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REGULARITY FOR THE NAVIER–STOKES–FOURIER SYSTEM

LUISA CONSIGLIERI

Abstract. We prove the existence of strong 2-dimensional solutions for two Cauchy-Dirichlet
problems to the Navier-Stokes-Fourier system which characterizes the Newtonian fluids under
heat-conducting effects. The nonstationary Navier-Stokes system for an incompressible homo-
geneous fluid with temperature dependent viscosity is completed by the equation of balance of
energy which includes the term of dissipative heating. The regularity of solutions to the prob-
lems under study is proved through compactness methods and fixed point arguments, instead
assuming the existence of weak solutions to the problems.
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