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Abstract. In this article we deal with a sequence of functionals defined on weighted Sobolev
spaces. The spaces are associated with a sequence of domains Ω s contained in a bounded
domain Ω of R

n . The main structural components of the functionals are integral functionals
whose integrands satisfy a growth and coercivity condition with a weight and additional terms
ψs ∈ L1(Ωs) . For the given functionals we consider variational problems with sets of constraints
for functions v of the kind h(x,v(x)) � 0 a. e. in Ω s , where h : Ω×R → R . We establish
conditions on h and ψ s and on the given domains, weighted spaces and functionals under which
solutions of the variational problems under consideration converge in a certain sense to a solution
of a limit variational problem with the set of constraints defined by the same function h .

1. Introduction

In this article we deal with a sequence of functionals Is : W̃ 1,p
0 (ν,Ωs) → R , s ∈

N , where Ωs is a domain contained in a bounded domain Ω of R
n(n � 2) , p > 1,

ν : Ω→ R , and W̃ 1,p
0 (ν,Ωs) denotes a Sobolev space associated with the domain Ωs ,

the exponent p and the weighted function ν . The precise description of the spaces

W̃ 1,p
0 (ν,Ωs) as well as a limit space

◦
W 1,p(ν,Ω) is given in the beginning of Section 2.

We suppose that for every s ∈ N the functional Is has the following structure: Is = Js +
Gs , where Js is an integral functional whose value on every element u ∈ W̃ 1,p

0 (ν,Ωs)
depends on the gradient of u , and Gs is a weakly continuous functional on W̃ 1,p

0 (ν,Ωs) .
For a given function h :Ω×R → R we consider the sets

V = {v ∈ ◦
W 1,p(ν,Ω) : h(x,v(x)) � 0 for a. e. x ∈Ω}

and
Vs = {v ∈ W̃ 1,p

0 (ν,Ωs) : h(x,v(x)) � 0 for a. e. x ∈Ωs} , s ∈ N.

Our aim is to find out conditions on the function h and the given domains, spaces
and functionals under which any sequence of minimizers us of the functionals Is on the

sets Vs converges in a certain sense to a minimizer of a functional I :
◦
W 1,p(ν,Ω) → R

on the set V , and the minimum values of the functionals Is on the sets Vs also tend to
the minimum of the functional I on the set V .
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We assume that the integrands fs : Ωs ×R
n → R of the functionals Js satisfy the

following condition: for every s ∈ N , almost every x ∈Ωs and every ξ ∈ R
n ,

c1ν(x)|ξ |p−ψs(x) � fs(x,ξ ) � c2ν(x)|ξ |p +ψs(x),

where c1,c2 > 0 and ψs ∈ L1(Ωs) , ψs � 0 in Ωs . The function ν may characterize the
degeneration or singularity of the integrands with respect to the spatial variable, and the
functions ψs may describe an additional strong oscillation of the integrands. It is not
supposed that the functions ψs have a pointwise majorant, and in general the presence
of the sequence ψs makes the problem more difficult and requires some reasonable
restrictions on the behaviour of this sequence (see (3.1) and condition (∗4 ) of Theorem
3.1).

We note that among the main conditions under which we establish a weak conver-
gence of the minimizers and the convergence of the minimum values of the function-
als Is on the sets Vs are the Γ-convergence of the sequence {Js} to a functional J :
◦
W 1,p(ν,Ω) → R and the strong connectedness of the sequence of spaces W̃ 1,p

0 (ν,Ωs)

with the space
◦
W 1,p(ν,Ω) (see Theorems 3.1 and 3.12).

The role of the Γ-convergence of functionals in the study of the convergence of
their minimizers and minimum values is well known (see for instance [9], [15], [22],
[24], [37] and [38]). We only remark here that the notion of the Γ-convergence of
functionals defined on the spaces W̃ 1,p

0 (ν,Ωs) to a functional defined on the space
◦
W 1,p(ν,Ω) was introduced in [26] and the corresponding theorems on Γ-compactness
for integral functionals were given in [26], [31] and [32].

In the study of the homogenization of variational problems in variable domains
(particularly, in strongly perforated sets) along with the Γ-convergence of functionals
a certain connection of the domains with a limit domain or more precisely, a connec-
tion of the corresponding spaces is important as well (see for instance [20], [22], [24],
[28] and [38]). The notion of the strong connectedness of the sequence of the spaces

W̃ 1,p
0 (ν,Ωs) with the space

◦
W 1,p(ν,Ω) used in the present work was introduced and

studied in [27].
As far as conditions on the function h are concerned we consider the following

two cases:
(i) h(x,η) has a special behaviour with respect to the variable η (in particular, h(x,η)
may be nonincreasing with respect to η for almost every x ∈Ω);
(ii) the value h(x,η) does not depend on x .

In case (i) the main result on the convergence of minimizers of the functionals
Is on the sets Vs is given in Theorem 3.1. We note that the statement of the theorem
contains the next ”exhaustion” condition on the domains Ωs :

for every increasing sequence {mj} ⊂ N , meas(Ω\⋃
j
Ωmj ) = 0,

and generally speaking this condition cannot be omitted. We justify this fact in Example
4.13.
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Observe that the same ”exhaustion” condition has already been used in [21] for the
investigation of both a convergence of sets of variable Sobolev spaces and the coercivity
of the Γ-limit of functionals defined on these spaces.

We also show that in case (i) the sets V and Vs have the following representations:

V = {v ∈ ◦
W 1,p(ν,Ω) : v � h a. e. in Ω}

and

Vs = {v ∈ W̃ 1,p
0 (ν,Ωs) : v � h a. e. in Ωs} , s ∈ N ,

where h : Ω→ R is a function defined by the function h . These representations are
not utilized in the proof of Theorem 3.1. However, if h = z a. e. in Ω , where z ∈
◦
W 1,p(ν,Ω) , with the use of the given representations we demonstrate that the above-
mentioned ”exhaustion” condition on the domains Ωs in Theorem 3.1 is unnecessary
(see Remark 3.4).

Moreover, we give an application of Theorem 3.1 to the study of the convergence
of minimizers of the functionals Is on the sets defined by varying unilateral constraints
(see Theorem 3.6).

In case (ii) we establish that the sets V and Vs have the following representations:

V = {v ∈ ◦
W 1,p(ν,Ω) : α− � v � α+ a. e. in Ω}

and

Vs = {v ∈ W̃ 1,p
0 (ν,Ωs) : α− � v � α+ a. e. in Ωs} , s ∈ N ,

where α− ∈ [−∞,0] and α+ ∈ [0,+∞] (see Lemma 3.11). The main result on the
convergence of minimizers of the functionals Is on the sets Vs in this case is given in
Theorem 3.12.

The consideration of cases where the behaviour of the function h is different from
that prescribed by cases (i) and (ii) is also possible with the use of techniques similar to
those given in the article, although for this additional constructions are required too. For

instance in the case where h(x,η)= (η−ϕ(x))(η−ψ(x)) with ϕ , ψ ∈ ◦
W 1,p(ν,Ω) and

ϕ � ψ a. e. in Ω (this corresponds to the variational problems with bilateral obstacles
of the kind ϕ � v � ψ a. e. in Ω) a delicate moment is the behaviour of the difference
ψ−ϕ . Cases like this will be considered in the further publications of the authors.

On the whole the present article is organized as follows. In Section 2 we describe
functional spaces and give definitions used in the work. In Section 3 we state the main
results of the paper. Finally, Section 4 is devoted to comments and various examples
concerning the realization of conditions under which the main results of the article are
established.

Now let us mention some other works related to the topic. The convergence of
solutions of variational problems with unilateral and bilateral obstacles in general vari-
able domains for Γ-convergent integral functionals with the same nondegenerate inte-
grand was established in [22]. At the same time it was assumed that the obstacles are
regular, i. e. they belong to the Sobolev spaces on which the functionals are defined.
Close results for solutions of variational inequalities with G-convergent nondegener-
ate nonlinear elliptic operators and strongly convergent regular unilateral and bilateral
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obstacles in perforated domains were obtained in [23].
The convergence of solutions of nondegenerate elliptic variational inequalities

with obstacles was also studied in [2], [8], [29], [33] and [34].
With the use of techniques of the Γ-convergence theory the convergence of min-

imum points and minimum values in variational problems with general varying unilat-
eral obstacles in a fixed domain for integral functionals with nondegenerate integrands
satisfying a uniform growth and coercivity condition was studied in [7]. Analogous
questions concerning variational problems with general varying bilateral obstacles for
a quadratic integral functional were investigated in [6]. Results close to those of [6] and
[7] were also obtained in [1].

The homogenization of variational problems with pointwise gradient constraints
was studied for instance in [3]. A bibliography on this and close questions one can find
in [4].

Γ-convergence of quadratic integral functionals having periodic quickly oscillat-
ing coefficients and defined on a weighted Sobolev space was established in [11]. The
convergence of solutions of the Dirichlet problem for integral functionals or elliptic
equations with degenerations in a fixed domain was studied in [10], [12], [13] and [16].

Finally, we remark that in connection with the study of the Dirichlet problems in
variable domains the Γ-convergence of integral functionals defined on weighted spaces
with a weight in a Muckenhoupt class was proved in [14], and the convergence of solu-
tions of the Dirichlet problems for degenerate nonlinear elliptic second-order equations
in domains with fine-grained boundary was studied for instance in [35].

2. Preliminaries

Let Ω be a bounded domain of R
n (n � 2) , p > 1, and let ν be a nonnegative

function on Ω with the properties: ν > 0 almost everywhere in Ω and

ν ∈ L1
loc(Ω),

(
1
ν

)1/(p−1)

∈ L1
loc(Ω). (2.1)

We denote by Lp(ν,Ω) the set of all measurable functions u : Ω→ R such that
the function ν|u|p is summable in Ω . Lp(ν,Ω) is a Banach space with the norm

‖u‖Lp(ν,Ω) =
(∫

Ω
ν|u|p dx

)1/p

.

We note that by virtue of Young’s inequality and the second inclusion of (2.1) we have
Lp(ν,Ω) ⊂ L1

loc(Ω) .
We denote by W 1,p(ν,Ω) the set of all functions u ∈ Lp(ν,Ω) such that for every

i ∈ {1, . . . ,n} there exists the weak derivative Diu , Diu ∈ Lp(ν,Ω) . W 1,p(ν,Ω) is a
reflexive Banach space with the norm

‖u‖1,p,ν =
(∫

Ω
ν|u|p dx+

n

∑
i=1

∫
Ω
ν|Diu|p dx

)1/p

.
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Due to the first inclusion of the assumption (2.1) we have C∞
0 (Ω) ⊂ W 1,p(ν,Ω) . We

denote by
◦
W 1,p(ν,Ω) the closure of the set C∞

0 (Ω) in W 1,p(ν,Ω) .
Next, let {Ωs} be a sequence of domains of R

n which are contained in Ω .
By analogy with the spaces introduced above we define the functional spaces cor-

responding to the domains Ωs .
Let s∈ N . We denote by Lp(ν,Ωs) the set of all measurable functions u :Ωs →R

such that the function ν|u|p is summable in Ωs . Lp(ν,Ωs) is a Banach space with the
norm

‖u‖Lp(ν,Ωs) =
(∫

Ωs

ν|u|p dx

)1/p

.

By virtue of the second inclusion of (2.1) we have Lp(ν,Ωs) ⊂ L1
loc(Ωs) . We denote

by W 1,p(ν,Ωs) the set of all functions u ∈ Lp(ν,Ωs) such that for every i ∈ {1, . . . ,n}
there exists the weak derivative Diu , Diu ∈ Lp(ν,Ωs) . W 1,p(ν,Ωs) is a Banach space
with the norm

‖u‖1,p,ν,s =
(∫

Ωs

ν|u|p dx+
n

∑
i=1

∫
Ωs

ν|Diu|p dx

)1/p

.

We denote by C̃∞
0 (Ωs) the set of all restrictions on Ωs of functions from C∞

0 (Ω) . Due to
the first inclusion of (2.1) we have C̃∞

0 (Ωs) ⊂W 1,p(ν,Ωs) . We denote by W̃ 1,p
0 (ν,Ωs)

the closure of the set C̃∞
0 (Ωs) in W 1,p(ν,Ωs) .

We observe that if u ∈ ◦
W 1,p(ν,Ω) and s ∈ N , then u|Ωs ∈ W̃ 1,p

0 (ν,Ωs) .

DEFINITION 2.1. If s ∈ N , qs is the mapping from
◦
W 1,p(ν,Ω) into W̃ 1,p

0 (ν,Ωs)

such that for every function u ∈ ◦
W 1,p(ν,Ω) , qsu = u|Ωs .

DEFINITION 2.2. We say that the sequence of the spaces W̃ 1,p
0 (ν,Ωs) is strongly

connected with the space
◦
W 1,p(ν,Ω) if there exists a sequence of linear continuous

operators ls : W̃ 1,p
0 (ν,Ωs) →

◦
W 1,p(ν,Ω) such that:

(i) the sequence of the norms ‖ls‖ is bounded;
(ii) for every s ∈ N and u ∈ W̃ 1,p

0 (ν,Ωs) we have qs(lsu) = u a. e. in Ωs .

PROPOSITION 2.3. Suppose that the embedding of
◦
W 1,p(ν,Ω) into Lp(ν,Ω) is

compact, and the sequence of the spaces W̃ 1,p
0 (ν,Ωs) is strongly connected with the

space
◦
W 1,p(ν,Ω) . Let for every s ∈ N , us ∈ W̃ 1,p

0 (ν,Ωs) , and let the sequence of the
norms ‖us‖1,p,ν,s be bounded. Then there exist an increasing sequence {s j} ⊂ N and

a function u ∈ ◦
W 1,p(ν,Ω) such that lim

j→∞
‖us j −qs ju‖Lp(ν,Ωs j )

= 0 .

The proof of this result is simple (see [27]).
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DEFINITION 2.4. Let for every s ∈ N , Is be a functional on W̃ 1,p
0 (ν,Ωs) , and let

I be a functional on
◦
W 1,p(ν,Ω) . We say that the sequence {Is} Γ-converges to the

functional I if the following conditions are satisfied:

(i) for every function u ∈ ◦
W 1,p(ν,Ω) there exists a sequence ws ∈ W̃ 1,p

0 (ν,Ωs) such
that lim

s→∞
‖ws−qsu‖Lp(ν,Ωs) = 0 and lim

s→∞
Is(ws) = I(u) ;

(ii) for every function u ∈ ◦
W 1,p(ν,Ω) and every sequence us ∈ W̃ 1,p

0 (ν,Ωs) such that
lim
s→∞

‖us−qsu‖Lp(ν,Ωs) = 0 we have liminf
s→∞

Is(us) � I(u) .

THEOREM 2.5. Suppose that the embedding of
◦
W 1,p(ν,Ω) into Lp(ν,Ω) is com-

pact, and the sequence of the spaces W̃ 1,p
0 (ν,Ωs) is strongly connected with the space

◦
W 1,p(ν,Ω) . Let for every s ∈ N , Is be a functional on W̃ 1,p

0 (ν,Ωs) , let I be a func-

tional on
◦
W 1,p(ν,Ω) , and let the sequence {Is} Γ-converge to the functional I . Let

for every s ∈ N the function us minimize the functional Is on W̃ 1,p
0 (ν,Ωs) , and let

the sequence of the norms ‖us‖1,p,ν,s be bounded. Then there exist an increasing se-

quence {s j} ⊂ N and a function u ∈ ◦
W 1,p(ν,Ω) such that the function u minimizes

the functional I on
◦
W 1,p(ν,Ω) , lim

j→∞
‖us j −qs ju‖Lp(ν,Ωs j )

= 0 and lim
j→∞

Is j(us j ) = I(u) .

The proof of the theorem is simple: first Proposition 2.3 is applied and then Γ-
convergence of the sequence {Is} is standardly used [32].

We note that in the nonweighted case results similar to Theorem 2.5 were estab-
lished for different kinds of the domains Ωs in [21], [22] and [24]. These results along
with Theorem 2.5 are analogs of the variational property of Γ-convergence of function-
als with the same domain of definition (see [9] and [15]).

Our aim in this article is to obtain assertions analogous to those of Theorem 2.5
for minimizers of some functionals Is : W̃ 1,p

0 (ν,Ωs)→R on sets with certain pointwise
constraints. The corresponding results we give in the next section.

3. Main results

Let c1 , c2 > 0, and let for every s ∈ N , ψs ∈ L1(Ωs) and ψs � 0 in Ωs . We shall
assume that

the sequence of the norms ‖ψs‖L1(Ωs) is bounded. (3.1)

Let fs :Ωs ×R
n → R , s ∈ N , be a sequence of functions such that:

for every s ∈ N and ξ ∈ R
n the function fs(·,ξ ) is measurable in Ωs; (3.2)

for every s ∈ N and almost every x ∈Ωs the function fs(x, ·) is convex in R
n; (3.3){

for every s ∈ N, almost every x ∈Ωs and every ξ ∈ R
n,

c1ν(x)|ξ |p−ψs(x) � fs(x,ξ ) � c2ν(x)|ξ |p +ψs(x).
(3.4)



VARIATIONAL PROBLEMS WITH POINTWISE CONSTRAINTS 523

From (3.2)-(3.4) it follows that for every s ∈ N , fs is a Carathéodory function,
and if s ∈ N and u ∈ W̃ 1,p

0 (ν,Ωs) , the function fs(x,∇u) is summable in Ωs .

For every s ∈ N we define the functional Js : W̃ 1,p
0 (ν,Ωs) → R by

Js(u) =
∫
Ωs

fs(x,∇u)dx, u ∈ W̃ 1,p
0 (ν,Ωs).

We observe that due to (3.3) and (3.4) for every s ∈ N the functional Js is weakly
lower semicontinuous on W̃ 1,p

0 (ν,Ωs) .
Next, let c3 , c4 > 0, and let for every s ∈ N , Gs be weakly continuous functional

on W̃ 1,p
0 (ν,Ωs) . We shall suppose that the following conditions are satisfied:{

for every sequence us ∈ W̃ 1,p
0 (ν,Ωs) such that the sequence of the

norms ‖us‖1,p,ν,s is bounded, the sequence {Gs(us)} is bounded,
(3.5)

for every s ∈ N and u ∈ W̃ 1,p
0 (ν,Ωs) , Gs(u) � c3‖u‖p

Lp(ν,Ωs)
− c4 . (3.6)

Obviously, for every s ∈N the functional Js +Gs is weakly lower semicontinuous
on W̃ 1,p

0 (ν,Ωs) . Moreover, owing to (3.4) and (3.6) for every s ∈ N we have (Js +
Gs)(u) → +∞ if ‖u‖1,p,ν,s → +∞ . In view of known results on the existence of the
minimizers of functionals (see for instance [36]), these properties of the functionals
Js +Gs imply that the next assertion holds true:{

if s ∈ N and U is a nonempty sequentially weakly closed set in W̃ 1,p
0 (ν,Ωs),

there exists a function u ∈U minimizing the functional Js +Gs on U .

(3.7)
In connection with Theorem 2.5 we note that if for every s ∈ N the function us

minimizes the functional Js +Gs on W̃ 1,p
0 (ν,Ωs) , the sequence of the norms ‖us‖1,p,ν,s

is bounded. This fact follows from (3.1) and (3.4)-(3.6).
Further, let h : Ω×R → R be a function such that

for almost every x ∈Ω the function h(x, ·) is continuous in R. (3.8)

We set
V = {v ∈ ◦

W 1,p (ν,Ω) : h(x,v(x)) � 0 for a. e. x ∈Ω} (3.9)

and suppose that V �= /0 .
For every s ∈ N we define

Vs = {v ∈ W̃ 1,p
0 (ν,Ωs) : h(x,v(x)) � 0 for a. e. x ∈Ωs}. (3.10)

If v ∈ V and s ∈ N , we have qsv ∈ Vs . Therefore, for every s ∈ N the set Vs is
nonempty.

We observe that by virtue of the second inclusion of (2.1) and (3.8) the set V is

sequentially weakly closed in
◦
W 1,p(ν,Ω) and for every s ∈N the set Vs is sequentially

weakly closed in W̃ 1,p
0 (ν,Ωs) . The latter fact and (3.7) imply that for every s∈ N there

exists a function us ∈Vs minimizing the functional Js +Gs on Vs .
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THEOREM 3.1. Suppose that the following conditions are satisfied:

(∗1 ) the embedding of
◦
W 1,p(ν,Ω) into Lp(ν,Ω) is compact;

(∗2 ) the sequence of the spaces W̃ 1,p
0 (ν,Ωs) is strongly connected with

◦
W 1,p(ν,Ω);

(∗3 ) for every increasing sequence {mj} ⊂ N , meas(Ω\⋃
j
Ωmj ) = 0 ;

(∗4 ) if ε > 0 , there exists δ > 0 such that for every measurable set E ⊂Ω , measE �
δ , we have limsup

s→∞

∫
E∩Ωs

ψs dx � ε ;

(∗5 ) the sequence {Js} Γ-converges to a functional J :
◦
W 1,p(ν,Ω) → R;

(∗6 ) there exists a functional G :
◦
W 1,p(ν,Ω) → R such that for every v ∈ ◦

W 1,p(ν,Ω)
and every sequence vs ∈ W̃ 1,p

0 (ν,Ωs) with the property ‖vs−qsv‖Lp(ν,Ωs) → 0 we have
Gs(vs) → G(v);
(∗7 ) for almost every x ∈ Ω from η ∈ R and h(x,η) � 0 it follows that for every
η ′ � η , h(x,η ′) � 0 .

Moreover, assume that for every s ∈ N , us is function in Vs minimizing the func-
tional Js +Gs on Vs . Finally, let {sk} ⊂ N be an increasing sequence.

Then there exist an increasing sequence {s j} ⊂ {sk} and a function u ∈ V such
that the following assertions hold true:

the function u minimizes the functional J +G on V, (3.11)

lim
j→∞

‖us j −qs ju‖Lp(ν,Ωs j )
= 0, (3.12)

lim
j→∞

(Js j +Gsj)(us j ) = (J +G)(u). (3.13)

Proof. We fix w ∈ V . Clearly, for every s ∈ N , qsw ∈ Vs . Then for every s ∈ N

we have (Js +Gs)(us) � (Js +Gs)(qsw) . Hence using conditions (3.1), (3.4), (3.6) and
(∗6) , we establish that

the sequence of the norms ‖us‖1,p,ν,s is bounded. (3.14)

Next, by virtue of condition (∗2) there exists a sequence of linear continuous

operators ls : W̃ 1,p
0 (ν,Ωs) →

◦
W 1,p(ν,Ω) such that

the sequence of the norms ‖ls‖ is bounded, (3.15)

∀s ∈ N, qs(lsus) = us a. e. in Ωs. (3.16)

From (3.14) and (3.15) it follows that the sequence {lsus} is bounded in
◦
W 1,p(ν,Ω) .

Due to this fact and condition (∗1) there exist an increasing sequence {s j} ⊂ {sk} and

a function u ∈ ◦
W 1,p(ν,Ω) such that

ls j us j → u strongly in Lp(ν,Ω), (3.17)

ls j us j → u a. e. in Ω. (3.18)
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Let us show that u ∈ V . First, we observe that owing to (3.8) and (3.18) there
exists a set E ′ ⊂Ω with measure zero such that

∀x ∈Ω\E ′, h(x,(ls j us j )(x)) → h(x,u(x)). (3.19)

Moreover, in view of (3.16) and the inclusions us ∈Vs , s∈N , there exists a set E ′′ ⊂Ω
with measure zero such that

∀ j ∈ N and x ∈Ωs j \E ′′ we have (ls j us j)(x) = us j (x) and h(x,us j(x)) � 0. (3.20)

For every r ∈ N we set E(r) =Ω\
∞⋃
j=r

Ωs j . By virtue of condition (∗3 ) for every r ∈ N ,

measE(r) = 0. We define E =
∞⋃

r=1
E(r) . Clearly, measE = 0. Let x ∈Ω\ (E∪E ′ ∪E ′′)

and ε > 0. Due to (3.19) there exists j0 ∈ N such that for every j ∈ N , j � j0 ,

h(x,u(x)) � h(x,(ls j us j )(x))+ ε. (3.21)

Obviously, x /∈ E( j0) . Therefore, there exists j ∈ N , j � j0 , such that x ∈ Ωs j . Then
from (3.20) and (3.21) we get h(x,u(x)) � ε . Hence because of the arbitrariness of ε
we obtain h(x,u(x)) � 0. Consequently, u ∈V .

We note that by virtue of (3.16) and (3.17) equality (3.12) holds true.
Now we define the sequence {us} by

us =

{
us if s = s j for some j ∈ N,

qsu if s �= s j for every j ∈ N.

It is evident that for every s ∈ N , us ∈ W̃ 1,p
0 (ν,Ωs) . Owing to (3.12) we have

lim
s→∞

‖us−qsu‖Lp(ν,Ωs) = 0.

Then by virtue of conditions (∗5) and (∗6) ,

liminf
s→∞

(Js +Gs)(us) � (J +G)(u).

This implies that
liminf

j→∞
(Js j +Gsj)(us j) � (J +G)(u). (3.22)

Further, we fix v ∈V . Let us show that

limsup
s→∞

(Js +Gs)(us) � (J +G)(v). (3.23)

In view of condition (∗5 ) there exists a sequence vs ∈ W̃ 1,p
0 (ν,Ωs) such that

lim
s→∞

‖vs−qsv‖Lp(ν,Ωs) = 0, (3.24)
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lim
s→∞

Js(vs) = J(v). (3.25)

We observe that owing to (3.1), (3.4) and (3.25) there exists c � 1 such that for every
s ∈ N , ∫

Ωs

(ν|∇vs|p +ψs)dx � c. (3.26)

For every k ∈ N we set Hk = {x ∈Ω : d(x,∂Ω) � 1/k}. Clearly,

lim
k→∞

meas(Ω\Hk) = 0. (3.27)

Now we fix an arbitrary t ∈ N . Obviously, there exists δ1 > 0 such that{
for every measurable set H ⊂Ω, measH � δ1, we have∫
H ν|∇v|p dx � 1/t.

(3.28)

Moreover, by condition (∗4) there exists δ2 > 0 such that⎧⎨⎩for every measurable set H ⊂Ω, measH � δ2, we have

limsup
s→∞

∫
H∩Ωs

ψs dx � 1/t. (3.29)

We set δ = min(δ1,δ2) . By virtue of (3.27) there exists k ∈ N such that intHk �= /0 and

meas(Ω\Hk) < δ . (3.30)

Let ϕ ∈C∞
0 (Ω) be a function with the properties: 0 � ϕ � 1 in Ω , ϕ = 1 in Hk ,

ϕ = 0 in Ω\H2k and |∇ϕ | � c0k in Ω , where c0 > 0 depends only on n .
For every s ∈ N we set

μs =
{∫

Hk

(
1
ν

)1/(p−1)

dx

}(p−1)/2p{‖vs−qsv‖Lp(ν,Ωs) + s−1}1/2
.

From (3.24) it follows that
lim
s→∞

μs = 0. (3.31)

For every s ∈ N we define

ws = max{vs + μsqsϕ , qsv} and Es = {vs + μsqsϕ � qsv}.

For every s ∈ N we have ws ∈ W̃ 1,p
0 (ν,Ωs) . Moreover, it is useful to note that

if s ∈ N and meas(Ωs \Es) > 0, ∇ws = ∇vs + μs∇(qsϕ) a. e. in Ωs \Es, (3.32)

if s ∈ N and measEs > 0, ∇ws = ∇(qsv) a. e. in Es. (3.33)

These facts are established by analogy with the standard chain rule for the functions in
nonweighted Sobolev spaces (see for instance [17, Chapter 7]).
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If s ∈ N , by virtue of the definition of the function ws we have ws � qsv in Ωs .
This along with condition (∗7) and the inclusion v ∈ V implies that for every s ∈ N ,
ws ∈Vs . Hence taking into account that for every s ∈ N the function us minimizes the
functional Js +Gs on Vs , we get

∀s ∈ N, (Js +Gs)(us) � (Js +Gs)(ws). (3.34)

Moreover, if s ∈ N , we have ‖ws − qsv‖Lp(ν,Ωs) � ‖vs − qsv‖Lp(ν,Ωs) + μs‖ϕ‖Lp(ν,Ω) .
From this and (3.24) and (3.31) we deduce that lim

s→∞
‖ws−qsv‖Lp(ν,Ωs) = 0. This equal-

ity and condition (∗6) imply that

lim
s→∞

Gs(ws) = G(v). (3.35)

In what follows we shall estimate from above Js(ws) for sufficiently large s .
First we observe that

∀s ∈ N, meas(Hk ∩Es) � μs. (3.36)

In fact, let s ∈ N . Suppose that Hk ∩Es �= /0 . Taking into account that ϕ = 1 in Hk ,
from the definition of the set Es we derive that for every x∈Hk∩Es , μs � |vs−qsv|(x) .
Then

μsmeas(Hk ∩Es) �
∫

Hk∩Es

|vs−qsv|dx. (3.37)

Using Hölder’s inequality, we obtain∫
Hk∩Es

|vs−qsv|dx �
{∫

Hk

(
1
ν

)1/(p−1)

dx

}(p−1)/p

‖vs−qsv‖Lp(ν,Ωs) � μ2
s .

From this and (3.37) it follows that meas(Hk∩Es) � μs . Obviously, this inequality also
holds true if Hk ∩Es = /0 . Thus, assertion (3.36) is proved.

Next, for every s ∈ N we have

measEs � meas(Hk ∩Es)+meas(Ω\Hk), (3.38)∫
Es

ψs dx �
∫

Hk∩Es

ψs dx+
∫
(Ω\Hk)∩Ωs

ψs dx. (3.39)

Owing to (3.30), (3.31), (3.36), (3.38) and (3.28) there exists s′ ∈ N such that

∀s ∈ N, s � s′,
∫

Es

ν|∇v|p dx � 1/t. (3.40)

We note that ∫
Hk∩Es

ψs dx → 0 as s → ∞. (3.41)

Indeed, suppose that assertion (3.41) is not valid. Then there exist ε1 > 0 and an
increasing sequence {n j} ⊂ N such that

∀ j ∈ N,

∫
Hk∩En j

ψn j dx > ε1. (3.42)
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By virtue of condition (∗4) there exists δ ′ > 0 such that⎧⎨⎩for every measurable set H ⊂Ω, measH � δ ′, we have

limsup
s→∞

∫
H∩Ωs

ψs dx < ε1/2.
(3.43)

From (3.31) and (3.36) it follows that there exists an increasing sequence {ri} ⊂ {n j}
such that

∀ i ∈ N, meas(Hk ∩Eri) � δ ′/2i. (3.44)

We set H ′ =
∞⋃

i=1
(Hk ∩Eri) . Due to (3.44) we have measH ′ � δ ′ . Then by (3.43)

limsup
s→∞

∫
H′∩Ωs

ψs dx < ε1/2.

Therefore, there exists N ∈ N such that∫
H′∩ΩrN

ψrN dx � ε1. (3.45)

Clearly, Hk ∩ErN ⊂ H ′ ∩ΩrN . This and (3.45) imply that∫
Hk∩ErN

ψrN dx � ε1.

Evidently, this inequality contradicts (3.42). The contradiction obtained proves that
assertion (3.41) is valid.

Owing to (3.29), (3.30), (3.41) and (3.39) there exists s′′ ∈ N such that

∀s ∈ N, s � s′′,
∫

Es

ψs dx � 2/t. (3.46)

Finally, because of (3.31) there exists s′′′ ∈ N such that

∀s ∈ N, s � s′′′, μs

{
1+(c0 k)p

∫
H2k

ν dx
}

� 1/t. (3.47)

We set s̃ = max(s′,s′′,s′′′) and fix s ∈ N , s � s̃ . Obviously,

Js(ws) =
∫
Ωs\Es

fs(x,∇ws)dx+
∫
Es

fs(x,∇ws)dx. (3.48)

Taking into account that by (3.47) μs � 1 and using (3.32), (3.3) and (3.4), we establish
that∫

Ωs\Es

fs(x,∇ws)dx �
∫
Ωs\Es

fs(x,∇vs)dx+2μs

∫
Ωs

ψs dx

+2p−1 c2 μs

{∫
Ωs

ν|∇vs|p dx+
∫
Ω
ν|∇ϕ |p dx

}
. (3.49)
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Moreover, (3.4) and (3.46) imply that∫
Ωs\Es

fs(x,∇vs)dx � Js(vs)+2/t. (3.50)

Taking into account the properties of the function ϕ , from (3.49), (3.50), (3.26) and
(3.47) we obtain ∫

Ωs\Es

fs(x,∇ws)dx � Js(vs)+ [2+2pc(c2 +1)]/t. (3.51)

Besides, using (3.4), (3.33), (3.40) and (3.46), we find that∫
Es

fs(x,∇ws)dx � (c2 +2)/t. (3.52)

From (3.48), (3.51) and (3.52) we deduce that

Js(ws) � Js(vs)+ (2p +1)(c2 +4)c/t.

This and (3.34) imply that

(Js +Gs)(us) � Js(vs)+Gs(ws)+ (2p +1)(c2 +4)c/t.

Then taking into account (3.25) and (3.35), we get

limsup
s→∞

(Js +Gs)(us) � (J +G)(v)+ (2p +1)(c2 +4)c/t.

Hence due to the arbitrariness of t we obtain inequality (3.23).
From (3.22) and (3.23) we infer that assertion (3.11) holds true. Finally, from

(3.23) with v = u and (3.22) we derive equality (3.13). �

REMARK 3.2. The assertions of Theorem 3.1 remain true if in the statement of
the theorem instead of condition (∗7) we use the next one: for almost every x∈Ω from
η ∈ R and h(x,η) � 0 it follows that for every η ′ � η , h(x,η ′) � 0. In this case in the
above-given proof instead of the functions ws and sets Es one should use the functions
and sets defined by ws = min{vs− μsqsϕ ,qsv} , Es = {vs− μsqsϕ � qsv}.

Further, let us show that under condition (∗7) of Theorem 3.1 V and Vs are actu-
ally the sets with unilateral constraints, and the values of the function which determines
the constraints lie in R .

For every x ∈Ω we set

Mh(x) = {η ∈ R : h(x,η) � 0}.
Define the function h : Ω→ R by

h(x) =

⎧⎨⎩ inf
η∈Mh(x)

η if Mh(x) �= /0 ,

+∞ if Mh(x) = /0 .

Since V �= /0 , we have h(x) �= +∞ for a. e. x ∈Ω .
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PROPOSITION 3.3. Suppose that for almost every x∈Ω from η ∈R and h(x,η)�
0 it follows that for every η ′ � η , h(x,η ′) � 0 . Then

V = {v ∈ ◦
W 1,p(ν,Ω) : v � h a. e. in Ω}

and for every s ∈ N ,

Vs = {v ∈ W̃ 1,p
0 (ν,Ωs) : v � h a. e. in Ωs} .

We omit the proof of the proposition because of its simplicity.

REMARK 3.4. We observe that in the case h = z a. e. in Ω , where z∈ ◦
W 1,p(ν,Ω) ,

condition (∗3) in Theorem 3.1 is unnecessary. In fact, first of all we recall that in the
proof of Theorem 3.1 condition (∗3) is used only in order to establish that u ∈ V .
Suppose that all the conditions of Theorem 3.1 are satisfied except for condition(∗3) .

If h = z a. e. in Ω , where z ∈ ◦
W 1,p(ν,Ω) , instead of the consideration given in the

proof of Theorem 3.1 below (3.16) up to the conclusions that u∈V and equality (3.12)
holds true we argue as follows. Taking into account Proposition 3.3 and (3.16) and
setting for every s ∈ N , zs = max{lsus,z} , we obtain that for every s ∈ N , zs ∈ V and
qszs = us a. e. in Ωs . Since by (3.14) and (3.15) the sequence {lsus} is bounded in
◦
W 1,p(ν,Ω) , the sequence {zs} also is bounded in

◦
W 1,p(ν,Ω) . Therefore, there exist

an increasing sequence {s j} ⊂ {sk} and a function u ∈ ◦
W 1,p(ν,Ω) such that zs j → u

weakly in
◦
W 1,p(ν,Ω) . From this, taking into account the above-mentioned properties

of the sequence {zs} , the sequential weak closedness of the set V in
◦
W 1,p(ν,Ω) and

condition (∗1) of Theorem 3.1, we obtain that u ∈V and equality (3.12) holds true.

However, in general case condition (∗3) of Theorem 3.1 cannot be omitted. The
corresponding example is given in Section 4.

REMARK 3.5. If z : Ω → R , U = {v ∈ ◦
W 1,p(ν,Ω) : v � z a. e. in Ω} and for

every s ∈ N , Us = {v ∈ W̃ 1,p
0 (ν,Ωs) : v � z a. e. in Ωs} , defining the function σ :

Ω×R → R by

σ(x,η) =

⎧⎪⎨⎪⎩
−η+ z(x) if z(x) ∈ R ,

0 if z(x) = −∞ ,

1 if z(x) = +∞ ,

we easily get σ = z , U = {v ∈ ◦
W 1,p(ν,Ω) : σ(x,v(x)) � 0 for a. e. x ∈ Ω} and for

every s ∈ N , Us = {v ∈ W̃ 1,p
0 (ν,Ωs) : σ(x,v(x)) � 0 for a. e. x ∈Ωs} .

Besides, if z �= +∞ a. e. in Ω , the function σ has the same property as that of the
function h assumed in Theorem 3.1 and Proposition 3.3.

Now we give an application of Theorem 3.1 to variational problems with varying
obstacles.
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For every y ∈ ◦
W 1,p(ν,Ω) we set

W (y) = {v ∈ ◦
W 1,p(ν,Ω) : v � y a. e. in Ω}.

Let for every s ∈ N , ys ∈ W̃ 1,p
0 (ν,Ωs) .

For every s ∈ N we set

Ws = {v ∈ W̃ 1,p
0 (ν,Ωs) : v � ys a. e. in Ωs}.

Clearly, if s ∈ N , the set Ws is nonempty and sequentially weakly closed in
W̃ 1,p

0 (ν,Ωs) . This fact and (3.7) imply that for every s ∈ N there exists a function
us ∈Ws minimizing the functional Js +Gs on Ws .

THEOREM 3.6. Suppose that conditions (∗1) , (∗2) and (∗4)-(∗6) of Theorem
3.1 are satisfied. Moreover, assume that the following conditions are satisfied:

(∗′1) the sequence of the norms ‖ys‖1,p,ν,s is bounded;
(∗′2) if ε > 0 , there exists δ > 0 such that for every measurable set E ⊂Ω , measE �
δ , we have limsup

s→∞

∫
E∩Ωs

ν|∇ys|p dx � ε .

Finally, let for every s ∈ N , us be a function in Ws minimizing the functional
Js +Gs on Ws .

Then there exist an increasing sequence {s j} ⊂ N and functions y ∈ ◦
W 1,p(ν,Ω)

and u ∈W (y) such that the following assertions hold true:

lim
j→∞

‖ys j −qs jy‖Lp(ν,Ωs j )
= 0, (3.53)

the function u minimizes the functional J +G on W (y), (3.54)

lim
j→∞

‖us j −qs ju‖Lp(ν,Ωs j )
= 0, (3.55)

lim
j→∞

(Js j +Gsj)(us j ) = (J +G)(u). (3.56)

Proof. Since conditions (∗1) and (∗2) of Theorem 3.1 and condition (∗′1) are
satisfied, by virtue of Proposition 2.3 there exist an increasing sequence {sk} ⊂ N and

a function y ∈ ◦
W 1,p(ν,Ω) such that

lim
k→∞

‖ysk
−qsk

y‖Lp(ν,Ω s k
) = 0. (3.57)

We define the sequence {ys} by

ys =

{
ys if s = sk for some k ∈ N,

qsy if s �= sk for every k ∈ N.

Clearly, for every s ∈ N , ys ∈ W̃ 1,p
0 (ν,Ωs) . Moreover, in view of (3.57) we have

lim
s→∞

‖ys −qsy‖Lp(ν,Ωs) = 0. (3.58)
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Next, we set c1 = 21−p c1 , c2 = 2p−1c2 and for every s ∈ N we define

ψs = ψs + c2ν|∇ys|p.

Obviously, for every s ∈ N , ψs ∈ L1(Ωs) and ψs � 0 in Ωs . Furthermore, (3.1) and
condition (∗′1) imply that the sequence of the norms ‖ψs‖L1(Ωs) is bounded. Finally,
by virtue of condition (∗4) of Theorem 3.1 and condition (∗′2) the following assertion
holds true: if ε > 0, there exists δ > 0 such that for every measurable set E ⊂ Ω ,
measE � δ , we have

limsup
s→∞

∫
E∩Ωs

ψs dx � ε.

For every s ∈ N we define the function f s :Ωs ×R
n → R by

f s(x,ξ ) = fs(x,ξ +∇ys(x)), (x,ξ ) ∈Ωs×R
n.

Owing to (3.2)-(3.4) the following assertions hold true: for every s ∈ N and ξ ∈ R
n

the function f s(·,ξ ) is measurable in Ωs ; for every s ∈ N and almost every x ∈ Ωs

the function f s(x, ·) is convex in R
n ; for every s ∈ N , almost every x ∈ Ωs and every

ξ ∈ R
n ,

c1ν(x)|ξ |p−ψs(x) � f s(x,ξ ) � c2ν(x)|ξ |p +ψs(x).

Thus, the described properties of the functions ψs and f s are the same as the
properties of the functions ψs and fs stated in the beginning of the section. Besides,
the functions ψs satisfy the condition similar to condition (∗4) .

For every s ∈ N we define the functional Js : W̃ 1,p
0 (ν,Ωs) → R by

Js(v) =
∫
Ωs

f s(x,∇v)dx, v ∈ W̃ 1,p
0 (ν,Ωs).

If s ∈ N and v ∈ W̃ 1,p
0 (ν,Ωs) , we have Js(v) = Js(v+ ys) .

We define the functional J :
◦
W 1,p(ν,Ω)→R by J(v) = J(v+y) , v∈ ◦

W 1,p(ν,Ω) .
From condition (∗5) of Theorem 3.1 and (3.58) it follows that the sequence {Js}

Γ-converges to the functional J .
Further, in view of condition (∗′1) there exists c5 > 0 such that

∀s ∈ N, ‖ys‖p
Lp(ν,Ωs)

� c5. (3.59)

We set c3 = 21−pc3 , c4 = c4 + c3 c5 and for every s ∈ N define the functional Gs :
W̃ 1,p

0 (ν,Ωs) → R by

Gs(v) = Gs(v+ ys), v ∈ W̃ 1,p
0 (ν,Ωs).

Clearly, if s ∈ N , the functional Gs is weakly continuous on W̃ 1,p
0 (ν,Ωs) . Moreover,

owing to conditions (∗′1) and (3.5) the following assertion holds true: for every se-
quence vs ∈ W̃ 1,p

0 (ν,Ωs) such that the sequence of the norms ‖vs‖1,p,ν,s is bounded,
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the sequence {Gs(vs)} is bounded. Finally, using (3.6) and (3.59), we establish that for
every s ∈ N and v ∈ W̃ 1,p

0 (ν,Ωs) ,

Gs(v) � c3‖v‖p
Lp(ν,Ωs)

− c4.

We define the functional G :
◦
W 1,p(ν,Ω)→R by G(v)= G(v+y) , v∈ ◦

W 1,p(ν,Ω) .
By virtue of condition (∗6) of Theorem 3.1 and (3.58) the following assertion

holds true: for every v ∈ ◦
W 1,p(ν,Ω) and every sequence vs ∈ W̃ 1,p

0 (ν,Ωs) with the

property ‖vs−qsv‖Lp(ν,Ωs) → 0 we have Gs(vs) → G(v) .
Thus, Js and Gs are functionals of the same kind as the functionals Js and Gs ,

and they satisfy conditions analogous to conditions (∗5) and (∗6) of Theorem 3.1.
Next, let ĥ : Ω×R → R be the function such that for every (x,η) ∈ Ω×R ,

ĥ(x,η) = −η . Obviously, for every x ∈ Ω the function ĥ(x, ·) is continuous and non-
increasing in R . We set

V̂ = {v ∈ ◦
W 1,p(ν,Ω) : ĥ(x,v(x)) � 0 for a. e. x ∈Ω}

and for every s ∈ N define

V̂s = {v ∈ W̃ 1,p
0 (ν,Ωs) : ĥ(x,v(x)) � 0 for a. e. x ∈Ωs}.

Evidently, the function ĥ satisfies conditions analogous to condition (3.8) and
condition (∗7) of Theorem 3.1, and V̂ and V̂s are the sets of the same kind as the sets
V and Vs .

For every s ∈ N we define

Ŵs = {v ∈ W̃ 1,p
0 (ν,Ωs) : v � ys a. e. in Ωs}.

It is easy to see that for every s ∈ N there exists a function ûs ∈ Ŵs minimizing the
functional Js +Gs on Ŵs . We define the sequence {us} by

us =

{
us if s = sk for some k ∈ N,

ûs if s �= sk for every k ∈ N.

It is not difficult to verify that for every s ∈ N , us − ys is a function in V̂s minimizing
the functional J s +Gs on V̂s .

Now taking into account Remark 3.4 and applying Theorem 3.1, we conclude that
there exist an increasing sequence {s j} ⊂ {sk} and a function u ∈ V̂ such that the
following assertions hold true:

the function u minimizes the functional J +G on V̂ , (3.60)

lim
j→∞

‖us j − ys j
−qs j u‖Lp(ν,Ωs j )

= 0, (3.61)

lim
j→∞

(Js j +Gsj )(us j − ys j
) = (J +G)(u). (3.62)
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We set u = u+y . Since u ∈ V̂ , we have u∈W (y) . Observe that by virtue of (3.57)
assertion (3.53) holds true. Moreover, owing to (3.60) assertion (3.54) holds true. Us-
ing (3.58) and (3.61), we obtain that assertion (3.55) holds true, and finally from (3.62)
we deduce that assertion (3.56) holds true. �

In what follows we give a result on the behaviour of a sequence of minimizers
of the functionals Js +Gs on the sets Vs without the assumption that for almost every
x ∈ Ω from η ∈ R and h(x,η) � 0 it follows that for every η ′ � η , h(x,η ′) � 0,
but under the condition that the values h(x,η) of the function h do not depend on the
variable x .

Before to make this we prove several useful lemmas.

LEMMA 3.7. Let v ∈ ◦
W 1,1(Ω). Then the following assertions hold true:

(i) for every λ > 0 , meas{|v| < λ} > 0 ;
(ii) if 0 � λ1 < λ2 � λ and meas{v > λ} > 0 , we have meas{λ1 < v < λ2} > 0 ;
(iii) if λ > 0 and ε > 0 , there exists a measurable set H ⊂ Ω such that measH > 0
and for every x ∈ H, |v(x)| < λ and d(x,∂Ω) < ε .

Proof. As is known (see for instance [17, Chapter 7]) there exists C > 0 such that

for every z ∈ ◦
W 1,1(Ω) , ∫

Ω
|z|dx � C

∫
Ω
|∇z|dx. (3.63)

Let ϕ be a function in C1(R) such that ϕ is nondecreasing in R , ϕ = 0 in (−∞,0]
and ϕ = 1 in [1,+∞) .

Let λ > 0. Define the function ϕλ : R → R by ϕλ (η) = ϕ(η/λ ) , η ∈ R , and

set w = |v| . Since v ∈ ◦
W 1,1(Ω) , we have w ∈ ◦

W 1,1(Ω) . This and the properties of

the function ϕ imply that ϕλ (w) ∈ ◦
W 1,1(Ω) and |∇ϕλ (w)| = ϕ ′

λ (w)|∇w| a. e. in Ω .
Therefore, using (3.63), we get∫

Ω
ϕλ (w)dx � C

∫
Ω
ϕ ′
λ (w)|∇w|dx. (3.64)

Suppose that meas{|v| < λ} = 0. Then taking into account that ϕλ = 1 in [λ ,+∞) ,
from (3.64) we obtain meas{|v| � λ} = 0. This contradicts measΩ > 0. Therefore,
meas{|v| < λ} > 0. Thus, we conclude that assertion (i) holds true.

Next, let 0 � λ1 < λ2 � λ and meas{v > λ}> 0. We define the function ϕ : R→
R by

ϕ(η) = ϕ
(
η−λ1

λ2−λ1

)
, η ∈ R.

We have ϕ(v)∈ ◦
W 1,1(Ω) and |∇ϕ(v)|= ϕ ′(v)|∇v| a. e. in Ω . Then by virtue of (3.63)∫

Ω
ϕ(v)dx � C

∫
Ω
ϕ ′(v)|∇v|dx. (3.65)
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Suppose that meas{λ1 < v < λ2}= 0. Then taking into account that ϕ = 0 in (−∞,λ1]
and ϕ = 1 in [λ2,+∞) , from (3.65) we get meas{v � λ2} = 0. This contradicts
meas{v > λ} > 0. Therefore, meas{λ1 < v < λ2} > 0. Thus, we conclude that as-
sertion (ii) holds true.

Now let λ > 0 and ε > 0. We fix a point x0 ∈ Ω and ε1 such that 0 < ε1 <
min{ε,d(x0,∂Ω)} . Define

H ′ = {x ∈Ω : d(x,∂Ω) > ε1}, H ′′ = {x ∈Ω : d(x,∂Ω) � ε1/2},
H = (Ω\H ′)∩{|v|< λ}.

Let ρ be a function in C∞
0 (Ω) with the properties: 0 � ρ � 1 in Ω , ρ = 1 in H ′

and ρ = 0 in H ′′ . We set w = |v|(1− ρ)+ λρ . It is easy to see that w ∈ ◦
W 1,1(Ω) .

Then by assertion (i) we have meas{|w| < λ} > 0. Suppose that measH = 0. Let
x ∈ {|w| < λ} \H . Hence |w(x)| < λ and x /∈ H . If x ∈ H ′ , we have ρ(x) = 1 and
therefore, w(x) = λ . This contradicts |w(x)| < λ . Hence x ∈Ω\H ′ . Therefore, since
x /∈ H , we get |v(x)| � λ . Then w(x) � λ . This also contradicts |w(x)| < λ . Hence
we infer that measH > 0. Obviously, for every x ∈ H, |v(x)| < λ and d(x,∂Ω) < ε .
Thus, assertion (iii) holds true. �

LEMMA 3.8. Let (
1
ν

)1/(p−1)

∈ L1(Ω). (3.66)

Then ◦
W 1,p(ν,Ω) ⊂ ◦

W 1,1(Ω). (3.67)

Proof. We set

K = (n+1)

{∫
Ω

(
1
ν

)1/(p−1)

dx

}(p−1)/p

.

Let v ∈W 1,p(ν,Ω) . Clearly,

|v| = ν1/p|v| ·
(

1
ν

)1/p

a. e. in Ω. (3.68)

Using this fact and Young’s inequality, we obtain

|v| � ν|v|p +
(

1
ν

)1/(p−1)

a. e. in Ω.

This along with the inclusion ν|v|p ∈ L1(Ω) and (3.66) implies that v ∈ L1(Ω) . Anal-
ogously, for every i∈ {1, . . . ,n} we have Div ∈ L1(Ω) . Thus, v∈W 1,1(Ω) . Moreover,
using (3.68) and Hölder’s inequality, we get

∫
Ω
|v|dx � K

n+1

(∫
Ω
ν|v|pdx

)1/p

.
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This and analogous inequalities for the derivatives Div imply that

‖v‖W1,1(Ω) � K‖v‖1,p,ν . (3.69)

Now let v ∈ ◦
W 1,p(ν,Ω) . Evidently, v ∈ W 1,1(Ω) . Taking a sequence {v j} ⊂

C∞
0 (Ω) such that ‖v j−v‖1,p,ν → 0, from (3.69) we obtain v j → v strongly in W 1,1(Ω) .

Hence v ∈ ◦
W 1,1(Ω) . �

REMARK 3.9. Inclusion (3.66) is essential for (3.67). In Section 4 we give an
example which shows that without assumption (3.66) inclusion (3.67) may not be valid.

LEMMA 3.10. Suppose that (1/ν)1/(p−1)∈L1(Ω) and the embedding of the space
◦
W 1,p(ν,Ω) into Lp(ν,Ω) is compact. Let s ∈ N and let the set Ω\Ωs be closed. As-
sume that the following condition is satisfied:{

for every bounded sequence {v j} ⊂ W̃ 1,p
0 (ν,Ωs) there exists a bounded

sequence {v j} ⊂
◦
W 1,p(ν,Ω) such that ∀ j ∈ N, v j = v j a. e. in Ωs.

(3.70)

Then the next assertion holds true: if v∈ W̃ 1,p
0 (ν,Ωs) , 0 � λ1 < λ2 � λ and meas{v >

λ} > 0 , we have meas{λ1 < v < λ2} > 0 .

Proof. First of all let us show that the following assertion holds true:{
there exists Ks > 0 such that for every w ∈ W̃ 1,p

0 (ν,Ωs), ‖w‖Lp(ν,Ωs) = 1,

we have Ks
∫
Ωs
ν|∇w|pdx � 1.

(3.71)

Suppose that this assertion is not valid. Then there exists a sequence {wj} ⊂
W̃ 1,p

0 (ν,Ωs) such that for every j ∈ N ,

‖wj‖Lp(ν,Ωs) = 1, (3.72)∫
Ωs

ν|∇wj|pdx < 1/ j. (3.73)

Clearly, the sequence {wj} is bounded in W̃ 1,p
0 (ν,Ωs) . Therefore, by condition (3.70)

there exists a bounded sequence {wj} ⊂
◦
W 1,p(ν,Ω) such that

∀ j ∈ N, wj = wj a. e. in Ωs . (3.74)

Obviously, there exist an increasing sequence { jk} ⊂ N and a function z ∈ ◦
W 1,p(ν,Ω)

such that
wjk → z weakly in

◦
W 1,p(ν,Ω). (3.75)

Owing to (3.74) and (3.75) we have wjk → qsz weakly in W̃ 1,p
0 (ν,Ωs) . Hence

liminf
k→∞

∫
Ωs

ν|∇wjk |pdx �
∫
Ωs

ν|∇(qsz)|pdx.
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This and (3.73) imply that
∇(qsz) = 0 a. e. in Ωs. (3.76)

Since (1/ν)1/(p−1) ∈ L1(Ω) , we have qsz ∈W 1,1(Ωs) . By virtue of this inclusion and
(3.76) and the connectedness of Ωs there exists τs ∈ R such that

qsz = τs a. e. in Ωs. (3.77)

Let us demonstrate that τs = 0. Since the set Ω\Ωs is closed, we have d(Ω\Ωs,∂Ω) >
0. We fix ε such that 0 < ε < d(Ω\Ωs,∂Ω) and define H(ε) = {x∈Ω : d(x,∂Ω) < ε} .
It is easy to see that

H(ε) ⊂Ωs . (3.78)

Suppose that τs �= 0. Due to Lemma 3.8 we have z ∈ ◦
W 1,1(Ω) . Then by virtue of

assertion (iii) of Lemma 3.7 and (3.78) there exists a measurable set H ⊂ Ωs such that
measH > 0 and |z| < |τs| in H . However, this contradicts (3.77). The contradiction
obtained proves that

τs = 0. (3.79)

Since the embedding of
◦
W 1,p(ν,Ω) into Lp(ν,Ω) is compact, from (3.74), (3.75),

(3.77) and (3.79) we deduce that lim
k→∞

‖wjk‖Lp(ν,Ωs) = 0. This contradicts (3.72). Hence

we conclude that assertion (3.71) is valid. Therefore, for every w ∈ W̃ 1,p
0 (ν,Ωs) ,∫

Ωs

ν|w|pdx � Ks

∫
Ωs

ν|∇w|pdx. (3.80)

Now let v ∈ W̃ 1,p
0 (ν,Ωs) , 0 � λ1 < λ2 � λ and meas{v > λ} > 0. Taking a

function ϕ ∈ C∞(R) such that ϕ = 0 in (−∞,λ1] , ϕ = 1 in [λ2,+∞) and ϕ ′ � 0 in
R , we have ϕ(v) ∈ W̃ 1,p

0 (ν,Ωs) and |∇ϕ(v)| = ϕ ′(v)|∇v| a. e. in Ωs . Then applying
(3.80), we get ∫

Ωs

ν(ϕ(v))pdx � Ks

∫
Ωs

ν(ϕ ′(v))p|∇v|pdx. (3.81)

Suppose that meas{λ1 < v < λ2} = 0. Then taking into account the properties of the
function ϕ , from (3.81) we obtain that ϕ(v) = 0 a. e. in {v > λ} . However, this
contradicts the fact that ϕ = 1 in [λ2,+∞) . Thus, we conclude that meas{λ1 < v <
λ2} > 0. �

LEMMA 3.11. Suppose that the following conditions are satisfied:(
1
ν

)1/(p−1)

∈ L1(Ω), (3.82)

the embedding of
◦
W 1,p(ν,Ω) into Lp(ν,Ω) is compact, (3.83)

the sequence {W̃1,p
0 (ν,Ωs)} is strongly connected with

◦
W 1,p(ν,Ω), (3.84)

for every s ∈ N the set Ω\Ωs is closed, (3.85)

for every x′, x′′ ∈Ω we have h(x′, ·) = h(x′′, ·). (3.86)
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Then there exist α− ∈ [−∞,0] and α+ ∈ [0,+∞] such that

V = {v ∈ ◦
W 1,p(ν,Ω) : α− � v � α+ a. e. in Ω} (3.87)

and for every s ∈ N ,

Vs = {v ∈ W̃ 1,p
0 (ν,Ωs) : α− � v � α+ a. e. in Ωs}. (3.88)

Proof. We fix x0 ∈ Ω and set γ = h(x0, ·) . From (3.8) and (3.86) it follows that
γ ∈C(R) . Observe that γ(0) � 0. In fact, since V �= /0 , by virtue of (3.9) there exists a

function z ∈ ◦
W 1,p(ν,Ω) such that h(x,z(x)) � 0 for a. e. x ∈Ω . Then owing to (3.86)

and the definition of γ there exists a set E ⊂Ω with measure zero such that

∀x ∈Ω\E, γ(z(x)) � 0. (3.89)

Let ε > 0. Since γ ∈C(R) , there exists δ > 0 such that

∀η ∈ R, |η | < δ , |γ(η)− γ(0)|< ε. (3.90)

Due to (3.82) and Lemma 3.8 z ∈ ◦
W 1,1(Ω) . Then by assertion (i) of Lemma 3.7 we

have meas{|z|< δ} > 0. Let x ∈ {|z|< δ}\E . Therefore, |z(x)| < δ . This along with
(3.89) and (3.90) implies that γ(0) < ε . Hence because of the arbitrariness of ε we get
γ(0) � 0.

We set

α− = inf{η ∈ (−∞,0] : ∀λ ∈ [η ,0], γ(λ ) � 0},
α+ = sup{η ∈ [0,+∞) : ∀λ ∈ [0,η ], γ(λ ) � 0}.

Obviously, α− ∈ [−∞,0] and α+ ∈ [0,+∞] . Moreover, observe that owing to the defi-
nition of α− and α+ and the continuity of the function γ the following assertion holds
true:

if η ∈ R and α− � η � α+, we have γ(η) � 0. (3.91)

Using this assertion, the definition of γ and (3.86) and (3.9), we establish that the next
assertion holds true:

if v ∈ ◦
W 1,p(ν,Ω) and α− � v � α+ a. e in Ω, we have v ∈V. (3.92)

Now let v∈V . Clearly, v∈ ◦
W 1,p(ν,Ω) and there exists a set E ′ ⊂Ω with measure

zero such that
∀x ∈Ω\E ′, γ(v(x)) � 0. (3.93)

We set A+ = {x ∈Ω : γ(v(x)) � 0, v(x) > α+} . Let us show that

measA+ = 0. (3.94)
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If α+ = +∞ , we have A+ = /0 and therefore, equality (3.94) holds true. Suppose that

α+ �= +∞ . For every m ∈ N we set A(m)
+ = {x ∈ Ω : γ(v(x)) � 0, v(x) > α+ +1/m} .

Obviously,

A+ =
∞⋃

m=1

A(m)
+ and ∀m ∈ N, A(m)

+ ⊂ A(m+1)
+ .

Hence
lim
m→∞

measA(m)
+ = measA+. (3.95)

Let m ∈ N . Using the definition of α+ and the continuity of the function γ , we find
that there exist η ′,η ′′ ∈ R such that

α+ � η ′ < η ′′ � α+ +1/m, (3.96)

∀η ∈ (η ′,η ′′), γ(η) > 0. (3.97)

Assume that measA(m)
+ > 0. Then

meas{v > α+ +1/m}> 0. (3.98)

Due to (3.82) and Lemma 3.8 v ∈ ◦
W 1,1(Ω) . Therefore, using assertion (ii) of Lemma

3.7 and (3.96) and (3.98), we get meas{η ′ < v < η ′′}> 0. Let x∈ {η ′ < v < η ′′}\E ′ .
Clearly, v(x) ∈ (η ′,η ′′) and then by (3.97) γ(v(x)) > 0. On the other hand, by (3.93)

γ(v(x)) � 0. The contradiction obtained proves that for every m ∈ N , measA(m)
+ = 0.

This and (3.95) imply that equality (3.94) is valid.
From (3.93) and (3.94) we obtain that

v � α+ a. e. in Ω. (3.99)

Next, we set A− = {x ∈ Ω : γ(v(x)) � 0, v(x) < α−} . If α− = −∞ , we have
A− = /0 and therefore, measA− = 0. Suppose that α− �= −∞ . For every m ∈ N we set

A(m)
− = {x ∈Ω : γ(v(x)) � 0, v(x) < α−−1/m} . Evidently,

lim
m→∞

measA(m)
− = measA−. (3.100)

Let m∈N . Using the definition of α− and the continuity of the function γ , we establish
that there exist η1,η2 ∈ R such that

α−−1/m � η1 < η2 � α−, (3.101)

∀η ∈ (η1,η2), γ(η) > 0. (3.102)

Assume that measA(m)
− > 0. Then setting w =−v , we have meas{w >−α−+1/m}>

0. From this and (3.101) and assertion (ii) of Lemma 3.7 we deduce that meas{−η2 <
w < −η1} > 0. Hence meas{η1 < v < η2} > 0. Let x ∈ {η1 < v < η2} \E ′ . By
(3.102) γ(v(x)) > 0 and by (3.93) γ(v(x)) � 0. The contradiction obtained proves that

for every m ∈ N , measA(m)
− = 0. This and (3.100) imply that measA− = 0. Owing
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to this equality and (3.93) we obtain that v � α− a. e. in Ω . Then taking into account
(3.99), we get α− � v � α+ a. e. in Ω .

Thus, the following assertion holds true: if v ∈ V , we have v ∈ ◦
W 1,p(ν,Ω) and

α− � v � α+ a. e. in Ω . From this assertion and (3.92) we infer (3.87).
Further, let s ∈ N . Using (3.91), the definition of γ and (3.86) and (3.10), we

establish that the next assertion holds true:

if v ∈ W̃ 1,p
0 (ν,Ωs) and α− � v � α+ a. e. in Ωs, we have v ∈Vs. (3.103)

Now let v ∈Vs . Clearly, v ∈ W̃ 1,p
0 (ν,Ωs) and there exists a set Es ⊂ Ωs with measure

zero such that
∀x ∈Ωs \Es, γ(v(x)) � 0. (3.104)

Moreover, taking into account conditions (3.82)-(3.85), from Lemma 3.10 we deduce
that the following assertions hold true:

if 0 � λ1 < λ2 � λ and meas{v > λ} > 0, then meas{λ1 < v < λ2} > 0, (3.105)

if λ � λ1 < λ2 � 0 and meas{v < λ} > 0, then meas{λ1 < v < λ2} > 0. (3.106)

Using (3.104)-(3.106), by analogy with the above consideration for the set V we es-
tablish that α− � v � α+ a. e. in Ωs . Thus, if v ∈ Vs , we have v ∈ W̃ 1,p

0 (ν,Ωs) and
α− � v � α+ a.e. in Ωs . This and assertion (3.103) imply (3.88). �

THEOREM 3.12. Suppose that (1/ν)1/(p−1) ∈ L1(Ω) , conditions (∗1) , (∗2) and
(∗4)-(∗6) of Theorem 3.1 are satisfied and for every s ∈ N the set Ω \Ωs is closed.
Moreover, assume that the following conditions are satisfied:

for every x′,x′′ ∈Ω we have h(x′, ·) = h(x′′, ·), (3.107)

there exists a function w ∈V such that meas{w �= 0} > 0. (3.108)

Finally, suppose that for every s ∈ N , us is a function in Vs minimizing the functional
Js +Gs on Vs . Then there exist an increasing sequence {s j} ⊂N and a function u∈V
such that assertions (3.11)-(3.13) hold true.

Proof. By virtue of Lemma 3.11 there exist α− ∈ [−∞,0] and α+ ∈ [0,+∞] such
that

V = {v ∈ ◦
W 1,p(ν,Ω) : α− � v � α+ a. e. in Ω} (3.109)

and for every s ∈ N ,

Vs = {v ∈ W̃ 1,p
0 (ν,Ωs) : α− � v � α+ a. e. in Ωs}. (3.110)

Observe that owing to (3.108) and (3.109), α− �= α+ . Thus, we have α− < α+ .
Clearly, the following cases are admissible: (i) α− �= −∞ and α+ �= +∞ ; (ii)

α− �= −∞ and α+ = +∞ ; (iii) α− = −∞ and α+ �= +∞ ; (iv) α− = −∞ and α+ =
+∞ .
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First we assume that α− �= −∞ and α+ �= +∞ . Using (3.1), (3.4)-(3.6) and the
fact that for every s ∈ N the function us minimizes the functional Js +Gs on Vs , we
establish that the sequence of the norms ‖us‖1,p,ν,s is bounded. This and condition (∗2)

of Theorem 3.1 imply that there exists a bounded sequence {ũs} in
◦
W 1,p(ν,Ω) such

that
∀s ∈ N, ũs = us a. e. in Ωs. (3.111)

For every s ∈ N we set u(1)
s = max{ũs, α−} . Clearly, {u(1)

s } is a bounded sequence in
◦
W 1,p(ν,Ω) . Using the inclusions us ∈Vs , (3.110) and (3.111) and the definition of the

functions u(1)
s , we find that

∀s ∈ N, u(1)
s � α− in Ω and u(1)

s = us a. e. in Ωs. (3.112)

Now for every s ∈ N we set u(2)
s = min{u(1)

s , α+} . Obviously, {u(2)
s } is a bounded

sequence in
◦
W 1,p(ν,Ω) , and from the definition of the functions u(2)

s , the inclusions

us ∈Vs and (3.109), (3.110) and (3.112) it follows that {u(2)
s } ⊂V and for every s ∈ N ,

u(2)
s = us a. e. in Ωs . These facts and condition (∗1) of Theorem 3.1 imply that there

exist an increasing sequence {s j} ⊂ N and a function u ∈ V such that equality (3.12)
holds true.

Using (3.12) and conditions (∗5) and (∗6) of Theorem 3.1, we get

liminf
j→∞

(Js j +Gsj)(us j) � (J +G)(u). (3.113)

Further, we fix v ∈V . Let us show that

limsup
s→∞

(Js +Gs)(us) � (J +G)(v). (3.114)

We fix an arbitrary ε > 0. Since the function ν|∇v|p is summable in Ω , there
exists δ1 > 0 such that{

for every measurable set H ⊂Ω, measH � δ1, we have∫
H ν|∇v|pdx � ε.

(3.115)

Moreover, by virtue of condition (∗4) of Theorem 3.1 there exists δ2 > 0 such that⎧⎨⎩for every measurable set H ⊂Ω, measH � δ2, we have

limsup
s→∞

∫
H∩Ωs

ψs dx � ε. (3.116)

We set δ = min(δ1,δ2) , fix a nonempty closed set H̃ in R
n such that H̃ ⊂Ω and

meas(Ω\ H̃) < δ (3.117)

and take a function ϕ ∈C∞
0 (Ω) such that 0 � ϕ � 1 in Ω and ϕ = 1 in H̃ .
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In view of condition (∗5) of Theorem 3.1 there exists a sequence vs ∈ W̃ 1,p
0 (ν,Ωs)

such that
lim
s→∞

‖vs−qsv‖Lp(ν,Ωs) = 0, (3.118)

lim
s→∞

Js(vs) = J(v). (3.119)

For every s ∈ N we set

μs =

{∫
Ω

(
1
ν

)1/(p−1)

dx

}(p−1)/2p

{‖vs−qsv‖Lp(ν,Ωs) + s−1}1/2.

Due to (3.118) we have
lim
s→∞

μs = 0. (3.120)

For every s ∈ N we set

v(1)
s = max{vs, qsv− μsqsϕ} and E(1)

s = {vs � qsv− μsqsϕ}.

If s ∈ N , we have v(1)
s ∈ W̃ 1,p

0 (ν,Ωs) and

|v(1)
s −qsv| � |vs−qsv| in Ωs . (3.121)

Moreover, using (3.4), we establish that for every s ∈ N ,

Js(v
(1)
s ) � Js(vs)+2

∫
E

(1)
s

ψs dx

+2p−1c2

∫
E(1)

s

ν|∇v|pdx+2p−1μ p
s c2

∫
Ω
ν|∇ϕ |pdx. (3.122)

Next, for every s ∈ N we set

v(2)
s = min{v(1)

s , qsv+ μsqsϕ} and E(2)
s = {v(1)

s � qsv+ μsqsϕ}.

If s ∈ N , we have v(2)
s ∈ W̃ 1,p

0 (ν,Ωs) and

|v(2)
s −qsv| � |v(1)

s −qsv| in Ωs . (3.123)

Moreover, using (3.4), we obtain that for every s ∈ N ,

Js(v
(2)
s ) � Js(v

(1)
s )+2

∫
E

(2)
s

ψs dx

+2p−1c2

∫
E(2)

s

ν|∇v|pdx+2p−1μ p
s c2

∫
Ω
ν|∇ϕ |pdx. (3.124)

Observe that owing to (3.118), (3.121) and (3.123)

lim
s→∞

‖v(2)
s −qsv‖Lp(ν,Ωs) = 0. (3.125)
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Besides, by virtue of the definition of the functions v(1)
s and v(2)

s , the inclusion v ∈ V
and (3.109) for every s ∈ N ,

α−− μsqsϕ � v(2)
s � α+ + μsqsϕ a. e. in Ωs . (3.126)

For every s ∈ N we set Es = E(1)
s ∪E(2)

s . Clearly, for every s ∈ N ,

measEs � meas(H̃ ∩Es)+meas(Ω\ H̃), (3.127)∫
Es

ψs dx �
∫

H̃∩Es

ψs dx+
∫
(Ω\H̃)∩Ωs

ψs dx. (3.128)

Moreover, taking into account that ϕ = 1 in H̃ , from the definition of the sets E(1)
s and

E(2)
s and (3.121) we deduce that for every s ∈ N ,

meas(H̃ ∩Es) � μs. (3.129)

This along with (3.120) and condition (∗4) of Theorem 3.1 implies that

lim
s→∞

∫
H̃∩Es

ψs dx = 0. (3.130)

Using (3.116), (3.117), (3.128) and (3.130), we get

limsup
s→∞

∫
Es

ψs dx � ε. (3.131)

Furthermore, by virtue of (3.115), (3.117), (3.120), (3.127) and (3.129) we have

limsup
s→∞

∫
Es

ν|∇v|pdx � ε. (3.132)

From (3.119), (3.120), (3.122), (3.124), (3.131) and (3.132) we infer that

limsup
s→∞

Js(v
(2)
s ) � J(v)+ (4+2pc2)ε. (3.133)

Now we set

τ0 = max{α+,−α−} and τ = 1−2sign(τ0 −α+).

Since α− < α+ , we have τ0 > 0. Besides, observe that τ = 1 if α+ � −α− and
τ = −1 if α+ < −α− .

For every s ∈ N we define

βs =
τ0 − μs

τ0 + μs
.

For every s ∈ N we have βs < 1 and

μs

1−βs
=

1
2
(τ0 + μs). (3.134)
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Moreover, (3.120) implies that
lim
s→∞

βs = 1. (3.135)

For every s ∈ N we set

ws = βsv
(2)
s + τμsqsϕ .

Obviously, if s ∈ N , we have ws ∈ W̃ 1,p
0 (ν,Ωs) . From (3.120), (3.125) and (3.135) it

follows that
lim
s→∞

‖ws−qsv‖Lp(ν,Ωs) = 0. (3.136)

Next, by virtue of (3.135) there exists s′ ∈ N such that

∀s ∈ N, s � s′, βs ∈ (0,1). (3.137)

Using (3.3) and (3.137), we obtain that for every s ∈ N , s � s′ ,

Js(ws) � βsJs(v
(2)
s )+ (1−βs)Js

(
τμs

1−βs
qsϕ
)

. (3.138)

Furthermore, in view of (3.1), (3.4), (3.120), (3.134) and (3.135)

limsup
s→∞

(1−βs)Js

(
τμs

1−βs
qsϕ
)

� 0.

This along with (3.133), (3.135), (3.137) and (3.138) implies that

limsup
s→∞

Js(ws) � J(v)+ (4+2pc2)ε. (3.139)

Besides, by virtue of (3.136) and condition (∗6) of Theorem 3.1 we have

lim
s→∞

Gs(ws) = G(v). (3.140)

Now observe that owing to (3.126), (3.137) and (3.110) for every s∈N , s � s′ , we
have ws ∈Vs . Then taking into account that for every s ∈ N the function us minimizes
the functional Js + Gs on Vs , for every s ∈ N , s � s′ , we get (Js + Gs)(us) � (Js +
Gs)(ws) . From this along with relations (3.139) and (3.140) and the arbitrariness of ε
we conclude that inequality (3.114) holds true. This inequality and (3.113) imply that
assertions (3.11) and (3.13) hold true.

Thus, in the case where α− �= −∞ and α+ �= +∞ the conclusion of the theorem
is valid.

In cases (ii) α− �= −∞ and α+ = +∞ and (iii) α− = −∞ and α+ �= +∞ the con-
clusion of the theorem is valid as well. Proving this fact, we obtain the inclusion u ∈V
and (3.12) arguing by analogy with the corresponding part of the above consideration
for case (i) α− �= −∞ and α+ �= +∞ , and after that we establish the validity of asser-
tions (3.11) and (3.13) by analogy with the corresponding part of the proof of Theorem
3.1.
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Finally, consider case (iv) α− = −∞ and α+ = +∞ . In this case due to (3.109)

V =
◦
W 1,p(ν,Ω) and due to (3.110) for every s ∈ N , Vs = W̃ 1,p

0 (ν,Ωs) . Moreover,
observe that by virtue of conditions (∗5) and (∗6) of Theorem 3.1 the sequence {Js +
Gs} Γ-converges to the functional J +G . Besides, in view of the fact that for every
s∈N the function us minimizes the functional Js +Gs on W̃ 1,p

0 (ν,Ωs) and (3.1), (3.4)-
(3.6) we have: the sequence of the norms ‖us‖1,p,ν,s is bounded. Therefore, taking
into account conditions (∗1) and (∗2) of Theorem 3.1 and applying Theorem 2.5, we
establish that the conclusion of the given theorem is valid. �

REMARK 3.13. If condition (3.108) is not satisfied, and all other conditions of
Theorem 3.12 are satisfied, for every s ∈ N we have us = 0 a. e in Ωs , and for the
function u :Ω→ R such that u = 0 in Ω we have u∈V , the function u minimizes the
functional J +G on V and ‖us−qsu‖Lp(ν,Ωs) → 0. However, generally speaking there
is no any increasing sequence {s j} ⊂ N such that (Js j +Gsj)(us j ) → (J +G)(u) . The
corresponding example will be considered in the next section.

4. Comments and examples

In this section we make comments and give examples concerning the realization
of conditions under which the main results of Section 3 were obtained.

As far as condition (∗1) of Theorem 3.1 is concerned the following propositions
hold true.

PROPOSITION 4.1. Let p < n, t � 1/(p−1) , t > n/p, t1 > nt/(t p−n) , and let

1/ν ∈ Lt(Ω) and ν ∈ Lt1(Ω) . Then the embedding of
◦
W 1,p(ν,Ω) into Lp(ν,Ω) is

compact.

PROPOSITION 4.2. Let the function ν be the restriction on Ω of a function from

the Muckenhoupt class Ap . Then the embedding of
◦
W 1,p(ν,Ω) into Lp(ν,Ω) is com-

pact.

The detailed proofs of these propositions one can find for instance in [27].
Observe that under conditions on the weighted function of such a kind as in Propo-

sition 4.1 the embeddings of weighted Sobolev spaces into nonweighted and weighted
Lebesgue spaces were considered for instance in [5], [18], [25] and [30].

Concerning the definition of the Muckenhoupt class Ap see [19]. For example
functions of the form w(x) = |x|β , x ∈ R

n\{0} , where β ∈ (−n,n(p−1)) , belong to
this class.

Condition (∗2) of Theorem 3.1 is satisfied for instance in the case of special
strongly perforated structure of domains Ωs and certain behaviour of the function ν
in neighbourhoods of holes (see details in [27]; we only note that a power weight is
admissible if the distance between some neighbourhoods of the holes and the point of
the degeneration or singularity of the weight may go to zero sufficiently slowly).

Next, let us state a proposition concerning condition (∗3) of Theorem 3.1.
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PROPOSITION 4.3. Suppose that c > 0 and for every open set H in R
n such that

H ⊂Ω we have
liminf

s→∞
meas(H ∩ Ωs) � cmeasH. (4.1)

Then for every increasing sequence {mj} ⊂ N ,

meas(Ω\
⋃
j

Ωmj ) = 0. (4.2)

Proof. First of all we observe that by virtue of the condition of the proposition
inequality (4.1) holds true for every measurable set H in R

n such that H ⊂Ω . We also
note that (4.1) implies that c � 1.

For every s ∈ N we set Φs = Ω\Ωs .
Now let {mj} ⊂ N be an arbitrary increasing sequence. We fix ε > 0. In view of

the condition of the proposition there exists s(1) ∈N such that for every s∈N , s � s(1) ,
measΩs � cmeasΩ− ε/2. Then fixing j1 ∈ N such that mj1 � s(1) , we get

measΦmj1
� (1− c)measΩ+

ε
2

. (4.3)

Applying (4.1) for the set Φmj1
, we establish that there exists s(2) ∈ N such that for

every s ∈ N , s � s(2) ,

meas(Φmj1
∩ Ωs) � cmeasΦmj1

− ε
4

. (4.4)

We fix j2 ∈ N such that j2 > j1 and mj2 � s(2) . Clearly,

meas(Φmj1
∩ Φmj2

) = measΦmj1
−meas(Φmj1

\Φmj2
),

Φmj1
\Φmj2

= Φmj1
∩ Ωmj2

.

These equalities along with (4.3) and (4.4) imply that

meas(Φmj1
∩Φmj2

) � (1− c)2measΩ+
(

1
2

+
1
4

)
ε. (4.5)

After that applying (4.1) for the set Φmj1
∩ Φmj2

and using (4.5), we find j3 ∈ N ,
j3 > j2 , such that

meas(Φmj1
∩ Φmj2

∩ Φmj3
) � (1− c)3measΩ+

(
1
2

+
1
4

+
1
8

)
ε.

Proceeding the selection of numbers jr ∈ N , r = 4,5, . . . , by the described way and
taking into account that 1− c∈ [0,1) , for some k ∈ N we obtain j1 < j2 < .. . < jk ,

meas

( k⋂
r=1

Φmjr

)
� (1− c)kmeasΩ+

(
1
2

+
1
4

+ . . .+
1
2k

)
ε
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and (1− c)kmeasΩ� ε . Therefore, meas
(⋂

j
Φmj

)
= 0. This means that equality (4.2)

holds true. �

We note that in the case of perforated structure of the domains Ωs which was con-
sidered in [27] the condition of Proposition 4.3 is satisfied and consequently, condition
(∗3) of Theorem 3.1 is satisfied.

Further, let us give some results concerning condition (∗4) of Theorem 3.1.

PROPOSITION 4.4. Let ψ ∈ L1(Ω) and ‖ψs−ψ‖L1(Ωs) → 0 . Then condition (∗4)
of Theorem 3.1 is satisfied.

PROPOSITION 4.5. Let r > 1 and M > 0 , and let for every s ∈ N , ψs ∈ Lr(Ωs)
and ‖ψs‖Lr(Ωs) � M. Then condition (∗4) of Theorem 3.1 is satisfied.

The proofs of these propositions are simple.
Observe that the latter proposition is a particular case of the following result.

PROPOSITION 4.6. Let F : [0,+∞) → R be a nonnegative and nondecreasing
function such that F(η) → +∞ as η → +∞ . Let M > 0 . Suppose that for every
s∈N , F(ψs)ψs ∈ L1(Ωs) and ‖F(ψs)ψs‖L1(Ωs) � M. Then condition (∗4) of Theorem
3.1 is satisfied.

Proof. Let ε > 0. We fix λ > 0 such that

F(λ ) � 2M/ε (4.6)

and set
δ = ε/(2λ ). (4.7)

Let E ⊂Ω be an arbitrary measurable set such that

measE � δ . (4.8)

Now we fix s ∈ N and set H ′
s = E ∩{ψs � λ} , H ′′

s = E ∩{ψs > λ} . Clearly,∫
E
⋂
Ωs

ψs dx =
∫

H′
s

ψs dx+
∫
H′′

s

ψs dx, (4.9)∫
H′

s

ψs dx � λ measE. (4.10)

Assume that H ′′
s �= /0 . Since the function F is nondecreasing, we have

ψs � 1
F(λ )

F(ψs)ψs in H ′′
s .

Therefore, ∫
H′′

s

ψs dx � 1
F(λ )

∫
Ωs

F(ψs)ψs dx. (4.11)
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Obviously, this inequality also holds true if H ′′
s = /0 . By virtue of (4.9)-(4.11)∫

E
⋂
Ωs

ψs dx � λ measE +
1

F(λ )
‖F(ψs)ψs‖L1(Ωs).

Hence taking into account that ‖F(ψs)ψs‖L1(Ωs) � M and using (4.6)-(4.8), we get∫
E
⋂
Ωs

ψs dx � ε.

Thus, we conclude that condition (∗4) of Theorem 3.1 is satisfied. �

COROLLARY 4.7. Let M > 0 , and let for every s ∈ N , ψs ln(1 +ψs) ∈ L1(Ωs)
and ‖ψs ln(1+ψs)‖L1(Ωs) � M. Then condition (∗4) of Theorem 3.1 is satisfied.

For the proof of this result it suffices to apply Proposition 4.6 to the function F :
[0,+∞) → R defined by F(η) = ln(1+η), η ∈ [0,+∞) .

Now we state a useful criterion for condition (∗4) of Theorem 3.1.
Let ψ : [0,+∞) → R be the function such that for every η ∈ [0,+∞),

ψ(η) = limsup
s→∞

∫
{ψs>η}

ψs dx.

PROPOSITION 4.8. Condition (∗4) of Theorem 3.1 is satisfied if and only if

ψ(η) → 0 as η → +∞. (4.12)

Proof. By virtue of condition (3.1) there exists M > 0 such that for every s ∈ N ,
‖ ψs ‖L1(Ωs)� M. Using this fact, we obtain that for every η ∈ (0,+∞) and s ∈ N ,

meas{ψs > η} � M/η . (4.13)

Let condition (∗4) of Theorem 3.1 be satisfied. Suppose that assertion (4.12) does
not hold true. Then there exist ε > 0 and a sequence {ηk} ⊂ (0,+∞) such that for
every k ∈ N , ηk � k and ψ(ηk) � ε . Therefore, there exists an increasing sequence
{sk} ⊂ N such that for every k ∈ N ,∫

{ψsk >ηk}
ψsk dx � ε

2
. (4.14)

Since by assumption condition (∗4) of Theorem 3.1 is satisfied, there exists δ > 0 such
that {

for every measurable set E ⊂Ω, measE � δ , we have

limsups→∞
∫
E
⋂
Ωs
ψs dx � ε/8 .

(4.15)

Moreover, since ηk → +∞ , there exists an increasing sequence {ki} ⊂ N such that

∀ i ∈ N, ηki � 2iM/δ . (4.16)
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For every i ∈ N we set Hi = {ψski
> ηki} . From (4.13) and (4.16) it follows that

∀ i ∈ N, measHi � δ/2i . (4.17)

We set H =
∞⋃

i=1
Hi . By virtue of (4.17) we have measH � δ . Due to this and (4.15)

there exists s′ ∈ N such that

∀s ∈ N, s � s′,
∫

H∩Ωs

ψs dx � ε
4

. (4.18)

Fixing i ∈ N such that ski � s′ , from (4.18) we get∫
Hi

ψski
dx � ε

4
.

However, this inequality contradicts (4.14). The contradiction obtained proves that
assertion (4.12) holds true.

Conversely, let assertion (4.12) hold true. Then taking an arbitrary ε > 0, we fix
η > 0 such that

ψ(η) � ε/4 (4.19)

and set
δ = ε/(2η) . (4.20)

In view of (4.19) and the definition of the function ψ there exists s′′ ∈ N such that

∀s ∈ N, s � s′′,
∫
{ψs>η}

ψs dx � ε
2

. (4.21)

Let E ⊂ Ω be an arbitrary measurable set such that measE � δ . Then fixing s ∈ N ,
s � s′′ , with the use of (4.20) and (4.21) we obtain∫

E∩Ωs

ψs dx =
∫

E∩{ψs�η}
ψs dx+

∫
E∩{ψs>η}

ψs dx � ηmeasE +
∫
{ψs>η}

ψs dx � ε.

Hence
limsup

s→∞

∫
E∩Ωs

ψs dx � ε.

Thus, we conclude that condition (∗4) of Theorem 3.1 is satisfied. �

We utilize Proposition 4.8 for the justification of the immediate example. In this
connection we introduce the following notation: for every s ∈ N ,

Zs = {z ∈ R
n : szi ∈ Z, i = 1, . . . ,n};

for every z ∈ R
n and s ∈ N ,

Qs(z) = {x ∈ R
n : |xi − zi| < 1

2s
, i = 1, . . . ,n}.



550 ALEXANDER A. KOVALEVSKY AND OLGA A. RUDAKOVA

Observe that
∀s ∈ N, R

n =
⋃
z∈Zs

Qs(z), (4.22)

if s ∈ N, z,z′ ∈ Zs and z �= z′, we have Qs(z)∩Qs(z′) = /0. (4.23)

EXAMPLE 4.9. Let ψ : R
n → R be a nonnegative 1-periodic function such that

ψ |Q1(0) ∈ L1(Q1(0)) . Suppose that for every s ∈ N the function ψs is defined on Ωs

by
ψs(x) = ψ(sx), x ∈Ωs.

Then condition (3.1) and condition (∗4) of Theorem 3.1 are satisfied.
In fact, let R be a positive number such that for every x ∈Ω , |x| � R . We denote

by ĉ the measure of the open ball with center at zero and radius R+n . Finally, we set
ψ̂ = ψ |Q1(0) . Now we fix s ∈ N and set

Z0,s = {z ∈ Zs : Qs(z)∩Ω �= /0}, Q(s) =
⋃

z∈Z0,s

Qs(z) .

Clearly,
measQ(s) � ĉ. (4.24)

Let ψ̃s : Q(s) → R be the function such that for every x ∈ Q(s) , ψ̃s(x) = ψ(sx) . Taking
into account the nonnegativity and periodicity of ψ and the summability of ψ̂ and
using (4.22)-(4.24), we establish that ψs ∈ L1(Ωs) and

‖ψs‖L1(Ωs) �
∫

Q(s)
ψ̃s dx � ĉ

∫
Q1(0)

ψ̂ dx. (4.25)

Next, let η ∈ [0,+∞). Due to the facts which we just mentioned∫
{ψs>η}

ψs dx �
∫
{ψ̃s>η}

ψ̃s dx = ∑
z∈Z0,s

∫
Qs(z)∩{ψ̃s>η}

ψ̃s dx � ĉ
∫
{ψ̂>η}

ψ̂ dx. (4.26)

In view of (4.25) condition (3.1) is satisfied and by virtue of (4.26) ψ(η) → 0 as η →
+∞ . The latter assertion and Proposition 4.8 imply that condition (∗4) of Theorem 3.1
is satisfied.

As far as condition (∗5) of Theorem 3.1 is concerned we note the following. The

Γ-convergence of the sequence {Js} to a functional J :
◦
W 1,p(ν,Ω) → R holds true for

instance in the case of certain periodicity of both the integrands fs(x,ξ ) with respect
to the spatial variable x and the perforated structure of the domains Ωs . We add that
in this case J is an integral functional, and for its integrand there is an effective repre-
sentation. The corresponding results will be given in a forthcoming publication of the
authors. Moreover, we remark that in the general case theorems on the selection from
the sequence {Js} of a subsequence Γ-convergent to an integral functional defined on
◦
W 1,p(ν,Ω) are given in [26], [31] and [32].
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Next, consider an example where all the assumptions made in Section 3 on the
functionals Gs are realized and condition(∗6) of Theorem 3.1 is satisfied.

EXAMPLE 4.10. Let c′ , c′′ > 0, ψ ∈ L1(Ω) , ψ � 0 in Ω , and let g :Ω×R→ R

be a Caratheódory function such that for almost every x ∈Ω and every η ∈ R ,

c′ν(x)|η |p −ψ(x) � g(x,η) � c′′ν(x)|η |p +ψ(x). (4.27)

Suppose that for every s ∈ N the functional Gs is defined on W̃ 1,p
0 (ν,Ωs) as follows:

Gs(u) =
∫
Ωs

g(x,u)dx, u ∈ W̃ 1,p
0 (ν,Ωs).

Using (4.27), it is easy to verify that condition (3.5) is satisfied and condition (3.6)
is fulfilled with c3 = c′ and c4 = ‖ψ‖L1(Ω) + 1. Furthermore, if the embedding of
◦
W 1,p(ν,Ω) into Lp(ν,Ω) is compact and the sequence of the spaces W̃ 1,p

0 (ν,Ωs) is

strongly connected with the space
◦
W 1,p(ν,Ω) , for every s ∈ N , Gs is a weakly contin-

uous functional on W̃ 1,p
0 (ν,Ωs) .

Using (4.27) and Egoroff’s theorem, we establish the following fact:{
for evary v ∈ ◦

W 1,p(ν,Ω) and every sequence vs ∈ W̃ 1,p
0 (ν,Ωs) such that

‖vs−qsv‖Lp(ν,Ωs) → 0 we have Gs(vs)−Gs(qsv) → 0.
(4.28)

Now suppose that the next condition is satisfied:{
there exists a bounded measurable function b on Ω such that

for every open cube Q ⊂Ω, lims→∞meas(Q∩Ωs) =
∫
Q bdx.

(4.29)

We define the functional G :
◦
W 1,p(ν,Ω) → R by

G(v) =
∫
Ω

bg(x,v)dx, v ∈ ◦
W 1,p(ν,Ω).

It is not difficult to see that in view of condition (4.29) for every function v∈ ◦
W 1,p(ν,Ω) ,

Gs(qsv)→G(v) . This and (4.28) imply that condition (∗6) of Theorem 3.1 is satisfied.
It remains to note that condition (4.29) is satisfied for instance in the case where

the domains Ωs have a periodic perforated structure.
Further, we pass to the consideration of condition (∗7) of Theorem 3.1. An ex-

ample of the realization of this condition is actually given in Remark 3.5. Evidently,
condition (∗7) of Theorem 3.1 is satisfied if for almost every x ∈Ω the function h(x, ·)
is nonincreasing in R .

EXAMPLE 4.11. Let w ∈ ◦
W 1,p(ν,Ω) , H be a measurable set in R

n such that
H ⊂Ω and measH > 0, and let the function h be defined on Ω×R by

h(x,η) =

{
−η+w(x) if x ∈ H,

0 if x ∈Ω\H.
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Clearly, condition (3.8) and condition (∗7) of Theorem 3.1 are satisfied, and the set V

has the following representation: V = {v∈ ◦
W 1,p(ν,Ω) : v � w a. e. in H} . Moreover, if

s∈N and meas(H∩Ωs)> 0, we have Vs = {v∈W̃ 1,p
0 (ν,Ωs) : v � qsw a. e. in H∩Ωs} .

EXAMPLE 4.12. Let μ : Ω→ R be a function such that
√

2/e � μ � 1 in Ω ,
and suppose that the function h satisfies the next conditions: if (x,η) ∈ Ω×R and
η <−3π/2, h(x,η) > 0; if (x,η)∈Ω×R and η �−3π/2, h(x,η) = μ(x)sinη−eη .
It is easy to verify that for every x ∈ Ω the function h(x, ·) is not nonincreasing in R .
However, condition (∗7) of Theorem 3.1 is satisfied.

Now we give an example demonstrating the significance of condition (∗3) of The-
orem 3.1.

EXAMPLE 4.13. Let us suppose that ν = 1 in Ω . Then Lp(ν,Ω) = Lp(Ω) and
◦
W 1,p(ν,Ω) =

◦
W 1,p(Ω) . Therefore, condition (∗1) of Theorem 3.1 is satisfied.

Let B be an open ball of R
n such that B ⊂ Ω . Owing to known extension re-

sults for Sobolev spaces (see for instance [17, Th.7.25]) there exists a linear continuous
operator l : W 1,p(Ω \B) →W 1,p(Ω) such that for every u ∈W 1,p(Ω \B) , lu = u in
Ω\B .

Suppose that for every s ∈ N , Ωs = Ω\B . Obviously, for every s ∈ N ,

W̃ 1,p
0 (ν,Ωs) ⊂W 1,p(Ω\B).

Moreover, if s ∈ N and v ∈ W̃ 1,p
0 (ν,Ωs) , we have lv ∈ ◦

W 1,p(ν,Ω) . For every s ∈ N

we define the operator ls : W̃ 1,p
0 (ν,Ωs) →

◦
W 1,p(ν,Ω) by lsv = lv , v∈ W̃ 1,p

0 (ν,Ωs) . It
is easy to see that for every s ∈ N the operator ls is linear and continuous. Besides, the
sequence of the norms ‖ls‖ is bounded. Finally, for every s ∈ N and u ∈ W̃ 1,p

0 (ν,Ωs)
we have qs(lsu) = u .

Thus, we conclude that the sequence of the spaces W̃ 1,p
0 (ν,Ωs) is strongly con-

nected with the space
◦
W 1,p(ν,Ω) . This means that condition (∗2) of Theorem 3.1 is

satisfied.
Evidently, B ⊂ Ω\⋃

s
Ωs . This implies that meas(Ω\⋃

s
Ωs) > 0. Therefore, con-

dition (∗3) of Theorem 3.1 is not satisfied.
Next, let ϕ ∈ C∞

0 (Ω) , −1 � ϕ � 0 in Ω and ϕ = −1 in B . Suppose that c1 =
21−p , c2 = 2p−1 and for every s ∈ N the function ψs be defined on Ωs by ψs(x) =
2p−1|∇ϕ(x)|p , x ∈Ωs . Clearly, condition (3.1) and condition (∗4) of Theorem 3.1 are
satisfied. Suppose that for every s ∈ N the function fs is defined on Ωs×R

n by

fs(x,ξ ) = |ξ −∇ϕ(x)|p, (x,ξ ) ∈Ωs ×R
n .

Obviously, conditions (3.2)-(3.4) are satisfied.
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Let χ :Ω→ R be the characteristic function of Ω\B , and let J :
◦
W 1,p(ν,Ω) → R

be the functional such that for every v ∈ ◦
W 1,p(ν,Ω) ,

J(v) =
∫
Ω
χ |∇v−∇ϕ |pdx.

Observe that

for every v ∈ ◦
W 1,p(ν,Ω) and s ∈ N, Js(qsv) = J(v). (4.30)

Using this fact, we establish that

for every s ∈ N and v ∈ W̃ 1,p
0 (ν,Ωs), Js(v) = J(lv). (4.31)

Let us show that the sequence {Js} Γ-converges to the functional J . We fix a

function v ∈ ◦
W 1,p(ν,Ω) and a sequence vs ∈ W̃ 1,p

0 (ν,Ωs) such that

lim
s→∞

‖vs−qsv‖Lp(ν,Ωs) = 0. (4.32)

Define a = liminf
s→∞

Js(vs) . Clearly, a ∈ [0,+∞] and there exists an increasing sequence

{sk} ⊂ N such that Jsk(vsk ) → a . This and (4.31) imply that

J(lvsk ) → a. (4.33)

Suppose that a �= +∞ . Then in view of (4.32), (4.33) and the properties of the operator

l the sequence {lvsk} is bounded in
◦
W 1,p(ν,Ω) . Therefore, there exist an increasing

sequence {mj} ⊂ {sk} and a function w ∈ ◦
W 1,p(ν,Ω) such that

lvmj → w weakly in
◦
W 1,p(ν,Ω). (4.34)

Hence liminf
j→∞

J(lvmj ) � J(w) . From this and (4.33) we get

a � J(w). (4.35)

Note that
J(w) = J(v). (4.36)

In fact, since the embedding of
◦
W 1,p(ν,Ω) into Lp(ν,Ω) is compact, from (4.34) we

obtain that lvmj → w strongly in Lp(Ω) . Then vmj → w|Ω\B strongly in Lp(Ω \B) .
This and (4.32) imply that w = v a. e. in Ω \ B . Hence ∇w = ∇v a. e. in Ω \B .
Therefore, equality (4.36) holds true. Then due to (4.35) a � J(v) . Obviously, this
inequality also holds true in the case a = +∞ . Thus, we get liminf

s→∞
Js(vs) � J(v) .

The result obtained and assertion (4.30) allow us to conclude that the sequence {Js}
Γ-converges to the functional J . This means that condition (∗5) of Theorem 3.1 is
satisfied.
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Next, we observe that for every open cube Q ⊂Ω and s ∈ N ,

meas(Q∩Ωs) =
∫

Q
χ dx. (4.37)

Suppose that for every s ∈ N the functional Gs is defined on W̃ 1,p
0 (ν,Ωs) by

Gs(v) =
∫
Ω\B

|v−ϕ |pdx, v ∈ W̃ 1,p
0 (ν,Ωs),

and let G :
◦
W 1,p(ν,Ω) → R be the functional such that for every v ∈ ◦

W 1,p(ν,Ω) ,

G(v) =
∫
Ω
χ |v−ϕ |pdx.

From the considerations given in Example 4.10 and (4.37) we deduce that for every
s∈N , Gs is a weakly continuous functional on W̃ 1,p

0 (ν,Ωs) , and conditions (3.5), (3.6)
and condition (∗6) of Theorem 3.1 are satisfied.

Next, suppose that the function h is defined on Ω×R by

h(x,η) = −η+ χ(x)ϕ(x), (x,η) ∈Ω×R .

Clearly, condition (3.8) and condition (∗7) of Theorem 3.1 are satisfied. Moreover,
V �= /0 . For instance −ϕ ∈V .

For every s ∈ N we set us = qsϕ . It is easy to see that for every s ∈ N , us ∈ Vs

and the function us minimizes the functional Js +Gs on the set Vs .
Now let us prove the following assertion:

if u ∈ ◦
W 1,p(ν,Ω) and ‖us−qsu‖Lp(ν,Ωs) → 0, we have u /∈V. (4.38)

In fact, let u ∈ ◦
W 1,p(ν,Ω) and ‖us−qsu‖Lp(ν,Ωs) → 0. Hence

u = ϕ a. e. in Ω\B . (4.39)

Let σ be a function in C1(R) such that σ is nondecreasing in R , σ = 0 in (−∞,0]

and σ = 1 in [1/2,+∞) . Since u−ϕ ∈ ◦
W 1,1(Ω) , we have σ(u−ϕ) ∈ ◦

W 1,1(Ω) and
∇σ(u−ϕ) = σ ′(u−ϕ)∇(u−ϕ) a. e. in Ω . This and (3.63) imply that∫

Ω
σ(u−ϕ)dx � C

∫
Ω
σ ′(u−ϕ)|∇(u−ϕ)|dx. (4.40)

We set B′ = {x ∈ B : u(x)−ϕ(x) < 1/2} and suppose that measB′ = 0. Then using
(4.39) and taking into account that σ ′ = 0 in [1/2,+∞) , we get that the integral in
the right-hand side of (4.40) is equal to zero. Therefore, σ(u−ϕ) = 0 a. e. in Ω .
On the other hand, since σ = 1 in [1/2,+∞) we have σ(u−ϕ) = 1 in B \B′ . The
contradiction obtained shows that measB′ > 0. Suppose that u ∈ V . In view of (3.9)
there exists a set E ⊂Ω with measure zero such that for every x∈Ω\E , h(x,u(x)) � 0.
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Let x∈ B′ \E . We have 0 � h(x,u(x)) =−u(x)+χ(x)ϕ(x) =−u(x) . Hence u(x) � 0.
However, taking into account the definition of the set B′ and the fact that ϕ = −1 in
B , we obtain u(x) < −1/2. The contradiction obtained proves that u /∈V .

Thus, assertion (4.38) holds true. By virtue of this assertion there are no any
increasing sequence {s j} ⊂ N and any function u ∈V such that assertion (3.12) holds
true.

Now we conclude that all the conditions of Theorem 3.1 are satisfied except for
condition (∗3) , and the conclusion of the theorem does not hold true.

Thus, condition (∗3) in Theorem 3.1 is significant.
At the same time in connection with Remark 3.4 we observe that for every x ∈Ω ,

h(x) = (χϕ)(x) , and the function χϕ does not belong to W 1,1(Ω) . Consequently,

there is no any function z ∈ ◦
W 1,p(ν,Ω) such that h = z a. e. in Ω .

Further, we give an example where conditions (∗′1) and (∗′2) of Theorem 3.6 are
satisfied.

EXAMPLE 4.14. For every s ∈ N we set Z′
s = {z ∈ Zs : Qs(z) ⊂ Ω} . Obviously,

there exists s′ ∈ N such that for every s ∈ N , s > s′ , the set Z′
s is nonempty. Let for

every s ∈ N , s > s′ , and z ∈ Z′
s , ws,z be a function in C∞

0 (Q1(0)) . We assume that
there exists a nonnegative function a ∈ L1(Q1(0)) such that for every s ∈ N , s > s′ ,
and z ∈ Z′

s ,
|∇ws,z|p � a in Q1(0).

For every s ∈ N , s > s′ , we define the function ws : Ω→ R by

ws(x) =

⎧⎪⎨⎪⎩
1
s

ws,z(s(x− z)) if x ∈ Qs(z) and z ∈ Z′
s ,

0 if x ∈Ω\ ⋃
z∈Z′

s

Qs(z).

For every s ∈ N , s � s′ , we set ws = ws′+1 . Clearly, {ws} ⊂ C∞
0 (Ω) . Let for every

s ∈ N , ys = ws|Ωs . Evidently, for every s ∈ N we have ys ∈ W̃ 1,p
0 (ν,Ωs) . Supposing

that the function ν is bounded in Ω , we establish that the sequence of the functions ys

satisfies conditions (∗′1) and (∗′2) of Theorem 3.6.

Next, consider an example which shows that inclusion (3.66) is essential for (3.67).

EXAMPLE 4.15. For every m∈ N we set B(m) = {x∈ R
n : |x|� 1−1/2m} . Sup-

pose that Ω= {x ∈ R
n : |x| < 1} and the function ν is defined on Ω by

ν(x) =

{
1 if x ∈ B(1),

2−(m+1)p if x ∈ B(m+1) \B(m) and m ∈ N.

Obviously, ν > 0 in Ω , ν ∈ L1(Ω) and (1/ν)1/(p−1) ∈ L1
loc(Ω) . Moreover, for every

m ∈ N we have ∫
B(m+1)\B(m)

(
1
ν

)1/(p−1)

dx > 2(m+p)/(p−1)−nmeasΩ.
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This implies that (1/ν)1/(p−1) /∈ L1(Ω) .
Now let ϕ : Ω→ R be the function such that for every x ∈Ω , ϕ(x) = 1. Clearly,

ϕ /∈ ◦
W 1,1(Ω). (4.41)

However,

ϕ ∈ ◦
W 1,p(ν,Ω). (4.42)

In fact, it is easy to see that ϕ ∈ W 1,p(ν,Ω) . For every m ∈ N we fix a function
ϕm ∈C∞

0 (Ω) such that 0 � ϕm � 1 in Ω , ϕm = 1 in B(m) , ϕm = 0 in Ω\B(m+1) and
|∇ϕm|� 2mc0 in Ω , where c0 > 0 depends only on n . Then for every m∈N we obtain
that ‖ϕm −ϕ‖p

1,p,ν � 2−mn2(cp
0 + 1)measΩ . Hence ϕm → ϕ strongly in W 1,p(ν,Ω) .

Therefore, inclusion (4.42) is valid.

From (4.41) and (4.42) it follows that the inclusion
◦
W 1,p(ν,Ω) ⊂ ◦

W 1,1(Ω) does
not hold true.

In conclusion of the section we consider an example where all the conditions of
Theorem 3.12 are satisfied except for condition (3.108), and there is no any increasing
sequence {s j} ⊂ N such that (Js j +Gsj)(us j ) → (J +G)(u) , where u minimizes the
functional J +G on V .

EXAMPLE 4.16. Let ϕ ∈C∞
0 (Q1(0)) be a function such that ϕ = 1 in Q2(0) . We

set
α =

∫
Q1(0)

|∇ϕ |p dx and β = max
Q1(0)

|∇ϕ |.

Obviously, α > 0.
Let for every s ∈ N the set Z′

s be defined as in Example 4.14. Clearly, there exists
s′ ∈ N such that for every s ∈ N , s > s′ , the set Z′

s is nonempty. For every s ∈ N ,
s > s′ , we define the function ϕs : Ω→ R by

ϕs(x) =

⎧⎪⎨⎪⎩
1
s
ϕ(s(x− z)) if x ∈ Qs(z) and z ∈ Z′

s ,

0 if x ∈Ω\ ⋃
z∈Z′

s

Qs(z).

For every s ∈ N , s � s′ , we set ϕs = ϕs′+1 . Evidently, {ϕs} ⊂C∞
0 (Ω) . Moreover, we

have

lim
s→∞

‖ϕs‖Lp(Ω) = 0, (4.43)

lim
s→∞

∫
Ω
|∇ϕs|p dx = αmeasΩ, (4.44)

∀s ∈ N, |∇ϕs| � β in Ω. (4.45)

Let u : Ω→ R be the function such that for every x ∈ Ω , u(x) = 0. From (4.43)
and (4.44) it follows that

ϕs → u weakly in
◦
W 1,p(Ω). (4.46)
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Suppose that ν = 1 in Ω . Obviously, (1/ν)1/(p−1) ∈ L1(Ω) , Lp(ν,Ω) = Lp(Ω)

and
◦
W 1,p(ν,Ω) =

◦
W 1,p(Ω) . Therefore, condition (∗1) of Theorem 3.1 is satisfied.

Assume that for every s ∈ N , Ωs = Ω . Clearly, if s ∈ N , the set Ω\Ωs is closed

and W̃ 1,p
0 (ν,Ωs) =

◦
W 1,p(ν,Ω) . Furthermore, condition (∗2) of Theorem 3.1 is satis-

fied.
Next, suppose that c1 = 21−p , c2 = 2p−1 and for every s ∈ N the function ψs is

defined on Ωs by ψs(x) = 2p−1|∇ϕs(x)|p , x ∈Ωs . We observe that due to (4.44) con-
dition (3.1) is satisfied, and owing to (4.45) condition (∗4) of Theorem 3.1 is satisfied.

Now assume that for every s ∈ N the function fs is defined on Ωs×R
n by

fs(x,ξ ) = |ξ +∇ϕs(x)|p, (x,ξ ) ∈Ωs ×R
n.

Evidently, conditions (3.2)-(3.4) are satisfied.

Let J :
◦
W 1,p(ν,Ω) → R be the functional such that for every v ∈ ◦

W 1,p(ν,Ω) ,

J(v) =
∫
Ω
|∇v|p dx.

It is easy to see that for every s ∈ N and v ∈ W̃ 1,p
0 (ν,Ωs) ,

Js(v) = J(v+ϕs). (4.47)

Using (4.46) and (4.47), we establish that the sequence {Js} Γ-converges to the func-
tional J . Thus, condition (∗5) of Theorem 3.1 is satisfied.

Next, let G :
◦
W 1,p(ν,Ω)→R be the functional such that for every v∈ ◦

W 1,p(ν,Ω) ,

G(v) =
∫
Ω
|v|p dx.

We suppose that c3 = c4 = 1 and for every s ∈ N the functional Gs is defined on
W̃ 1,p

0 (ν,Ωs) by

Gs(v) = G(v), v ∈ W̃ 1,p
0 (ν,Ωs). (4.48)

Obviously, for every s ∈ N the functional Gs is weakly continuous on W̃ 1,p
0 (ν,Ωs) .

Moreover, conditions (3.5) and (3.6) and condition (∗6) of Theorem 3.1 are satisfied.
Assume that the function h is defined on Ω×R by h(x,η) = |η | , (x,η)∈Ω×R .

Clearly, condition (3.8) is satisfied, and V �= /0 , since u ∈V . Furthermore, it is easy to
see that condition (3.107) is satisfied, and condition (3.108) is not satisfied.

Finally, suppose that for every s ∈ N , us is a function in Vs minimizing the func-
tional Js +Gs on Vs .

Thus, all the conditions of Theorem 3.12 are satisfied except for condition (3.108).
At the same time the function u minimizes the functional J +G on V and for every
s ∈ N , us = 0 a. e. in Ωs . The latter fact along with (4.47) and (4.48) implies that for
every s ∈ N , ‖us−qsu‖Lp(ν,Ωs) = 0 and

(Js +Gs)(us) =
∫
Ω
|∇ϕs|p dx. (4.49)
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From (4.44) and (4.49) it follows that (Js + Gs)(us) → αmeasΩ . Then taking into
account that α �= 0 and (J + G)(u) = 0, we conclude that there is no any increasing
sequence {s j} ⊂ N such that (Js j +Gsj)(us j ) → (J +G)(u) .

Thus, in the case under consideration the conclusion of Theorem 3.12 is not valid.
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