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PSEUDO–ALMOST AUTOMORPHIC SOLUTIONS TO SOME CLASSES

OF NONAUTONOMOUS PARTIAL EVOLUTION EQUATIONS

TOKA DIAGANA

(Communicated by E. Hernandez)

Abstract. In this paper we obtain the existence of pseudo-almost automorphic solutions to some
classes of nonautonomous partial evolution equations. To illustrate our main result, we study the
existence of a pseudo-almost automorphic solution to a nonautonomous heat equation.

1. Introduction

The impetus of this paper comes from one main source, that is, a recent paper
by Xiao, Zhu, and Liang [44], in which the existence of pseudo-almost automorphic
solutions to the non-autonomous differential equations given by

u′(t) = A(t)u(t)+h(t,u(t)), (1.1)

where A(t) : D(A(t)) ⊂ X �→ X is a family of densely-defined linear operators on a
Banach space X , and the function h : R×X �→ X is pseudo-almost automorphic, was
established. For that, Xiao et al. [44] introduced a new concept called bi-almost au-
tomorphy and also assumed that the family of linear operators A(t) satisfy the well-
known Acquistapace-Terreni conditions [3], which in fact do guarantee the existence
of an evolution family T = {V (t,s)}t�s associated with the family of linear operators
A(t) . The main result in [44] was then subsequently utilized to study the existence
of pseudo-almost automorphic solutions to some functional differential equations with
delay.

In this paper, we consider a more general setting, that is, we make extensive use
of intermediate space techniques to study the existence of pseudo-almost automorphic
solutions to the the class of abstract nonautonomous evolution equations

d
dt

[
u(t)+ f (t,Bu(t))

]
= A(t)u(t)+g(t,Cu(t)), t ∈ R, (1.2)

where A(t) for t ∈ R is a family of closed linear operators with domains D(A(t)) sat-
isfying Acquistapace-Terreni conditions, and f : R×X �→ Xt

β (0 < α < β < 1) and
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g : R×X �→ X are pseudo-almost automorphic in t ∈ R uniformly in the second vari-
able. It is well-known that in that case there exists an evolution family U = {U(t,s)}t�s

defined on X and associated with the family of closed linear operators A(t) . Assuming
that the evolution family U = {U(t,s)}t�s is exponentially dichotomic (hyperbolic)
and under some additional assumptions, it will be shown that Eq. (1.2) has a unique
pseudo-almost automorphic solution. It is worth mentioning that the main result of this
paper (Theorem 3.1) generalizes, to some extent, most of known results on (pseudo) al-
most automorphic solutions to autonomous and nonautonomous differential equations,
especially those in [8], [19], and [44].

Let Ω ⊂ RN (N � 1) be a open bounded subset with C2 boundary Γ := ∂Ω
and let X = L2(Ω) be the space square integrable functions equipped with its natural
topology. As an application to our abstract result, we consider and study the existence
of pseudo-almost automorphic solutions to the N -dimensional heat equation given by⎧⎪⎨

⎪⎩
∂
∂ t

[
ϕ +F(t, d̂ivϕ)

]
= a(t,x)Δϕ+G(t, d̂ivϕ), in R×Ω,

ϕ = 0, on R×Γ,

(1.3)

where a : R×Ω �→ R is a function satisfying some additional conditions, the symbols
d̂iv and Δ stand respectively for the first and second-order differential operators defined
by

d̂iv :=
N

∑
j=1

∂
∂x j

and Δ =
N

∑
j=1

∂ 2

∂x2
j

,

and the coefficients F,G : R×H1
0(Ω) �→ L2(Ω) are pseudo-almost automorphic func-

tions and satisfy some additional conditions.
The existence of almost periodic, almost automorphic, pseudo-almost periodic,

and pseudo-almost automorphic constitutes one of the most attractive topics in quali-
tative theory of differential equations due essentially to their applications. Some con-
tributions on pseudo-almost automorphic solutions to abstract differential and partial
differential equations have recently been made, among them are [12], [14], [22], [23],
[31], [32], [43], and [44]. However, the existence of pseudo-almost automorphic so-
lutions to evolution equations of the form Eq. (1.2) in the non-autonomous case is an
untreated original question, which in fact is the main motivation of the present paper.

The paper is organized as follows: Section 2 is devoted to preliminaries facts
related to the existence of an evolution family. Some preliminary results on intermediate
spaces are also stated there. In addition, basic definitions and results on the concept of
pseudo-almost automorphic functions are given. In Section 3, we first state and prove a
key technical lemma (Lemma 3.1) and next make use of it to prove the main result. In
Section 4, we give an example to illustrate our main result.

2. Preliminaries

This section is devoted to some preliminary results needed in the sequel. We
basically use the same setting as in [7] with slight adjustments. Throughout the rest of
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this paper, (X,‖ · ‖) stands for a Banach space, A(t) for t ∈ R is a family of closed
linear operators on D(A(t)) satisfying the so-called Acquistapace-Terreni conditions
(Hypothesis (H.1)). Moreover, the operators A(t) are not necessarily densely defined.
The linear operators B,C are (possibly unbounded) defined on X such that A(t)+B+C
is not trivial for each t ∈ R . The functions, f : R×X �→ Xt

β (0 < α < β < 1), g :
R×X �→X are respectively jointly continuous satisfying some additional assumptions.

If L is a linear operator on the Banach space X , then:

◦ D(L) stands for its domain;

◦ ρ(L) stands for its resolvent;

◦ σ(L) stands for its spectrum;

◦ N(L) stands for its null-space or kernel; and

◦ R(L) stands for its range.

Moreover, one sets R(λ ,L) := (λ I−L)−1 for all λ ∈ ρ(A) . Furthermore, we set Q =
I−P for a projection P . The space B(Y,Z) denotes the collection of all bounded linear
operators from Y into Z equipped with its natural topology. When Y = Z , then this is
simply denoted by B(Y) .

Hypothesis (H.1). The family of closed linear operators A(t) for t ∈ R on X

with domain D(A(t)) (possibly not densely defined) satisfy the so-called Acquistapace-
Terreni conditions, that is, there exist constants ω ∈R , θ ∈ (π/2,π) , L > 0 and μ ,ν ∈
(0,1] with μ+ν > 1 such that

λ ∈ ρ
(
A(t)−ω

)
,

∥∥R
(
λ ,A(t)−ω

)∥∥ � K
1+ |λ | , (2.1)

and∥∥(
A(t)−ω

)
R
(
λ ,A(t)−ω

)[
R
(
ω ,A(t)

)−R
(
ω ,A(s)

)]∥∥ � L |t − s|μ |λ |−ν (2.2)

for t,s ∈ R , λ ∈ Σθ :=
{
λ ∈ C\ {0} : |argλ | � θ

}
.

Note that in the particular case when A(t) has a constant domain D = D(A(t)) ,
it is well-known [4, 38] that Eq. (2.2) can be replaced with the following: There exist
constants L and 0 < μ � 1 such that∥∥(

A(t)−A(s)
)
R
(
ω ,A(r)

)∥∥ � L|t − s|μ , ∀s,t,r ∈ R.

It should mentioned that (H.1) was introduced in the literature by Acquistapace
and Terreni in [2, 3] for ω = 0. Among other things, it ensures that there exists a
unique evolution family U = U(t,s) on X associated with A(t) satisfying:

(a) U(t,s)U(s,r) = U(t,r) ;

(b) U(t, t) = I for t � s � r in R ;

(c) (t,s) �→U(t,s) ∈ B(X) is continuous for t > s ;
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(d) U(·,s) ∈C1((s,∞),B(X)) ,
∂U
∂ t

(t,s) = A(t)U(t,s) and

‖A(t)kU(t,s)‖ � K (t− s)−k

for 0 < t − s � 1, k = 0,1, 0 � α < μ , x ∈ D((ω −A(s))α) , and a constant C
depending only on the constants appearing in (H.1); and

(e) ∂+
s U(t,s)x = −U(t,s)A(s)x for t > s and x ∈ D(A(s)) with A(s)x ∈ D(A(s)) .

It should also be mentioned that the above-mentioned proprieties were mainly
established in [1, Theorem 2.3] and [46, Theorem 2.1], see also [3, 45]. In this case we
say that A(·) generates the evolution family U(·, ·) .

One says that an evolution family U has an exponential dichotomy (or is hyper-
bolic) if there are projections P(t) (t ∈ R) that are uniformly bounded and strongly
continuous in t and constants δ > 0 and N � 1 such that

(f) U(t,s)P(s) = P(t)U(t,s) ,

(g) the restriction UQ(t,s) : Q(s)X → Q(t)X of U(t,s) is invertible (we then set
ŨQ(s, t) := UQ(t,s)−1 ), and

(h)
∥∥U(t,s)P(s)

∥∥ � Ne−δ (t−s) and
∥∥ŨQ(s,t)Q(t)

∥∥ � Ne−δ (t−s) , t � s and t,s ∈ R .

According to [40], the following sufficient conditions are required for A(t) to have
exponential dichotomy.

(i) Let (A(t),D(t))t∈R be generators of analytic semigroups on X of the same type.
Suppose that D(A(t)) ≡ D(A(0)) , A(t) is invertible,

sup
t,s∈R

∥∥A(t)A(s)−1
∥∥

is finite, and ∥∥A(t)A(s)−1− I
∥∥ � L0|t− s|μ

for t,s ∈ R and constants L0 � 0 and 0 < μ � 1.

(j) The semigroups (eτA(t))τ�0 , t ∈ R , are hyperbolic with projection Pt and constants
N,δ > 0. Moreover, let ∥∥A(t)eτA(t)Pt

∥∥ � ψ(τ)

and ∥∥A(t)eτAQ(t)Qt
∥∥ � ψ(−τ)

for τ > 0 and a function ψ such that R � s �→ ϕ(s) := |s|μψ(s) is integrable with
L0‖ϕ‖L1(R) < 1.

This setting requires some estimates related to U(t,s) . For that, we introduce the
interpolation spaces for A(t) . We refer the reader to the following excellent books [4],
[21], and [30] for proofs and further information on theses interpolation spaces.
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Let A be a sectorial operator on X (in assumption (H.1), replace A(t) with A) and
let α ∈ (0,1) . Define the real interpolation space

XA
α :=

{
x ∈ X :

∥∥x
∥∥A
α := supr>0

∥∥rα
(
A−ω

)
R
(
r,A−ω

)
x
∥∥ < ∞

}
,

which, by the way, is a Banach space when endowed with the norm
∥∥ ·∥∥A

α . For conve-
nience we further write

XA
0 := X,

∥∥x
∥∥A

0 :=
∥∥x

∥∥, XA
1 := D(A),

and ∥∥x
∥∥A

1 :=
∥∥(ω−A)x

∥∥.

Moreover, let X̂A := D(A) of X . In particular, we have the following continuous em-
bedding

D(A) ↪→ XA
β ↪→ D((ω−A)α) ↪→ XA

α ↪→ X̂A ↪→ X, (2.3)

for all 0 < α < β < 1, where the fractional powers are defined in the usual way.
In general, D(A) is not dense in the spaces XA

α and X . However, we have the
following continuous injection

XA
β ↪→ D(A)

‖·‖A
α (2.4)

for 0 < α < β < 1.
Given the family of linear operators A(t) for t ∈ R , satisfying (H.1), we set

Xt
α := X

A(t)
α , X̂t := X̂A(t),

for 0 � α � 1 and t ∈ R , with the corresponding norms. Then the embedding in Eq.
(2.3) holds with constants independent of t ∈R . These interpolation spaces are of class
Jα ([30, Definition 1.1.1 ]) and hence there is a constant c(α) such that∥∥y

∥∥t
α � c(α)

∥∥y
∥∥1−α∥∥A(t)y

∥∥α , y ∈ D(A(t)). (2.5)

We have the following fundamental estimates for the evolution family U . Its
proof was given in [7] though for the sake of clarity, we reproduce it here.

PROPOSITION 2.1. For x ∈ X , 0 � α � 1 and t > s, the following hold.

(i) There is a constant c(α), such that∥∥U(t,s)P(s)x
∥∥t
α � c(α)e−

δ
2 (t−s)(t− s)−α‖x‖. (2.6)

(ii) There is a constant m(α), such that

∥∥ŨQ(s,t)Q(t)x
∥∥s
α � m(α)e−δ (t−s)‖x‖. (2.7)
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Proof. (i) Using (2.5) we obtain∥∥U(t,s)P(s)x
∥∥t
α � c(α)

∥∥U(t,s)P(s)x
∥∥1−α∥∥A(t)U(t,s)P(s)x

∥∥α
� c(α)

∥∥U(t,s)P(s)x
∥∥1−α∥∥A(t)U(t, t−1)U(t−1,s)P(s)x

∥∥α
� c(α)

∥∥U(t,s)P(s)x
∥∥1−α∥∥A(t)U(t, t−1)

∥∥α∥∥U(t−1,s)P(s)x
∥∥α

� c(α)N′ e−δ (t−s)(1−α)e−δ (t−s−1)α‖x‖
� c(α)(t − s)−αe−

δ
2 (t−s)(t− s)αe−

δ
2 (t−s)‖x‖

for t− s � 1 and x ∈ X .
Since (t − s)αe−

δ
2 (t−s) → 0 as t → ∞ it easily follows that∥∥U(t,s)P(s)x

∥∥t
α � c(α)(t − s)−αe−

δ
2 (t−s)‖x‖.

If 0 < t− s � 1, we have∥∥U(t,s)P(s)x
∥∥t
α � c(α)

∥∥U(t,s)P(s)x
∥∥1−α∥∥A(t)U(t,s)P(s)x

∥∥α
� c(α)

∥∥U(t,s)P(s)x
∥∥1−α∥∥∥A(t)U(t,

t + s
2

)U(
t + s
2

,s)P(s)x
∥∥∥α

� c(α)
∥∥U(t,s)P(s)x

∥∥1−α∥∥∥A(t)U(t,
t + s

2
)
∥∥∥α∥∥∥U(

t + s
2

,s)P(s)x
∥∥∥α

� c(α)Ne−δ (t−s)(1−α)2α(t − s)−αe−
δα
2 (t−s)‖x‖

� c(α)Ne−
δ
2 (t−s)(1−α)2α(t− s)−αe−

δα
2 (t−s)‖x‖

� c(α)e−
δ
2 (t−s)(t − s)−α‖x‖,

and hence ∥∥U(t,s)P(s)x
∥∥t
α � c(α)(t − s)−αe−

δ
2 (t−s)‖x‖ for t > s.

(ii) ∥∥ŨQ(s, t)Q(t)x
∥∥s
α � c(α)

∥∥ŨQ(s,t)Q(t)x
∥∥1−α∥∥A(s)ŨQ(s,t)Q(t)x

∥∥α
� c(α)

∥∥ŨQ(s,t)Q(t)x
∥∥1−α∥∥A(s)Q(s)ŨQ(s,t)Q(t)x

∥∥α
� c(α)

∥∥ŨQ(s,t)Q(t)x
∥∥1−α∥∥A(s)Q(s)

∥∥α∥∥ŨQ(s,t)Q(t)x
∥∥α

� c(α)Ne−δ (t−s)(1−α)∥∥A(s)Q(s)
∥∥αe−δ (t−s)α‖x‖

� m(α)e−δ (t−s)‖x‖.
In the last inequality we have used that

∥∥A(s)Q(s)
∥∥ � c for some constant c � 0, see

e.g. [42, Proposition 3.18].
In addition to above, we also need the following assumptions:

Hypothesis (H.2). The evolution family U generated by A(·) has an exponential
dichotomy with constants N,δ > 0 and dichotomy projections P(t) for t ∈ R . More-
over, 0 ∈ ρ(A(t)) for each t ∈ R and the following holds

sup
t,s∈R

∥∥A(s)A−1(t)
∥∥

B(Xα ,X) < c0. (2.8)
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REMARK 2.1. Note that Eq. (2.8) is satisfied in many cases in the literature. In
particular, it holds when A(t) = d(t)A where A : D(A) ⊂ X �→ X is any closed linear
operator such that 0 ∈ ρ(A) and d : R �→ R with inf

t∈R
|d(t)| > 0 and sup

t∈R

|d(t)| < ∞ .

Hypothesis (H.3). There exists 0 � α < β < 1 such that

Xt
α = Xα and Xt

β = Xβ

for all t ∈ R, with uniform equivalent norms.
If 0 � α < β < 1, then we let k(α) and c′ denote respectively the bounds of the

embedding Xβ ↪→ Xα and Xα ↪→ X , that is,

‖u‖α � k(α)‖u‖β
for each u ∈ Xβ and

‖u‖ � c′‖u‖α
for each u ∈ Xα

2.1. Pseudo-Almost Automorphic Functions

Let BC(R,X) (respectively, BC(R×Y,X)) denote the collection of all X-valued
bounded continuous functions (respectively, the class of jointly bounded continuous
functions F : R×Y �→ X). The space BC(R,X) equipped with its natural norm, that
is, the sup norm defined by

‖u‖∞ = sup
t∈R

‖u(t)‖,

is a Banach space. Furthermore, C(R,Y) (respectively, C(R×Y,X)) denotes the class
of continuous functions from R into Y (respectively, the class of jointly continuous
functions F : R×Y �→ X).

DEFINITION 2.1. A function f ∈C(R,X) is said to be almost automorphic if for
every sequence of real numbers (s′n)n∈N , there exists a subsequence (sn)n∈N such that

g(t) := lim
n→∞

f (t + sn)

is well defined for each t ∈ R , and

lim
n→∞

g(t− sn) = f (t)

for each t ∈ R .

If the convergence above is uniform in t ∈ R , then f is almost periodic in the
classical Bochner’s sense. Denote by AA(X) the collection of all almost automorphic
functions R �→ X . Note that AA(X) equipped with the sup-norm ‖ · ‖∞ turns out to be
a Banach space.

Among other things, almost automorphic functions satisfy the following proper-
ties.
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THEOREM 2.1. [35, 36] If f , f1, f2 ∈ AA(X) , then:

(i) f1 + f2 ∈ AA(X) ,
(ii) λ f ∈ AA(X) for any scalar λ ,

(iii) fα ∈ AA(X) where fα : R → X is defined by fα (·) = f (·+α) ,
(iv) the range R f :=

{
f (t) : t ∈ R

}
is relatively compact in X , thus f is bounded in

norm,

(v) if fn → f uniformly on R where each fn ∈ AA(X) , then f ∈ AA(X) too.

In addition to the above-mentioned properties, we have the the following property
due to Bugajewski and Diagana [10]:

(vi) if g ∈ L1(R) , then f ∗g ∈ AA(R) , where f ∗g is the convolution of f with g on
R .

Let (Y,‖ · ‖Y) be another Banach space.

DEFINITION 2.2. A jointly continuous function F : R×Y �→ X is said to be al-
most automorphic in t ∈ R if t �→ F(t,x) is almost automorphic for all x ∈ K (K ⊂ Y

being any bounded subset). Equivalently, for every sequence of real numbers (s′n)n∈N ,
there exists a subsequence (sn)n∈N such that

G(t,x) := lim
n→∞

F(t + sn,x)

is well defined in t ∈ R and for each x ∈ K , and

lim
n→∞

G(t − sn,x) = F(t,x)

for all t ∈ R and x ∈ K .
The collection of such functions will be denoted by AA(Y,X) .

For more on almost automorphic functions and related issues, we refer the reader
to the excellent book by N’Guérékata [35].

Define

PAP0(R,X) :=
{

f ∈ BC(R,X) : lim
T→∞

1
2T

∫ T

−T

∥∥ f (s)
∥∥ds = 0

}
.

Similarly, PAP0(Y,X) will denote the collection of all bounded continuous func-
tions F : R×Y �→ X such that

lim
T→∞

1
2T

∫ T

−T

∥∥F(s,x)
∥∥ds = 0

uniformly in x ∈ K , where K ⊂ Y is any bounded subset.
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DEFINITION 2.3. (Liang et al. [31, 43]) A function f ∈ BC(R,X) is called
pseudo almost automorphic if it can be expressed as f = g + φ , where g ∈ AA(X)
and φ ∈ PAP0(X) . The collection of such functions will be denoted by PAA(X) .

The functions g and φ appearing in Definition 2.3 are respectively called the
almost automorphic and the ergodic perturbation components of f .

DEFINITION 2.4. A bounded continuous function F : R ×Y �→ X belongs to
AA(Y,X) whenever it can be expressed as F = G +Φ, where G ∈ AA(Y,X) and
Φ ∈ PAP0(Y,X) . The collection of such functions will be denoted by PAA(Y,X) .

We now collect a few useful properties of pseudo almost automorphic functions.

PROPOSITION 2.2. If g∈ L1(R) , f ∈ PAA(R) , then f ∗g∈ PAA(R) , where f ∗g
is the convolution of f with g on R .

The proof of Proposition 2.2 is based upon Bugajewski and Diagana [10] and
Bugajewski, Diagana, and [11].

A substantial result is the next theorem, which is due to Liang et al. [43].

THEOREM 2.2. [43] The space PAA(X) equipped with the sup norm ‖ · ‖∞ is a
Banach space.

The next composition result, that is Theorem 2.3, is a consequence of [32, Theo-
rem 2.4] and is crucial for the proof of the main result of the paper.

THEOREM 2.3. Suppose f : R×Y �→ X belongs to PAA(Y,X); f = g+h, with
x �→ g(t,x) being uniformly continuous on any bounded subset K of Y uniformly in
t ∈ R . Furthermore, we suppose that there exists L > 0 such that

‖ f (t,x)− f (t,y)‖ � L‖x− y‖Y

for all x,y ∈ Y and t ∈ R .
Then the function defined by h(t) = f (t,ϕ(t)) belongs to PAA(X) provided ϕ ∈

PAA(Y) .

We also have:

THEOREM 2.4. [43] If f : R×Y �→X belongs to PAA(Y,X) and if x �→ f (t,x) is
uniformly continuous on any bounded subset K of Y for each t ∈ R , then the function
defined by h(t) = f (t,ϕ(t)) belongs to PAA(X) provided ϕ ∈ PAA(Y) .
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3. Main results

To study the existence and uniqueness of pseudo-almost automorphic solutions to
Eq. (1.2) we first introduce the notion of bounded solution to it.

DEFINITION 3.1. A function u : R �→ Xα is said to be a bounded solution to
Eq. (1.2) provided that the function s → A(s)U(t,s)P(s) f (s,Bu(s)) is integrable on
(−∞, t) , s → A(s)U(t,s)Q(s) f (s,Bu(s)) is integrable on (t,∞) for each t ∈ R, and

u(t) = − f (t,Bu(t))−
∫ t

−∞
A(s)U(t,s)P(s) f (s,Bu(s))ds

+
∫ ∞

t
A(s)U(t,s)Q(s) f (s,Bu(s))ds+

∫ t

−∞
U(t,s)P(s)g(s,Cu(s))ds

−
∫ ∞

t
U(t,s)Q(s)g(s,Cu(s))ds

for each t ∈ R .

Throughout the rest of the paper we denote by Γ1,Γ2,Γ3, and Γ4 , the nonlinear
integral operators defined by:

(Γ1u)(t) :=
∫ t

−∞
A(s)U(t,s)P(s) f (s,Bu(s))ds,

(Γ2u)(t) :=
∫ ∞

t
A(s)U(t,s)Q(s) f (s,Bu(s))ds,

(Γ3u)(t) :=
∫ t

−∞
U(t,s)P(s)g(s,Cu(s))ds,

(Γ4u)(t) :=
∫ ∞

t
U(t,s)Q(s)g(s,Cu(s))ds.

Moreover, we suppose that the linear operators B,C : Xα �→ X are bounded and
hence set

ϖ := max
(∥∥B

∥∥
B(Xα ,X),

∥∥C
∥∥

B(Xα ,X)

)
.

To study Eq. (1.2), in addition to the previous assumptions, we require the follow-
ing additional assumptions.

(H.4) R(ω ,A(·))u ∈ AA(Xα) for all u ∈ X . For any sequence of real numbers (τ ′n)n∈N

there exist a subsequence (τn)n∈N and a well-defined function G such that for each
ε > 0, one can find N0,N1 ∈ N such that∥∥G(t,s)P(s)u−A(s+ τn)U(t + τn,s+ τn)P(s+ τn)u

∥∥
α � εH0(t− s)

whenever n > N0 for t,s ∈ R , t > s , and∥∥A(s)U(t,s)P(s)u−G(t− τn,s− τn)P(s− τn)u
∥∥
α � εH1(t − s)
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whenever n > N1 for all t,s ∈ R , t > s , for all u ∈ Xα , where H0,H1 : [0,∞) �→ [0,∞)
with H0,H1 ∈ L1[0,∞) .

(H.5) Let 0 < α � β < 1, and f : R×X �→ Xβ belongs to PAA(X,Xβ ) while g :
R× X �→ X belongs to PAA(X,X) . If f = f1 + f2 and g = g1 + g2 where f1 ∈
AA(X,Xβ ) , g1 ∈ AA(X,X) , f2 ∈ PAP0(X,Xβ ) , and g2 ∈ PAP0(X,X) , we suppose
that x �→ f1(t,x),g1(t,x) are uniformly continuous on bounded subsets uniformly in
t ∈ R . Moreover, the functions f ,g are uniformly Lipschitz with respect to the second
argument in the following sense: there exists K > 0 such that

‖ f (t,u)− f (t,v)‖β � K‖u− v‖,

and
‖g(t,u)−g(t,v)‖� K‖u− v‖

for all u,v ∈ X and t ∈ R .

The proof of our main result requires the following technical Lemma.

LEMMA 3.1. Under (H.1)-(H.3), then there exist constant m(α,β ),n(α)> 0 such
that ∥∥A(s)ŨQ(t,s)Q(s)x

∥∥
α � m(α,β )eδ (s−t)‖x‖β for t � s, (3.1)∥∥A(s)U(t,s)P(s)x

∥∥
α � n(α)(t− s)−αe−

δ
2 (t−s)‖x‖β , for t > s. (3.2)

Proof. Let x ∈ Xβ . Since the restriction of A(s) to R(Q(s)) is a bounded linear
operator it follows that

∥∥A(s)ŨQ(t,s)Q(s)x
∥∥
α � ck(α)

∥∥ŨQ(t,s)Q(s)x
∥∥
β

� ck(α)m(β )eδ (s−t) ‖x‖
� m(α,β )eδ (s−t)‖x‖β

for t � s by using Eq. (2.7).
Similarly, for each x ∈ Xβ , using Eq. (2.8), we obtain

∥∥A(s)U(t,s)P(s)x
∥∥
α =

∥∥A(s)A(t)−1A(t)U(t,s)P(s)x
∥∥
α

�
∥∥A(s)A(t)−1

∥∥
B(Xα ,X)

∥∥A(t)U(t,s)P(s)x
∥∥
α

� c0
∥∥A(t)U(t,s)P(s)x

∥∥
α

for t � s .
Note that

∥∥A(t)U(t,s)
∥∥ � K(t− s)−1 for all t,s such that 0 < t− s � 1.

Now, let t − s � 1. Then, using Eq. (2.6), we obtain
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∥∥A(t)U(t,s)P(s)x
∥∥
α =

∥∥A(t)U(t,t−1)U(t−1,s)P(s)x
∥∥
α

�
∥∥A(t)U(t,t−1)

∥∥
B(Xα ,X)

∥∥U(t−1,s)P(s)x
∥∥
α

� Kc(α)e−
δ
2 (t−s)(t− s)−α‖x‖

� KK′c(α)e−
δ
2 (t−s)(t− s)−α‖x‖α

� KK′k(α)c(α)e−
δ
2 (t−s)(t− s)−α‖x‖β

� n′(α)e−
δ
2 (t−s)(t − s)−α‖x‖β .

Now, let 0 < t− s � 1. Again, using Eq. (2.6), we obtain

∥∥A(t)U(t,s)P(s)x
∥∥
α =

∥∥∥A(t)U(t,
t + s
2

)U(
t + s
2

,s)P(s)x
∥∥∥
α

�
∥∥∥A(t)U(t,

t + s
2

)
∥∥∥

B(Xα ,X)

∥∥∥U(
t + s
2

,s)P(s)x
∥∥∥
α

� Kc(α)e−
δ
4 (t−s)2α(t− s)−α‖x‖

� KK′c(α)e−
δ
4 (t−s)2α(t− s)−α‖x‖α

� KK′k(α)c(α)e−
δ
4 (t−s)2α(t − s)−α‖x‖β

� n′′(α)e−
δ
2 (t−s)(t− s)−α‖x‖β .

Therefore, ∥∥A(t)U(t,s)P(s)x
∥∥
α � n(α)e−

δ
2 (t−s)(t − s)−α‖x‖β

for all t,s ∈ R with t � s .

LEMMA 3.2. Under assumptions (H.1)-(H.5), the integral operators Γ3 and Γ4

defined above map PAA(Xα) into itself.

Proof. Let u ∈ PAA(Xα) . Now since C ∈ B(Xα ,X) it follows that Cu ∈ PAA(X) .
Setting h(t) = g(t,Cu(t)) and using the theorem of composition of pseudo almost au-
tomorphic functions (Theorem 2.3) it follows that h ∈ PAA(X) . Now write h = φ + ζ
where φ ∈ AA(X) and ζ ∈ PAP0(X) . Thus Γ3u can be rewritten as

(Γ3u)(t) =
∫ t

−∞
U(t,s)P(s)φ(s)ds+

∫ t

−∞
U(t,s)P(s)ζ (s)ds.

Set

Φ(t) =
∫ t

−∞
U(t,s)P(s)φ(s)ds, and Ψ(t) =

∫ t

−∞
U(t,s)P(s)ζ (s)ds

for each t ∈ R .
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The next step consists of showing that Φ ∈ AA(Xα) and Ψ ∈ PAP0(Xα) . Obvi-
ously, Φ ∈ AA(Xα) . Indeed, since φ ∈ AA(X) , for every sequence of real numbers
(τ ′n)n∈N there exists a subsequence (τn)n∈N such that

ψ(t) := lim
n→∞

φ(t + τn)

is well defined for each t ∈ R , and

lim
n→∞

ψ(t− τn) = φ(t)

for each t ∈ R .

Set Φ1(t) =
∫ t

−∞
U(t,s)P(s)ψ(s)ds for all t ∈ R .

Now

Φ(t + τn)−Φ1(t) =
∫ t+τn

−∞
U(t + τn,s)P(s)φ(s)ds−

∫ t

−∞
U(t,s)P(s)ψ(s)ds

=
∫ t

−∞
U(t + τ,s+ τn)P(s+ τn)φ(s+ τn)ds

−
∫ t

−∞
U(t,s)P(s)ψ(s)ds

=
∫ t

−∞
U(t + τn,s+ τn)P(s+ τn)φ(s+ τn)ds

−
∫ t

−∞
U(t + τn,s+ τn)P(s+ τn)ψ(s)ds

+
∫ t

−∞
U(t + τn,s+ τn)P(s+ τn)ψ(s)ds

−
∫ t

−∞
U(t,s)P(s)ψ(s)ds

=
∫ t

−∞
U(t + τn,s+ τn)P(s+ τn)

(
φ(s+ τn)−ψ(s)

)
ds

+
∫ t

−∞
(
U(t + τn,s+ τn)P(s+ τn)−U(t,s)P(s)

)
ψ(s)ds.

Using Lebesgue Dominated Convergence Theorem, one can easily see that

∥∥∫ t

−∞
U(t + τn,s+ τn)P(s+ τn)

(
φ(s+ τn)−ψ(s)

)
ds

∥∥
α → 0 as n → ∞, t ∈ R.

Similarly, using [8, Proposition 3.3] it follows that

∥∥∫ t

−∞
(
U(t + τn,s+ τn)P(s+ τn)−U(t,s)P(s)

)
ψ(s)ds

∥∥
α → 0 as n → ∞, t ∈ R.

Thus
Φ1(t) = lim

n→∞
Φ(t + τn), t ∈ R.
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Similarly, one can easily see that

Φ(t) = lim
n→∞

Φ1(t− τn), t ∈ R.

Therefore, Φ ∈ AA(Xα) .
To complete the proof for Γ3 , we have to show that Ψ ∈ PAP0(Xα ) . First, note

that s �→Ψ(s) is a bounded continuous function. It remains to show that

lim
T→∞

1
2T

∫ T

−T

∥∥Ψ(t)
∥∥
αdt = 0.

Again using Eq. (2.6) it follows that

lim
T→∞

1
2T

∫ T

−T

∥∥Ψ(t)
∥∥
αdt � lim

T→∞

c(α)
2T

∫ T

−T

∫ +∞

0
s−αe−

δ
2 s

∥∥ζ (t − s)
∥∥
αdsdt

� lim
T→∞

c(α)
∫ +∞

0
s−αe−

δ
2 s 1

2T

∫ T

−T

∥∥ζ (t − s)
∥∥
αdtds.

Let Γs(T ) =
1

2T

∫ T

−T

∥∥ζ (t − s)
∥∥
αdt. Since PAP0(Xα) is translation invariant it

follows that t �→ ζ (t − s) belongs to PAP0(Xα) for each s ∈ R , and hence

lim
T �→∞

1
2T

∫ T

−T

∥∥ζ (t − s)
∥∥
αdt = 0

for each s ∈ R .
One completes the proof by using the well-known Lebesgue Dominated Conver-

gence Theorem and the fact Γs(T ) �→ 0 as T → ∞ for each s ∈ R .
The proof for Γ4u(·) is similar to that of Γ3u(·) . However one makes use of Eq.

(2.7) rather than Eq. (2.6).

LEMMA 3.3. Under assumptions (H.1)-(H.5), the integral operators Γ1 and Γ2

defined above map PAA(Xα) into itself.

Proof. Let u ∈ PAA(Xα) . Since B ∈ B(Xα ,X) it follows that the function t �→
Bu(t) belongs to PAA(X) . Again, using the composition of pseudo almost automorphic
functions (Theorem 2.3) it follows that ψ(·) = f (·,Bu(·)) is in PAA(Xβ ) whenever
u ∈ PAA(Xα) . In particular,∥∥ψ∥∥

∞,β = sup
t∈R

∥∥ f (t,Bu(t))
∥∥
β < ∞.

Now write ψ = w + z, where w ∈ AA(Xβ ) and z ∈ PAP0(Xβ ) , that is, Γ1φ =
Ξ(w)+Ξ(z) where

Ξw(t) :=
∫ t

−∞
A(s)U(t,s)P(s)w(s)ds, and Ξz(t) :=

∫ t

−∞
A(s)U(t,s)P(s)z(s)ds.
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Clearly, Ξ(w) ∈ AA(Xα) . Indeed, since w ∈ AA(Xα) , for every sequence of real
numbers (τ ′n)n∈N there exists a subsequence (τn)n∈N such that

v(t) := lim
n→∞

w(t + τn)

is well defined for each t ∈ R , and

lim
n→∞

v(t− τn) = w(t)

for each t ∈ R . And there exists a well-defined function G such that for each ε > 0,
one can find N0,N1 ∈ N such that∥∥G(t,s)u−A(s+ τn)U(t + τn,s+ τn)u

∥∥
α � εH0(t− s)

whenever n > N0 for t,s ∈ R , t > s , and∥∥A(s)U(t,s)u−G(t− τn,s− τn)u
∥∥
α � εH1(t − s)

whenever n > N1 for all t,s ∈ R , t > s , for all u ∈ Xα , where H0,H1 : [0,∞) �→ [0,∞)
with H0,H1 ∈ L1[0,∞) .

Set Ξ1(t) =
∫ t

−∞
G(t,s)P(s)v(s)ds for all t ∈ R .

Now

Ξw(t + τn)−Ξ1(t) =
∫ t+τn

−∞
A(s)U(t + τn,s)P(s)w(s)ds−

∫ t

−∞
G(t,s)P(s)v(s)ds

=
∫ t

−∞
A(s+ τn)U(t + τn,s+ τn)P(s+ τn)w(s+ τn)ds

−
∫ t

−∞
G(t,s)P(s)v(s)ds

=
∫ t

−∞
A(s+ τn)U(t + τn,s+ τn)P(s+ τn)w(s+ τn)ds

−
∫ t

−∞
A(s+ τn)U(t + τn,s+ τn)P(s+ τn)v(s)ds

+
∫ t

−∞
A(s+ τn)U(t + τn,s+ τn)P(s+ τn)v(s)ds

−
∫ t

−∞
G(t,s)P(s)v(s)ds

=
∫ t

−∞
A(s+ τn)U(t + τn,s+ τn)P(s+ τn)

(
w(s+ τn)− v(s)

)
ds

+
∫ t

−∞
(
A(s+ τn)U(t + τn,s+ τn)P(s+ τn)−G(t,s)P(s)

)
v(s)ds.

Using Eq. (3.2) and the Lebesgue Dominated Convergence Theorem it follows that∥∥∥∫ t

−∞
A(s+τn)U(t +τn,s+τn)P(s+τn)

(
w(s+τn)−v(s)

)
ds

∥∥∥
α
→ 0 as n→∞, t ∈ R.
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Similarly, in view of the above (assumption (H. 4)), we can prove that

∥∥∫ t

−∞
(
A(s+ τn)U(t + τn,s+ τn)P(s+ τn)−G(t,s)P(s)

)
v(s)ds

∥∥
α → 0 as n → ∞

for t ∈ R.
Therefore,

Ξ1(t) = lim
n→∞

Ξ(w)(t + τn)

is well-defined for all t ∈ R .
Similarly, one can easily see that

Ξ(w)(t) = lim
n→∞

Ξ1(t− τn)

for all t ∈ R , and hence Ξ(w) ∈ AA(Xα) .
Now, let T > 0. Again from Eq. (3.2), we have

1
2T

∫ T

−T

∥∥(Ξz)(t)
∥∥
αdt � 1

2T

∫ T

−T

∫ +∞

0

∥∥A(s)U(t,s)P(s)z(t − s)
∥∥
αdsdt

� n(α)
2T

∫ T

−T

∫ +∞

0
s−αe−

δ
2 s

∥∥z(t − s)
∥∥
βdsdt

� n(α)
∫ +∞

0
s−αe−

δ
2 s

(
1

2T

∫ T

−T

∥∥z(t − s)
∥∥
βdt

)
ds.

Now

lim
T→∞

1
2T

∫ T

−T

∥∥z(t− s)
∥∥
βdt = 0,

as t �→ z(t − s) ∈ PAP0(Xβ ) for every s ∈ R . One completes the proof by using
Lebesgue Dominated Convergence Theorem.

The proof for Γ2u(·) is similar to that of Γ1u(·) except that one makes use of Eq.
(3.1) instead of Eq. (3.2).

THEOREM 3.1. Under assumptions (H.1)-(H.5), the evolution equation (1.2) has
a unique pseudo-almost automorphic mild solution whenever K is small enough, that
is, KΘ < 1 where

Θ = ϖ
[
k(α)+

(
m(α,β )+m(α)

)
δ

+
(
n(α)+ c(α)

)21−α Γ(1−α)
δ 1−α

]
.

Proof. Consider the nonlinear operator M defined on PAP(Xα) by

Mu(t) = − f (t,Bu(t))−
∫ t

−∞
A(s)U(t,s)P(s) f (s,Bu(s))ds

+
∫ ∞

t
A(s)U(t,s)Q(s) f (s,Bu(s))ds+

∫ t

−∞
U(t,s)P(s)g(s,Cu(s))ds

−
∫ ∞

t
U(t,s)Q(s)g(s,Cu(s))ds
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for each t ∈ R .
As we have previously seen, for every u ∈ PAA(Xα) , f (·,Bu(·)) ∈ PAA(Xβ ) ⊂

PAA(Xα) . In view of Lemma 3.2 and Lemma 3.3, it follows that M maps PAA(Xα)
into itself. To complete the proof one has to show that M has a unique fixed-point.

Let v,w ∈ PAA(Xα)

∥∥Γ1(v)(t)−Γ1(w)(t)
∥∥
α �

∫ t

−∞

∥∥A(s)U(t,s)P(s) [ f (s,Bv(s))− f (s,Bw(s))]
∥∥
αds

� n(α)
∫ t

−∞
(t− s)−αe−

δ
2 (t−s)∥∥ f (s,Bv(s))− f (s,Bw(s))

∥∥
βds

� n(α)K
∫ t

−∞
(t− s)−αe−

δ
2 (t−s)∥∥Bv(s)−Bw(s)

∥∥ds

� n(α)Kϖ
∫ t

−∞
(t − s)−αe−

δ
2 (t−s)∥∥v(s)−w(s)

∥∥
αds

� n(α)Kϖ
∥∥v−w

∥∥
∞,α

∫ t

−∞
(t− s)−αe−

δ
2 (t−s)ds

= n(α)
21−α Γ(1−α)

δ 1−α Kϖ
∥∥v−w

∥∥
∞,α .

Now∥∥Γ2(v)(t)−Γ2(w)(t)
∥∥
α �

∫ ∞

t

∥∥A(s)U(t,s)Q(s) [ f (s,Bv(s))− f (s,Bw(s))]
∥∥
αds

� m(α,β )K
∫ ∞

t

∥∥ f (s,Bv(s))− f (s,Bw(s))
∥∥
βds

� m(α,β )K
∫ ∞

t

∥∥Bv(s)−Bw(s)
∥∥ds

� m(α,β )Kϖ
∫ +∞

t
eδ (t−s)∥∥v(s)−w(s)

∥∥
αds

� m(α,β )Kϖ
∥∥v−w

∥∥
∞,α

∫ +∞

t
eδ (t−s)ds

=
m(α,β )Kϖ

δ
∥∥v−w

∥∥
∞,α .

Now for Γ3 and Γ4 , we have the following approximations∥∥Γ3(v)(t)−Γ3(w)(t)
∥∥
α �

∫ t

−∞

∥∥U(t,s)P(s) [g(s,Cv(s))−g(s,Cw(s))]
∥∥
αds

�
∫ t

−∞
c(α)(t − s)−αe−

δ
2 (t−s)∥∥g(s,Cv(s))−g(s,Cw(s))

∥∥ds

� Kc(α)
∫ t

−∞
(t− s)−αe−

δ
2 (t−s)∥∥Cv(s)−Cw(s)

∥∥ds

� ϖKc(α)
∫ t

−∞
(t − s)−αe−

δ
2 (t−s)∥∥v(s)−w(s)

∥∥
αds

� Kϖc(α)21−α Γ(1−α)
δ 1−α

∥∥v−w
∥∥
∞,α ,
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and

∥∥Γ4(v)(t)−Γ4(w)(t)
∥∥
α �

∫ ∞

t

∥∥U(t,s)Q(s) [g(s,Cv(s))−g(s,Cw(s))]
∥∥
αds

�
∫ ∞

t
m(α)eδ (t−s)∥∥g(s,Cv(s))−g(s,Cw(s))

∥∥ds

�
∫ ∞

t
m(α)Keδ (t−s)∥∥Cv(s)−Cw(s)

∥∥ds

� ϖm(α)K
∫ ∞

t
eδ (t−s)∥∥v(s)−w(s)

∥∥
αds

� Km(α)ϖ
∥∥v−w

∥∥
∞,α

∫ +∞

t
eδ (t−s)ds

=
Kϖm(α)

δ
∥∥v−w

∥∥
∞,α .

Combining previous approximations it follows that∥∥Mv−Mw
∥∥
∞,α � Θ‖v−w‖∞,α,

and hence if K is small enough, that is, KΘ < 1, then Eq. (1.2) has a unique solution,
which obviously is its only pseudo-almost automorphic solution.

EXAMPLE 3.1. Let Ω⊂RN (N � 1) be a open bounded subset with C2 boundary
Γ= ∂Ω and let X = L2(Ω) equipped with its natural topology ‖ · ‖L2(Ω) .

Define the linear operator appearing in Eq. (1.3) as follows:

A(t)u = a(t,x)Δu for all u ∈ D(A(t)) = H1
0(Ω)∩H2(Ω),

where a : R×Ω �→ R is a jointly continuous, almost automorphic and satisfying the
following assumptions:

(H.6) inf
t∈R,x∈Ω

a(t,x) = m0 > 0, and

(H.7) there exists L > 0 and 0 < μ � 1 such that

|a(t,x)−a(s,x)|� L|s− t|μ

for all t,s ∈ R uniformly in x ∈Ω .

First of all, note that in view of the above, sup
t∈R,x∈Ω

a(t,x) < ∞. Also, a classical

example of a function a satisfying the above-mentioned assumptions is for instance

aγ(t,x) = 3+ sin |x|t + sinγ|x|t,

where |x| = (x2
1 + ...+ x2

N)1/2 for each x = (x1,x2, ...,xN) ∈Ω and γ ∈ R\Q .
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Under previous assumptions, it is clear that the operators A(t) defined above
are invertible and satisfy Acquistapace-Terreni conditions. Moreover, it can be easily
shown that

R
(
ω ,a(·,x)Δ)

ϕ =
1

a(·,x)R
( ω

a(·,x) ,Δ
)
ϕ ∈ AA(H1

0(Ω))

for each ϕ ∈ L2(Ω) with

∥∥R
(
ω ,aΔ

)∥∥
B(L2(Ω)) � const.

|ω | .

Furthermore, assumptions (H.1)-(H.4) are fulfilled.
For each μ ∈ (0,1) , we take Xμ = D((−Δ)μ) equipped with its μ -norm ‖ · ‖μ .

Moreover, we let α = 1
2 and suppose that 1

2 < β < 1. Letting Bu = Cu = d̂ivu for

all u ∈ X 1
2

= D((−Δ)
1
2 ) = H1

0(Ω) , one easily see that both operators are bounded from

H1
0(Ω) in L2(Ω) with ϖ = 1.

We require the following assumption:

(H.8) Let 1
2 < β < 1, and F ∈ PAA(H1

0(Ω),Xβ ) and G ∈ PAA(H1
0(Ω),L2(Ω)) . If F =

F1 +F2 and G = G1 +G2 where F1 ∈ AA(L2(Ω),Xβ ) , G1 ∈ AA(L2(Ω),L2(Ω)) , F2 ∈
PAP0(L2(Ω),Xβ ) , and G2 ∈PAP0(L2(Ω),L2(Ω)) , we suppose that u �→F1(t,u),G1(t,u)
are uniformly continuous on bounded subsets uniformly in t ∈ R . Moreover, the func-
tions F,G are uniformly Lipschitz with respect to the second argument in the following
sense: there exists K′ > 0 such that∥∥F(t,u)−F(t,v)

∥∥
β � K′∥∥u− v

∥∥
L2(Ω),

and ∥∥G(t,u)−G(t,v)
∥∥

L2(Ω) � K′∥∥u− v
∥∥

L2(Ω)

for all u,v ∈ L2(Ω) and t ∈ R .

We have

THEOREM 3.2. Under assumption (H.6)-(H.8), then the N -dimensional heat equa-
tion Eq. (1.3) has a unique pseudo-almost automorphic solution ϕ ∈ H1

0(Ω)∩H2(Ω)
whenever K′ is small enough.

Classical examples of the above-mentioned functions F,G : R×H1
0(Ω) �→ L2(Ω)

are given as follows:

F(t, d̂ivu) =
Ke(t)

1+ |d̂ivu|
and G(t, d̂ivu) =

Km(t)

1+ |d̂ivu|
where the functions e,m : R �→ R are pseudo-almost automorphic.
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In this particular case, the corresponding heat equation, that is,⎧⎪⎪⎨
⎪⎪⎩

∂
∂ t

[
ϕ+

Ke(t)

1+ |d̂ivϕ |
]

= aγ(t,x)Δϕ +
Km(t)

1+ |d̂ivϕ |
, t ∈ R, x ∈Ω,

ϕ = 0, on Γ,

has a unique pseudo-almost automorphic solution ϕ ∈ H1
0(Ω)∩H2(Ω) whenever K is

small enough.
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[25] E. HERNÁNDEZ AND H. R. HENRÍQUEZ, Existence of periodic solutions of partial neutral functional
differential equations with unbounded delay, J. Math. Anal. Appl., 221, 2 (1998), 499–522.
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