Wang [19, Theorem 4.1] and Chen-Chen-Wang [9], equation
(Ep,q) in A has a positive solution u+

0 and a negative solution u−0 such that u±0 are
axially symmetric in xN -axis and∥∥u±n −u±0

(
x′,xN − y±n

)∥∥
H1 → 0 as n → ∞. (3)

Now we will show that |y+
n − y−n | → ∞ as n → ∞. Suppose otherwise, then we can

assume that y+
n − y−n → y0 for some y0 ∈ R. Then by (3)

0 =
∫

A

∣∣u+
n

∣∣r ∣∣u−n ∣∣s dx =
∫

A

∣∣u+
0

(
x′,xN − y+

n

)∣∣r ∣∣u−0 (
x′,xN − y−n

)∣∣s dx+o(1)

=
∫

A

∣∣u+
0

(
x′,xN

)∣∣r ∣∣u−0 (
x′,xN − y−n + y+

n

)∣∣s dx+o(1)

=
∫

A

∣∣u−0 (
x′,xN

)∣∣r ∣∣u−0 (
x′,xN + y0

)∣∣s dx+o(1) ,

which is a contradiction, where r
p + s

q = 1. Thus, |y+
n − y−n | →∞ as n →∞. Moreover,

by (3) we can conclude

h(u+
n ) = h(u+

0

(
x′,xN − y+

n

)
)+o(1) = h(u+

0 )+ y+
n +o(1) (4)

and
h(u−n ) = h(u−0

(
x′,xN − y−n

)
)+o(1) = h(u−0 )+ y−n +o(1) . (5)

This implies ∣∣h(u+
n )−h(u−n )

∣∣ → ∞ as n → ∞

this contradicts (2) . Next, for Ω is a strictly large domain in A, then by (4) and (5)
we only need to prove that∣∣y+

n

∣∣ → ∞ and
∣∣y−n ∣∣ → ∞ as n → ∞.
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The proofs of two cases are similar argument. Therefore, we only need to prove the
case |y+

n | → ∞ as n → ∞. Suppose otherwise, then {y+
n } is a bounded sequence in

R. Without loss of generality, we may assume that y+
n → y0 for some y0 ∈ R. Since

u+
n ∈ H1

0 (Ω) . Then
u+

n

(
x′,xN + y+

n

) ∈ H1
0

(
Ω− (

0,y+
n

))
.

By (3) and limn→∞ [Ω− (0,y+
n )]→ [Ω− (0,y0)] we obtain [Ω− (0,y0)] �= A and u+

0 ∈
H1

0 (Ω− (0,y0)) which contradicts the fact that u+
0 is a positive solution of equation

(Ep.q) in A. �

3. Proof of Theorem 1.1

For positive numbers L,δ and the domain Ω⊂ A, we denote

N(δ ,Ω) = {u ∈ N(Ω) : J (u) � θ (A)+ δ} ,

Ni (L,δ ,Ω) =
{

u ∈ N(δ ,Ω) : (−1)i g(u) > L
}

,

where g(u) = h(u+)−h(u−). Then we have the following results.

LEMMA 3.1. Let L and δ (L) be positive numbers as in Lemma 2.5. Then there
exists a positive number l0 such that for l > l0 and the bounded domain Ω(l) satisfy
A(−l, l) ⊂Ω(l) ⊂ A , we have:

(i) Ni (L,δ (L) ,Ω(l)) �= /0 for all i = 1,2;
(ii) N(δ (L) ,Ω(l)) = N1 (L,δ (L) ,Ω(l))∪N2 (L,δ (L) ,Ω(l)) ;
(iii) N1 (L,δ (L) ,Ω(l))∩N2 (L,δ (L) ,Ω(l)) = /0.

Proof. By N(Ω(l)) ⊂ N(A) for all l > 0 and Lemma 2.5, we only need to prove
that there exists l0 > 0 such that Ni (L,δ (L) ,Ω(l)) �= /0 for all l > l0 and i = 1,2. By
Lien-Tzeng-Wang [19, Lemma 2.2],

α±
(

A
(
− l

2
,
l
2

))
↘ α± (A) as l ↗ ∞.

Then there exists l0 > L such that

α±
(

A
(
− l

2
,
l
2

))
< α± (A)+

δ (L)
2

for all l > l0.

Moreover, by Ambrosetti-Rabinowitz [1] and Chen-Chen-Wang [9], equation (Ep,q)
in A(−l/2, l/2) has a positive solution v+ ∈ M+ (A(−l/2, l/2)) and a negative solu-
tion v− ∈ M− (A(−l/2, l/2)) such that J (v±) = α± (A(−l/2, l/2)) and v± (x,−y) =
v± (x,y) . Clearly, h(v±) = 0.

Setting

v+
i

(
x′,xN

)
= v+

(
x′,xN − (−1)i l

2

)
, v−i

(
x′,xN

)
= v−

(
x′,xN +(−1)i l

2

)
for i = 1,2.
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From the translation invariance of the functional in xN -axis we get that v±i ∈M± (Ω(l))

and h(v±i ) = ± (−1)il
2 .

Setting vi = v+
i + v−i , we obtain vi ∈ N(Ω(l)) ,(−1)i g(vi) = l > L and

J (vi) < α+ (A)+α− (A)+ δ (L) = θ (A)+ δ (L) for all l > l0.

This implies Ni (L,δ (L) ,Ω(l)) �= /0 for all l > l0. �
Furthermore, we have the following results.

LEMMA 3.2. Let l0 > 0 as in Lemma 3.1. Then for each l > l0, we have that
Ni (L,δ (L) ,Ω(l)) are closed sets.

Proof. The proofs of cases “i = 1” and “i = 2” are similar argument. There-
fore, we only need to prove the case “i = 1”. Suppose that u0 is a limits point of
N1 (L,δ (L) ,Ω(l)) , then −g(u0) � L and J (u0) � θ (A)+ δ (L) . This implies u0 ∈
N(δ (L) ,Ω(l)) . If −g(u0) = L, then by Lemma 3.1 u0 ∈ N2 (L,δ (L) ,Ω(l)) . We
obtain

−L = g(u0) > L

which is a contradiction. Thus, g(u0) < L, and so u0 ∈ N1 (L,δ (L) ,Ω(l)) . Therefore,
Ni (L,δ (L) ,Ω(l)) are closed sets. �

Now we consider the minimization problem in Ni (L,δ (L) ,Ω(l)) for J

θi (Ω(l)) = inf
u∈Ni(L,δ (L),Ω(l))

J (u) for all i = 1,2.

Then we have the following result.

LEMMA 3.3. For each v0 ∈ Ni (L,δ (L) ,Ω(l)) there is a map Φ : H1
0 (Ω(l)) →

R
2 such that:

(i) Φ
(
t1v

+
0 + t2v

−
0

)
= (t1,t2) for t1,t2 � 0;

(ii) Φ(u) = (1,1) if and only if u ∈ N(Ω(l)) .

Proof. Similarly to the method used in Clapp-Weth [11, Lemma 13]. �
The next result is a variant of Proposition 14 in Clapp-Weth [11], and its proof

follows from the arguments of applying the Leray-Schauder continuation principle. Let

b = θ (A)+min
{
α+ (A) ,α− (A) ,δ (L)

}
and distH (u,D) = inf

{‖u− v‖ : v ∈ D ⊂ H1
0 (Ω)

}
. Then we have the following results.

PROPOSITION 3.4. Let λ0 = b−θi (Ω(l)) . Then for each λ ∈ (0,λ0) and μ > 0
there exists u0 ∈ H1

0 (Ω(l)) such that:

(i) distH (u0,Ni (L,δ (L) ,Ω(l))) � μ ;
(ii) J (u0) ∈ [θi (Ω(l)) ,θi (Ω(l))+λ );
(iii) ‖∇J (u0)‖ � max

{√
λ , λμ

}
.
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Proof. The proofs of cases “i = 1” and “i = 2” are similar argument. Therefore,
we only need to prove the case “i = 1”. Fix v0 ∈ N1 (L,δ (L) ,Ω(l)) such that J (v0) <
θ1 (Ω(l))+λ , and fix d0 > 1 such that J

(
d0v

±
0

)
� 0. Let Φ : H1

0 (Ω(l)) → R
2 be as

in Lemma 3.3. We put K = [0,d0]× [0,d0] and define

η : K → H1
0 (Ω(l)) , η (s1,s2) = s1v

+
0 + s2v

−
0 .

Then Φ◦η = id : K → K, in particular

deg(Φ◦η ,K,(1,1)) = 1. (6)

Notice also that

J (η (s1,s2)) � J (v0) < θ1 (Ω(l))+λ for all (s1,s2) ∈ K. (7)

We now choose a Lipschitz continuous function χ : R→R such that 0 � χ � 1,χ (s) =
1 for s � 0 and χ (s) = 0 for s � −1. Then since J ∈ C2

(
H1

0 (Ω(l)) ,R
)
, there is a

semiflow ϕ : [0,∞)×H1
0 (Ω(l)) → H1

0 (Ω(l)) satisfying{ ∂
∂ tϕ (t,u) = −χ (J (ϕ (t,u)))∇J (ϕ (t,u)) ,
ϕ (0,u) = u.

We will frequently write ϕt in place of ϕ (t, ·) . Since

J
(
v±0

)
< α+ (A)+α− (A) and J

(
d0v

±
0

)
� 0,

it follows that
supJ (η (∂K)) < α+ (A)+α− (A) = θ (A) .

Hence (
ϕt ◦η)

(∂K)∩N(Ω(l)) = /0 for all t � 0

and, by Lemma 3.3, this implies(
Φ◦ϕt ◦η)

(y) �= (1,1) for all y ∈ ∂K, t � 0.

Equality (6) and the global continuation principle of Leray-Schauder (see e.g. Zeidler
[27, p.629]) imply that there exists a connected subset Z ⊂ K× [0,1] such that

(1,1,0) ∈ Z;
ϕt (η (s1,s2)) ∈ N(Ω(l)) for all (s1,s2,t) ∈ Z;
Z∩ (K×{1}) �= /0.

We put
Z̃ =

{
ϕt (η (s1,s2)) ∈ N(Ω(l)) : (s1,s2,t) ∈ Z

}
.

By inequality (7) and Lemma 3.1 (ii) , we obtain

Z̃ ⊂ N1 (L,δ (L) ,Ω(l))∪N2 (L,δ (L) ,Ω(l)) .
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Since Z is connected, we obtain that Z̃ ⊂N1 (L,δ (L) ,Ω(l)) . We now pick (s1,s2,1)∈
Z∩ (K×{1}) and write

v1 := η (s1,s2) ,v2 := ϕ1 (v1) .

Then v2 ∈ Z̃ ⊂ N1 (L,δ (L) ,Ω(l)) . We distinguish two case.
Case 1. ‖ϕt (v1)− v2‖ � μ for all t ∈ [0,1] . We choose t0 ∈ [0,1] with∥∥∇J

(
ϕt0 (v1)

)∥∥ = min
0�t�1

∥∥∇J
(
ϕt (v1)

)∥∥
and put u0 = ϕt0 (v1) . Then

λ � J (v1)− J (v2) = −
∫ 1

0

∂
∂ t

J
(
ϕt (v1)

)
ds

=
∫ 1

0

∥∥∇J
(
ϕt (v1)

)∥∥2
dt � ‖∇J (u0)‖2 .

Hence u0 has the desired properties.
Case 2. There exists t ∈ [0,1] such that

∥∥ϕt (v1)− v2
∥∥ > μ . Then let

t1 = sup
{
t � t :

∥∥ϕt (v1)− v2
∥∥ > μ

}
.

We choose t0 ∈ [t1,1] with∥∥∇J
(
ϕt0 (v1)

)∥∥ = min
t1�t�1

∥∥∇J
(
ϕt (v1)

)∥∥
and put u0 = ϕt0 (v1) . Then

μ �
∫ 1

t1

∥∥∥∥ ∂
∂ t
ϕt (v1)

∥∥∥∥dt �
∫ 1

t1

∥∥∇J
(
ϕt (v1)

)∥∥dt

and

λ � J
(
ϕt1 (v1)

)− J (v2) =
∫ 1

t1

∥∥∇J
(
ϕt (v1)

)∥∥2
dt

� ‖∇J (u0)‖
∫ 1

t1

∥∥∇J
(
ϕt (v1)

)∥∥dt.

We conclude that ‖∇J (u0)‖ � λ
μ . Thus, u0 has the desired properties. �

COROLLARY 3.5. For each l > l0 there exists a sequence
{

u(i)
n

}
⊂ H1

0 (Ω(l))
such that:

(i) distH
(
u(i)

n ,Ni (K,δ (K) ,Ω(l))
)
→ 0;

(ii) J
(
u(i)

n

)
→ θi (Ω(l)) < θ (A)+min{α+ (A) ,α− (A) ,δ (K)} ;

(iii) J′(u(i)
n ) = o(1) strongly in H−1 (Ω(l)) .
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We begin to show the proof of Theorem 1.1 for l > l0. Then by Corollary 3.5,

there exist sequences
{
u(i)

n
}⊂H1

0 (Ω(l)) such that (i)− (iii) in Corollary 3.5 are hold.
Then by the Rellich compactness theorem and Lemma 3.2 there exist subsequences{
u(i)

n
}

and a nodal solution u(i)
0 ∈ Ni (K,δ (K) ,Ω(l)) such that u(i)

n → u(i)
0 strongly in

H1
0 (Ω(l)) and J

(
u(i)

0

)
= θi (Ω(l)) . Thus, by Lemmas 3.1 u(1)

0 and u(2)
0 are different.

Since
θi (Ω(l)) < θ (A)+min

{
α+ (A) ,α− (A) ,δ (K)

}
,

by Lemma 2.4 u(1)
0 and u(2)

0 are 2-nodal solutions of equation (Ep,q) in Ω(l) .

4. Proof of Theorem 1.2

Throughout this paper, we let ω ⊂ A be a nonempty open set such that the set
A

(− l̃, l̃
)\ω is a domain in R

N for some l̃ > 0. Then A\ω is a strictly large domain
in A. Furthermore, by Lemma 2.5 we have the following result.

LEMMA 4.1. For each positive number L there exists a positive number δ (L)
such that for u ∈ N(A\ω) with J (u) � θ (A)+ δ (L) we have:

(i) either h(u+)−h(u−) > L or h(u−)−h(u+) > L;
(ii) the function u+ satisfies either h(u+) > L or h(u+) < −L;
(iii) the function u− satisfies either h(u−) > L or h(u−) < −L.

For positive numbers L,δ , we denote:

Ñ1 (L, l) =
{
u ∈ N(δ ,D(l)) : h(u+) > L and h(u−) < −L

}
,

Ñ2 (L, l) =
{
u ∈ N(δ ,D(l)) : h(u+) < −L and h(u−) > L

}
,

Ñ3 (L, l) =
{
u ∈ N(δ ,D(l)) : h(u+) > L,h(u−) > L and g(u) > L

}
,

Ñ4 (L, l) =
{
u ∈ N(δ ,D(l)) : h(u+)) > L,h(u−) > L and −g(u) > L

}
,

Ñ5 (L, l) =
{
u ∈ N(δ ,D(l)) : h(u+) < −L,h(u−) < −L and g(u) > L

}
,

Ñ6 (L, l) =
{
u ∈ N(δ ,D(l)) : h(u+) < −L,h(u−) < −L and −g(u) > L

}
,

where g(u) = h(u+)−h(u−). Then we have the following result.

LEMMA 4.2. For each positive number L, there exist positive numbers δ (L) and
l0 such that for l > l0 :

(i) Ñi (L, l) �= /0 for all i = 1,2, . . . ,6;
(ii) Ñi (L, l)∩ Ñ j (L, l) = /0 for all i �= j;
(iii) N(δ ,D(l)) = ∪6

i=1Ñi (L, l) .

Proof. Since N(D(l)) ⊂ N(A\ω) for all l > l̃. By Lemma 4.1, we only need to
prove that there exists l0 > l̃ such that Ñi (L, l) �= /0 for all l > l0 and i = 1,2, . . . ,6.
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Moreover, the proofs of all cases are similar argument. Thus, we only need to prove the
case “Ñ1 (L, l) �= /0”. By Lien-Tzeng-Wang [19, Lemma 2.2], we have

α±
(

A
(
− l

2
+ l̃,

l
2
− l̃

))
↘ α± (A) as l ↗ ∞.

Thus, there exists l0 > max
{
2L, l̃

}
such that

α±
(

A
(
− l

2
+ l̃,

l
2
− l̃

))
< α± (A)+

δ (L)
2

for all l > l0.

Moreover, by Ambrosetti-Rabinowitz [1] and Chen-Chen-Wang [9], equation (Ep,q) in
A

(− l/2 + l̃, l/2− l̃
)

has a positive solution v+ ∈ M+(
A

(− l/2 + l̃, l/2− l̃
))

and a

negative solution v− ∈ M−(
A

(− l/2+ l̃, l/2− l̃
))

such that

J
(
v±

)
= α±

(
A

(
− l

2
+ l̃,

l
2
− l̃

))

and v± (x,−y) = v± (x,y) . Clearly, h(v±) = 0. Setting u+ (x,y) = v+ (x,y− l/2) and
u− (x,y) = v− (x,y+ l/2) . From the translation invariance of the functional in y-axis
we get that u± ∈ M± (D(l)) and h(u±) = ±l/2. Setting u = u+ +u− , we obtain u ∈
N(D(l)) ,h+(u+) > L and h−(u−) < −L. Moreover

J (u) < α+ (A)+α− (A)+ δ (L) = θ (A)+ δ (L) for all l > l0.

This implies Ñ1 (L, l) �= /0 for all l > l0. �

Similar to the argument in Lemma 3.2 we have the following result.

LEMMA 4.3. Let l0 > 0 as in Lemma 3.1. Then for each l > l0, we have that
Ñi (L, l) is closed set for all i = 1,2 . . . ,6.

Now we consider the minimization problem in Ñi (L, l) for J

θ̃i (D(l)) = inf
u∈Ñi(L,l)

J (u) for all i = 1,2 . . . ,6.

Similar to the method used in the proof of Proposition 3.4, we can get the following
result.

PROPOSITION 4.4. For each l > l0 there exist sequences
{
u(i)

n
} ⊂ H1

0 (D(l))
such that:

(i) distH
(
u(i)

n ,Ñi (L, l)
)
→ 0;

(ii) J
(
u(i)

n

)
→ θ̃i (D(l)) < θ (A)+min{α+ (A) ,α− (A) ,δ (L)} ;

(iii) J′(u(i)
n ) = o(1) strongly in H−1 (D(l)) .
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We begin to show the proof of Theorem 1.2 for l > l0. By Proposition 4.4, there

exist sequence
{
u(i)

n
} ⊂ H1

0 (D(l)) such that (i)− (iii) in Proposition 4.4 are hold.
Then by the Rellich compactness theorem and Lemma 4.3 there exist subsequences{
u(i)

n
}

and nodal solutions u(i)
0 ∈ Ñi (L, l) such that u(i)

n → u(i)
0 strongly in H1

0 (D(l))

and J
(
u(i)

0

)
= θ̃i (D(l)) for all i = 1,2 . . . ,6. Thus, by Lemmas 4.2 u(1)

0 ,u(2)
0 , . . . ,u(6)

0
are different. Since

θ̃i (D(l)) < θ (A)+min
{
α+ (A) ,α− (A) ,δ (K)

}
,

by Lemma 2.4 u(1)
0 ,u(2)

0 , . . . ,u(6)
0 are 2-nodal solutions of equation (Ep,q) in D(l) .

5. Proof of Theorem 1.3

For each i ∈ {1,2, . . . ,m} and l > 2l̃ we denote the set B(i, l) as follows:

B(i, l) = {y ∈ R : y = (i−1) l or y = il} .

Furthermore, we denote:

M+
i (l) =

{
u ∈ M+ (Dm (l)) : (i−1) l < h(u) < il

}
,

∂M+
i (l) =

{
u ∈ M+ (Dm (l)) : h(u) ∈ B(i, l)

}
,

M−
i (l) =

{
u ∈ M− (Dm (l)) : (i−1) l < h(u) < il

}
,

∂M−
i (l) =

{
u ∈ M− (Dm (l)) : h(u) ∈ B(i, l)

}
,

Ni, j (l) =
{

u ∈ H1
0 (Dm (l)) : u+ ∈ M+

i (ε,t) and u− ∈ M−
j (ε,t)

}
,

∂Ni, j (l) =
{

u ∈ H1
0 (Dm (l)) : u+ ∈ M+

i (l),u− ∈ M−
j (l) and

either u+ ∈ ∂M+
i (l) or u− ∈ ∂M−

j (l)
}

,

where M±
i (l) = M±

i (l)∪∂M±
i (l) . Then we have the following result.

LEMMA 5.1. For each l > 2l̃, we have that Ni, j (l) are mutually disjoint.

Proof. The proofs of all cases are similar argument. Thus, we only need to prove
the case “1,1” and “1,2”. Suppose otherwise, then there exists v0 ∈ H1

0 (Dm (l)) such
that v0 ∈ N1,1 (l)∩N1,2 (l) . Then

0 < h(v−0 ) < l and l < h(v−0 ) < 2l,

this contradicts A(0, l)∩A(l,2l) = /0 for all l > 2l̃. �
Define the minimization problems in Ni, j (l) and ∂Ni, j (l) for J,

γi, j (l) = inf
v∈Ni, j(l)

J (v) and γ̃i, j (l) = inf
v∈∂Ni, j(l)

J (v) .

Similar to the method used the proof of Lemma 3.1, we can get the following result.
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LEMMA 5.2. For each positive number σ � min{α+ (A) ,α− (A) ,δ (L)} there
exists l1 > 2l̃ such that Ni, j (l) �= /0 and γi, j (l) < θ (A)+σ for all i, j = 1,2, . . . ,m
and l > l1.

Furthermore, we have the following result.

LEMMA 5.3. There exist positive numbers δ and l2 > 2l̃ such that for each i, j ∈
{1,2, . . . ,m} we have

γ̃i, j (l) > θ (A)+ δ for all l � l2.

Proof. Fix i, j ∈ {1,2, . . . ,m} . Suppose otherwise, then there exist ln → ∞ as
n → ∞ and {un} ⊂ ∂Ni, j (l) such that:

J (un) → θ (A) , (8)∫
Dm(ln)

[ ∣∣∇u+
n

∣∣2 +
(
u+

n

)2 ]
dx =

∫
Dm(ln)

∣∣u+
n

∣∣p
dx, (9)∫

Dm(ln)

[ ∣∣∇u−n
∣∣2 +

(
u−n

)2 ]
dx =

∫
Dm(ln)

∣∣u−n ∣∣q dx (10)

and either u+
n ∈ ∂M+

i (ln) or u−n ∈ ∂M−
j (ln) . Since u±n ∈ M± (Dm (ln)) ⊂ M± (A+) ⊂

M± (A) ,θ (A) = α+ (A)+α− (A) and J (un) = J (u+
n )+ J (u−n ) . By (8) and Wang-

Wu [22, Lemma 7] {u±n } are (PS)α±(A) -sequences in H1
0 (A) for J. Moreover, by (10)

and the Sobolev imbedding theorem, there exists c > 0 such that∫
A+

[∣∣∇u±n
∣∣2 +

(
u±n

)2 ]
dx > c for all n.

From the concentration compactness principle of Lions [20] (or see [19, Theorem 4.1]),
there exist R > 0,d > 0 and {(0,y±n )} ⊂ R

N−1 ×R
+ such that∫

A(−R,R)+(0,y+
n )

∣∣u+
n

∣∣p
dx � d and

∫
A(−R,R)+(0,y−n )

∣∣u−n ∣∣q dx � d for all n.

Without loss of generality, we may assume that u+
n ∈ ∂M+

i (ln) that is, h+(u+
n ) ∈

B(i, ln) . Set un (x′,xN) = u+
n (x′,xN + y+

n ) . From the translation invariance of the func-
tional in xN -axis, we get that {un} satisfies

un ∈ M+ (
A+ − (

0,y+
n

)) ⊂ M+ (A) (11)

and is (PS)α+(A) -sequences in H1
0 (A) for J. Then there exist a subsequence {un} and

a nonnegative function u0 ∈ H1
0 (A) such that

un ⇀ u0 weakly in H1
0 (A) as n → ∞,

un → u0 a.e. in A as n → ∞,

and ∫
A(−R,R)

|un|p dx →
∫

A(−R,R)
|u0|p dx � d as n → ∞. (12)
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This implies u0 is a nonzero nonnegative solution of equation (Ep,q) in A. By the
Fatou lemma

α+ (A) � J (u0) =
(

1
2
− 1

p

)∫
A
|u0|p dx

� liminf

(
1
2
− 1

p

)∫
A
|un|p dx = α+ (A) ,

and so J (u0) = α+ (A) . Moreover, by the maximum principle and Chen-Chen-Wang
[9], u0 is a positive solution of equation (Ep,q) in A and is axially symmetric in y-
axis. Set wn = un − u0, Since {un} is uniformly bounded, by Brézis-Lieb lemma [7]
we obtain ∫

A
|wn|p dx =

∫
A
|un|p dx−

∫
A
|u0|p dx+o(1) . (13)

Moreover, un ⇀ u0 weakly in H1
0 (A) we have

‖wn‖2 = ‖un‖2−‖u0‖2 +o(1) . (14)

Then
‖wn‖2 =

∫
A
|wn|p dx+o(1)

and so (
1
2
− 1

p

)
‖wn‖2 = J (wn) = J (un)− J (u0)+o(1) = o(1) .

This implies un → u0 strongly in H1
0 (A) as n → ∞. We will show that y+

n → ∞ as
n → ∞. Suppose otherwise, then {y+

n } is a bounded sequence in R or there exists a
subsequence {y+

n } such that y+
n →−∞ as n→∞. If {y+

n } is a bounded sequence in R.
Without loss of generality, we may assume that y+

n → y0. Since u+
n ∈ M+ (Dm (ln)) ⊂

M+ (A+) and un (x,y) = u+
n (x′,xN + y+

n ) , by (11) and

lim
n→∞

[
A+ − (

0,y+
n

)] → A+
y0

=
{(

x′,xN
) ∈ A : xN > −y0

}
we have u0 ∈ M+

(
A+

y0

)
which contradicts the fact that u0 is a positive solution of

equation (Ep,q) in A. If y+
n →−∞ as n → ∞, then there exists n0 ∈ N such that[

A+ − (
0,y+

n

)]∩A(−R,R) = /0 for all n � n0,

this implies un ≡ 0 on A(−R,R) for all n � n0 which contradicts (12) . Thus y+
n →∞

as n → ∞. Moreover, un → u0 strongly in H1
0 (A) as n → ∞ , we have

h(un) = h(u0)+o(1) (15)

and so
h(u+

n ) = h
(
un

(
x′,xN + y+

n

))
= h(u0)− y+

n +o(1) . (16)

This implies dist(y+
n ,B(i, ln)) → 0 as n → ∞. By passing to a subsequence, we may

assume that one of the following cases occurs:
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(a) |iln − y+
n | → 0 as n → ∞ for a subsequence;

(b) |(i−1) ln− y+
n | → 0 as n → ∞ for a subsequence.

In case (a) since y+
n →∞ as n→∞ and ln →∞ as n→∞. Then (i−1) ln−y+

n →
−∞ as n → ∞ and (i+1)ln − y+

n → ∞ as n → ∞, this implies

lim
n→∞

[
Dm (ln)−

(
0,y+

n

)] → A\ω .

Moreover, un → u0 strongly in H1
0 (A) as n → ∞ and

un ∈ H1
0

(
Dm (ln)−

(
0,y+

n

))
.

Thus, u0 ∈ M+ (A\ω) which contradicts to the fact that u0 is a positive solution of
equation (Ep,q) in A.

In case (b) : since dist(y+
n ,B(i, l))→ 0 as n→∞ and ln →∞ as n→∞, we may

assume iln− y+
n → ∞ as n → ∞. If i = 1, then (i−1)ln − y+

n →−∞ as n → ∞, this is
a contradiction. For i � 2. Then (i−2) ln− y+

n →−∞ as n → ∞, this implies

lim
n→∞

[
Dm (ln)−

(
0,y+

n

)] → A\ω .

Moreover, un → u0 strongly in H1
0 (A) as n → ∞ and

un ∈ H1
0

(
Dm (ln)−

(
0,y+

n

))
.

Thus, u0 ∈ M+ (A\ω) which contradicts to the fact that u0 is a positive solution of
equation (Ep,q) in A. Therefore, we have completed our proof. �

By Lemmas 5.2, 5.3, there exists l̃0 > 2l̃ such that for l > l̃0

γi, j (l) < min
{
θ (A)+min

{
α+ (A) ,α− (A) ,δ (L)

}
, γ̃i, j (l)

}
(17)

for all i, j ∈ {1,2, . . . ,m} . Similar to the method used in the proof of Lemma 3.1, we
can get the following result.

LEMMA 5.4. Let L and δ (L) be positive numbers as in Lemma 2.5. Then for
each i ∈ {1,2, . . . ,m} and l > l̃0, we have:

(i) N(k)
i,i (l) �= /0 for all k = 1,2;

(ii) Ni,i (l) = N(1)
i,i (l)∪N(2)

i,i (l) ;

(iii) N(1)
i,i (l)∩N(2)

i,i (l) = /0, where N(k)
i,i (l) =

{
u ∈ Ni,i (l) : (−1)k g(u) > L

}
.

Similar to the method used in the proof of Proposition 3.4 (or see Wu [26, Propo-
sition 3.6]), we can get the following result.

PROPOSITION 5.5. For each l > l̃0 there exist sequences
{

u(i, j)
n

}
⊂ H1

0 (Dm (l))
such that:

(i) distH(u(i, j)
n ,Ni, j(l)) → 0;
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(ii) J(u(i, j)
n ) → γi, j(l);

(iii) J′(u(i, j)
n ) = o(1) strongly in H−1(Dm(l));

(iv) dist(h((u(i, j)
n )+),((i−1)l, il)) → 0 and dist(h((u(i, j)

n )−),(( j−1)l, jl)) → 0.

Then we have the following result.

THEOREM 5.6. For each L > 0, there exists l̃0 > 0 such that for l > l̃0, equation

(Ep,q) in Dm (l) has m2 2-nodal solutions
{
u(i, j)

0

big}i, j∈{1,2,...,m} with u(i, j)
0 ∈ Ni, j (l) for all i, j ∈ {1,2, . . . ,m} .

Proof. It follows from Proposition 5.5 that there exists l̃0 > 2l̃ such that for each

l > l̃0 and i, j ∈ {1,2, . . . ,m} we can find a sequence
{
u(i, j)

n
} ⊂ H1

0 (Dm (l)) such that

(i)− (iv) in Proposition 5.5 hold. Since
{
u(i, j)

n
}

is bounded in H1
0 (Dm (l)), we have{(

u(i, j)
n

)+}
and

{(
u(i, j)

n
)−}

are also bounded in H1
0 (Dm (l)) and∥∥∥(

u(i, j)
n

)+
∥∥∥2

=
∫

Dm(l)

∣∣∣(u(i, j)
n

)+
∣∣∣p

dx+o(1) ,

and ∥∥∥(
u(i, j)

n
)−∥∥∥2

=
∫

Dm(l)

∣∣∣(u(i, j)
n

)−∣∣∣qdx+o(1) .

Thus, there exist a subsequence
{
u(i, j)

n
}

and u(i, j)
0 in H1

0 (Dm (l)) such that

u(i, j)
n ⇀ ui, j

0 ;
(
u(i, j)

n
)±

⇀
(
u(i, j)

0

)±
weakly in H1

0 (Dm (l))

and
u(i, j)

n → u(i, j)
0 ;

(
u(i, j)

n
)± → (

u(i, j)
0

)±
a.e. in Dm (l) .

Moreover, u(i, j)
0 is a solution of equation (Ep,q) in Dm (l) . We will show that

(
u(i, j)

0

)± �≡
0. If not, then we may assume that

(
u(i, j)

0

)+ ≡ 0. Since dist
(
u(i, j)

n ,Ni, j (l)
) → 0 as

n → ∞ and γi, j (l) > 0, we deduce from the Sobolev imbedding theorem that∥∥∥(
u(i, j)

n
)+

∥∥∥ > ν > 0 for some constant ν and for all n.

Applying the concentration-compactness principle of P. L. Lions [20], there are positive
constants R,c0 and a unbounded sequence {y+

n } ⊂ R such that∫
A(−R,R)

∣∣∣(u(i, j)
n

)+ (
x′,xN + y+

n

)∣∣∣p
dx � c0 for n sufficiently large. (18)

Set ũ(i, j)
n (x′,xN) =

(
u(i, j)

n
)+ (x,y+ y+

n ) . Since
{
ũ(i, j)

n
}

is bounded in H1
0 (A) , we may

assume that there exists ũ(i, j)
0 ∈H1

0 (A) such that ũ(i, j)
n ⇀ ũ(i, j)

0 weakly in H1
0 (A) . From

(18) we have ũ(i, j)
0 � 0 and ũ(i, j)

0 �≡ 0 in A. Set vn = ũ(i, j)
n − ũ(i, j)

0 . We distinguish
between two cases:
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Case I : ‖vn‖→ 0 as n → ∞;
Case II : ‖vn‖ � c for large n and for some constant c > 0.
Assume Case I, we employ the argument in Lemma 5.3 to obtain that there exists

c0 > 0 such that

dist
(
h
((

u(i, j)
n

)+)
,((i−1)l, il)

)
> c0 for large n,

which is a contradiction.
In Case II, we notice first that J′(u(i, j)

n ) → 0 strongly in H−1 (A) and

dist
(
u(i, j)

n ,Ni, j (l)
) → 0 as n → ∞ implies∫

A

[∣∣∇ũ(i, j)
0

∣∣2 +
(
ũ(i, j)

0

)2
]
dx−

∫
A

∣∣ũ(i, j)
0

∣∣p
dx = o(1) (19)

and ∫
A

[∣∣∇ũ(i, j)
n

∣∣2 +
(
ũ(i, j)

n
)2

]
dx−

∫
A

∣∣ũ(i, j)
n

∣∣p
dx = o(1) . (20)

By (19) ,(20) and Brezis-Lieb lemma [7] we obtain∫
A

[
|∇vn|2 + v2

n

]
dx+

∫
A
|vn|p dx = o(1) .

Since ‖vn‖ � c for large n, is is easy to find a sequence {sn} ⊂ R
+ with sn → 1 as

n → ∞ such that snvn ∈ M+ (A) , and so

1
2

∫
A

[
|∇vn|2 + v2

n

]
dx− 1

p

∫
A
|vn|p dx � α+ (A)+o(1) .

Similarly

1
2

∫
A

[∣∣∇ũ(i, j)
0

∣∣2 +
(
ũ(i, j)

0

)2
]
dx− 1

p

∫
A

∣∣ũ(i, j)
0

∣∣p
dx � α+ (A)+o(1)

and

1
2

∫
A

[∣∣∇(
u(i, j)

n
)−∣∣2 +

((
u(i, j)

n
)−)2

]
dx− 1

q

∫
A

∣∣(u(i, j)
n

)−∣∣qdx � α− (A)+o(1) .

Thus by Brezis-Lieb lemma [7] we have

J
(
u(i, j)

n
)

=
1
2

∫
A

[∣∣∇(
ũ(i, j)

n
)+∣∣2 +

((
ũ(i, j)

n
)+)2

]
dx− 1

p

∫
A

∣∣(ũ(i, j)
n

)−∣∣p
dx

+
1
2

∫
A

[∣∣∇(
u(i, j)

n
)−∣∣2 +

((
u(i, j)

n
)−)2

]
dx− 1

q

∫
A

∣∣(u(i, j)
n

)−∣∣qdx

=
1
2

∫
A

[
|∇vn|2 + v2

n

]
dx− 1

p

∫
A
|vn|p dx

+
1
2

∫
A

[∣∣∇ũ(i, j)
0

∣∣2 +
(
ũ(i, j)

0

)2
]
dx− 1

p

∫
A

∣∣ũ(i, j)
0

∣∣p
dx

+
1
2

∫
A

[∣∣∇(
u(i, j)

n
)−∣∣2 +

((
u(i, j)

n
)−)2

]
dx− 1

q

∫
A

∣∣(u(i, j)
n

)−∣∣qdx+o(1)

� 2α+ (A)+α− (A)+o(1)
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and so
lim
n→∞

J
(
u(i, j)

n
)

= γi, j (l) � θ (A)+α+ (A) , (21)

this contradicts (17) . Next we will show that u(i, j)
n → u(i, j)

0 strongly in H1
0 (Dm (l)) .

Using Case II we can prove that we result, otherwise, we may use a similar argument

as above to reach the contradiction (21) . Finally, we will show that u(i, j)
0 ∈ Ni, j (l) .

Since

dist
(
h
((

u(i, j)
n

)+)
,((i−1)l, il)

)
→ 0 and dist

(
h
((

u(i, j)
n

)−)
,(( j−1) l, jl)

)
→ 0,

we have u(i, j)
0 ∈Ni, j (l). Moreover, J

(
u(i, j)

0

)
= γi, j (l) < γ̃i, j (l) and so u(i, j)

0 /∈ ∂Ni, j (l) .

Thus, u(i, j)
0 ∈ Ni, j (l) and so

{
u(i, j)

0

}
i, j∈{1,2,...,m} are different. This completes the

proof. �

THEOREM 5.7. For each L > 0, there exists l̃0 > 0 such that for l > l̃0 and i ∈
{1,2, . . . ,m} , equation (Ep,q) in Dm (l) has two 2-nodal solutions u(i,i,1)

0 and u(i,i,2)
0

such that u(i,i,k)
0 ∈ Ni,i (l) for all k = 1,2.

Proof. Similar to the method used in the proof of Proposition 3.4 (or see Wu [26,

Proposition 3.6]), there exists a sequence
{
u(i,i,k)

n
} ⊂ H1

0 (Dm (l)) such that:

(i) distH
(
u(i,i,k)

n ,N(k)
i,i (l)

)
→ 0;

(ii) J
(
u(i,i,k)

n

)
→ γi,i,k (l) = inf

u∈N(k)
i,i (l)

J (u) ;

(iii) J′(u(i,i,k)
n ) = o(1) strongly in H−1 (Dm (l)) ;

(iv) dist
(
h
((

u(i,i,k)
n

)±)
,((i−1)l, il)

)
→ 0 and (−1)k g

(
u(i,i,k)

n
)

> L.

Then we may use a similar argument as in Theorem 5.6, there exist subsequences{
u(i,i,k)

n
}

and u(i,i,k)
0 ∈ N(k)

i,i (l) such that u(i,i,k)
n → u(i,i,k)

0 strongly in H1
0 (Dm (l)) . Fur-

thermore, u(i,i,1)
0 and u(i,i,2)

0 are 2-nodal solutions of equation (Ep,q) in Dm (l) . By

Lemma 5.4, u(i,i,1)
0 and u(i,i,2)

0 are different. �

The proof of Theorem 1.3 follows by a combination of the results of Theorems
5.6 and 5.7 and so, we have equation (Ep,q) in Dm (l) has at least m× (m+1) 2-nodal
solutions.
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