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REGULARITY FOR THE NAVIER–STOKES–FOURIER SYSTEM

LUISA CONSIGLIERI

(Communicated by J.-M. Rakotoson)

Abstract. We prove the existence of strong 2-dimensional solutions for two Cauchy-Dirichlet
problems to the Navier-Stokes-Fourier system which characterizes the Newtonian fluids under
heat-conducting effects. The nonstationary Navier-Stokes system for an incompressible homo-
geneous fluid with temperature dependent viscosity is completed by the equation of balance of
energy which includes the term of dissipative heating. The regularity of solutions to the prob-
lems under study is proved through compactness methods and fixed point arguments, instead
assuming the existence of weak solutions to the problems.

1. Introduction

Let Ω ⊂ R
2 be a bounded open domain sufficiently regular and T > 0. Let us

consider the Cauchy-Dirichlet problem in the following form:

∂tu+(u ·∇)u−div(μ(θ )Du) = f−∇p in QT := Ω×]0,T [,
div u = 0 in QT ;

(1)

∂tθ +u ·∇θ −div(k(θ )∇θ ) = μ(θ )|Du|2 +g in QT , (2)

u
∣∣
t=0 = u0, θ

∣∣
t=0 = θ0, in Ω, (3)

u = u, θ = θ , on ∂Ω×]0,T [, (4)

where u denotes the velocity of the fluid and Du = 1
2 (∇u+∇uT ) , θ the temperature,

p the pressure, μ the viscosity, k the thermal conductivity, f denotes the given external
body forces and g the heat source. In the present work the product of two tensors is
given by D : τ = Di jτi j , under the Einstein convention, and the norm by |D|2 = D : D .

The Navier-Stokes-Fourier system arises from fluid thermomechanics. In fact, it is
constituted by momentum and energy equations when the constitutive relations for the
Cauchy stress and heat flux are assumed linear. The density is constant and assumed
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equal to one. The initial conditions are given in (3) and we assume Dirichlet bound-
ary conditions in (4). For the sake of clarity we found convenient that the boundary
conditions are taken to be homogeneous,

u ≡ 0 and θ ≡ 0. (5)

The abstract mathematical viscosity can be illustrated with Arrhenius law:

μ(θ ) = μ0e
E0(1/θ−1/θr)/R,

where μ0,E0,θr are constants of reference and R is the gas constant.
In the seventies, Lauder and Spalding proposed the k−ε model (it consists of two

equations for the turbulence kinetic energy k and the rate of dissipation ε of the turbu-
lent energy) to describe the mean of a turbulence flow. Unfortunately, the turbulence is
essentially a three dimensional phenomenon and it is not clear that this model produces
physically relevant results (a positive energy, for example). Despite the fact that the
validity of k− ε model is not universal, it presents a good compromise between sim-
plicity and generality (see [18]). In this context, the equations (1) represent the averaged
Navier-Stokes equation in which u , π and f are the mean values of velocity, pressure
and external forces, respectively, the viscosity is the eddy viscosity, and the equation
(2) represents the k−ε model, that is, θ denotes the mean turbulent kinetic energy and
g = −θ |θ |1/2 denoting the Navier-Stokes turbulence. More physical motivation can be
found in [1, 3] for instance.

Several authors proved existence of solutions to similar mathematical problems
in fluid thermomechanics (see for example [4, 8, 13, 16, 19, 23] and the references
therein). The existence of at least a weak solution is given in [6] for different consti-
tutive relations in the Cauchy stress and in the Fourier heat flux. We refer to [7] for
the existence of strong and classical solutions to the stationary coupled system under
general constitutive relations.

Although the continuity of the coefficients, to prove the regularity of solution to
the coupled system, additional terms appear which invalidate the direct application of
known regularity results ([9, 11, 12, 15, 17, 25] between others). Notice that if the
velocity u is a weak solution to (1) in the sense of u ∈ L2(0,T ;H1

0(Ω)) , the Joule ef-
fect term μ(θ )|Du|2 belongs to L1(QT ) and the existence of a solution of the energy
equation (2) requires L1 -theory (see [5, 6] and the references therein). We wish to em-
phasize that at the present work we do not show regularity for every weak solution, we
prove existence results under smallness restrictions only on the ratio between the deriva-
tives of the viscosity and the thermal conductivity functions and their lower bounds (cf.
(12)). Indeed, here we prove that the equation (which is satisfied by the solution) is
valid almost everywhere in QT , which means that the strong solutions coincide by the
uniqueness result with the weak solutions in a smaller space.

The outline of the paper is as follows. In next section we present the appropriate
functional framework and we state two main existence results and the corresponding
uniqueness without any additional assumption on the data. First existence result is
established under a given heat-production profile g = g(x, t) and the second one is
given for g = −θ |θ |1/2 . In Section 3, we recall and prove some technical results for
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any dimension n � 2. In Section 4, we deal with the apriori estimates. Sections 5 and 6
are devoted to the proofs of the solvability of the problems under study. The uniqueness
results are proved in Section 7.

2. Assumptions and main results

Let Ω ⊂ R
2 be a bounded open domain with sufficiently smooth boundary ∂Ω .

In the framework of Lebesgue and Sobolev spaces, we introduce for q > 1, see [11],

J1,q(Ω) = {u ∈ W1,q(Ω) : ∇ ·u = 0 in Ω},

where the vector spaces of vector-valued or tensor-valued functions are denoted by
bold. It is known that J1,q

0 (Ω) = J1,q(Ω)∩W1,q
0 (Ω) with norm

‖ · ‖(1),q,Ω = ‖∇ · ‖q,Ω.

We will use the following Banach spaces, for 1 � q,r � ∞ , see [12],

Lq,r(QT ) = Lr(0,T ;Lq(Ω))

W 1,0
q (QT ) = Lq(0,T ;W 1,q(Ω))

W 1,1
q (QT ) = Lq(0,T ;W 1,q(Ω))∩W 1,q(0,T ;Lq(Ω))

W 2,1
q (QT ) = Lq(0,T ;W 2,q(Ω))∩W 1,q(0,T ;Lq(Ω)).

We recall that the following continuous inclusion W 2,1
q (QT ) ↪→ Ck,α(QT ) only occurs

if q > 4/(2− k) and 0 � α < 2− k−4/q . This means for k = 0 that q > 2, i.e., the
Banach space W 2,1

2 (QT ) is not embedded in the Banach space of Hölder continuous
functions with exponent α in the x -variables and α/2 in the t -variable. Note that
u(0) makes sense for all u ∈W 1,1

q (QT ) since W 1,1
q (QT ) ↪→C([0,T ];Lq(Ω)) .

The following assertions on data are assumed as well as the following assumptions
on the physical parameters appearing in the equations are established:

◦ f : QT → R
2 is given such that f ∈ L2(QT ) and

∂t f ∈ L2(QT ); (6)

◦ μ ,k : R → R are functions of class C1 such that

0 < μ0 � μ(s) � μ1, |μ ′(s)| � μ2, ∀s ∈ R, (7)

0 < k0 � k(s) � k1, |k′(s)| � k2, ∀s ∈ R; (8)

◦ u0 ∈ J1,2
0 (Ω)∩H2(Ω) and θ0 ∈ H1

0 (Ω)∩H2(Ω) satisfy the following compatibility
conditions

∇u0 ·n = 0, ∇θ0 ·n = 0, on ∂Ω, (9)

where n denotes the unit outward normal to the boundary ∂Ω .
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The system (1)-(5) has the variational formulation⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
QT

∂tu ·vdxdt +
∫
QT

(
μ(θ )Du : Dv+(u ·∇)u ·v

)
dxdt =

∫
QT

f ·vdxdt,

∀v ∈ L2(0,T ;J1,2
0 (Ω)), u

∣∣
t=0 = u0 in Ω;

∫
QT

(∂tθ )ηdxdt +
∫
QT

(
k(θ )∇θ ·∇η +u ·∇θη

)
dxdt =

∫
QT

(
μ(θ )|Du|2 +g

)
ηdxdt,

∀η ∈ L2(0,T ;H1
0 (Ω)), θ

∣∣
t=0 = θ0 in Ω.

(10)

REMARK 2.1. For all u,v ∈ J1,2
0 (Ω) , the convective term verifies

∫
Ω
(u ·∇)u ·vdx =

∫
Ω
∇u : v⊗udx =

∫
Ω
(∇u)T : u⊗vdx = 2

∫
Ω

Du : u⊗vdx.

THEOREM 2.1. Suppose that (6)-(9) be fulfilled. Let g : QT → R be such that
g ∈ L2(QT ) and

∂t g ∈ L2(QT ). (11)

Under the assumption that

μ2
2

μ0
,
μ4

2

μ3
0

,
k4
2

k2
0

,
k4
2

k3
0

, and
μ4

2

k0
are sufficiently small, (12)

then the problem (10) admits, at least, one solution

(u,θ ) ∈ L2(0,T ;J1,2
0 (Ω))×L2(0,T ;H1

0 (Ω)),

which is strong, i.e.
(u,θ ) ∈ W2,1

2 (QT )×W2,1
2 (QT ).

Moreover, such solution is Hölder continuous, (u,θ )∈C0,α(QT )×C0,α(QT ) , for some
α > 0 .

REMARK 2.2. The smallness of the data in (12) is not explicitly given, because
there does not exist a unique expression. For instance, we can take

μ2
2

μ0
,
μ4

2

2μ3
0

,
2k4

2

k2
0

,
2k4

2

k3
0

, and
μ4

2

2k0
� 1

R
,

with R = H (1,1) + Q(1,1,1,1,1) (cf. (36)). Even more the estimative functions
stated in Section 4 depend on the application of the Young’s inequality ab � ar/r +
bs/s , for a,b > 0 and r,s > 1 such that 1/r + 1/s = 1. Notice that (12) is verified if
the viscosity and thermal conductivity are constants, i.e. μ2 = k2 = 0.

It is known that the pressure is recovered as a distribution from the variational
formulation thanks to the De Rham Theorem [14]. Using Theorem 2.1 we can rewrite
(1) as

∇p = f− ∂tu− (u ·∇)u+ μ ′(θ )∇θDu+ μ(θ )Δu ∈ L2(QT ).
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THEOREM 2.2. Suppose that (6)-(9) and (12) be fulfilled. Under g =−θ |θ |1/2 ,
the problem (10) admits, at least, one strong solution. Moreover, such solution is
Hölder continuous, and θ ∈W 2,1

r (QT ) , for all r < 3 .

Finally, let us state the uniqueness result.

THEOREM 2.3. The solutions obtained in Theorem 2.1 and 2.2 are unique.

Henceforth we denote by C every positive constant depending on the data, but not
on the unknown functions u , p or θ .

3. Technical results

Here we assume that Ω ⊂ R
n , for any dimension n � 2. Let us begin to recall

two important results. Indeed their application in the present work will be only on the
two-dimensional case.

LEMMA 3.1. (interpolative inequalities [21]) The interpolative inequalities hold

∀v ∈ H2(Ω), ‖∇v‖q,Ω � ‖v‖
(2−n)q+2n

4q
2,Ω ‖∇2v‖

(2+n)q−2n
4q

2,Ω , (13)

∀v ∈ H1
0 (Ω), ‖v‖q,Ω � ‖v‖

r(2q+(2−q)n)
q(2r+(2−r)n)
r,Ω ‖∇v‖

1
r − 1

q
1
r − n−2

2n
2,Ω .

In particular, Lr,∞(QT )∩L2(0,T ;H1(Ω)) ↪→ L2(n+r)/n(QT ) and

∀v ∈ H1
0 (Ω), ‖v‖q,Ω � ‖v‖

2q+(2−q)n
2q

2,Ω ‖∇v‖
(

1
2− 1

q

)
n

2,Ω , (14)

∀v ∈ H1(Ω), ‖v‖2(n+2)/n,Ω � ‖v‖
2

n+2
2,Ω ‖∇v‖

n
n+2
2,Ω . (15)

Taking n = 2 in Lemma 3.1 we obtain L2,∞(QT )∩ L2(0,T ;H1(Ω)) ↪→ L4(QT ) ,
and if we take n = 3 we have L2,∞(QT )∩L2(0,T ;H1(Ω)) ↪→ L10/3(QT ) .

LEMMA 3.2. ([20, Lemma 4]) Let δ > 0 , α > 0 and q > 1 . For any function
v ∈ L∞(0,T ;C0,α(Ω)) verifying ∂tv ∈ Lq(QT ) , there exists a constant C > 0 such that

|v(x, t1)− v(x,t2)| � C(‖v‖L∞(0,T ;C0,α (Ω)) +‖∂tv‖q,QT )|t1 − t2|β ,

for every x ∈ Bδ and every t1,t2 ∈]0,T [, where β = α(q− 1)/(αq + n(q− 1)) . In
particular, v is Hölder continuous in QT .

Next let us prove a crucial embedding proposition.

PROPOSITION 3.1. Assuming v ∈ L2(q−1)(QT ) , for any q � 2 , and ∂t v ∈ L2(QT )
then v belongs to L∞(0,T ;Lq(Ω)) .
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Proof. Let us argue as in [10] writing

|v(·, t)|q =
∫ t

0

d
ds

|v(·,s)|qds = q
∫ t

0
|v(·,s)|q−2v(·,s)∂sv(·,s)ds.

Integrating with respect to the space variable and using the Schwarz’s inequality, it
follows

‖v‖q
q,Ω(t) � q

∫ t

0
‖|v|q−1‖2,Ω‖∂sv‖2,Ωds

� q

(∫ t

0
‖v‖2(q−1)

2(q−1),Ωds

)1/2 (∫ t

0
‖∂sv‖2

2,Ω ds

)1/2

.

Then we can conclude

sup
0�t�T

‖v‖q
q,Ω(t) � q‖v‖q−1

2(q−1),QT
‖∂t v‖2,QT .

Finally, let us prove the following regularity result.

PROPOSITION 3.2. Assuming v ∈ L2,∞(QT )∩L2(0,T ;H1(Ω)) and ∂t v ∈ L2(QT )
then v belongs to Lq(QT ) , for any q < 2(n + 1)/(n− 1) . Moreover, v belongs to
Lr,∞(QT ) , for any r < 2n/(n−1) .

Proof. From Lemma 3.1, we have v ∈ L2(n+2)/n(QT ) and we apply Proposition
3.1 with 2(q− 1) = 2(n+ 2)/n , i.e., q = 1+(n+ 2)/n . Next, using Lemma 3.1 with
v ∈ L1+(n+2)/n,∞(QT )∩L2(0,T ;H1(Ω)) we obtain v ∈ L2(n+1+(n+2)/n)/n(QT ) . Define

q0 =
n+2

n
, q1 =

n+1+q0

n

and arguing by iteration, we apply Proposition 3.1 with 2(q− 1) = 2qk , i.e., q = 1+
qk . Now, using Lemma 3.1 with v ∈ L1+qk,∞(QT )∩ L2(0,T ;H1(Ω)) we obtain v ∈
L2

n+1+qk
n (QT ) .
Thus defining by recurrence

qk+1 =
n+1+qk

n
, k ∈ N,

this sequence is monotone increasing, bounded onto ]0,(n+ 1)/(n− 1)[ and its limit
is q = (n+1)/(n−1) , which concludes the first statement of the proof of Proposition
3.2.

Again applying Proposition 3.1 with 2(r− 1) = q < 2(n+ 1)/(n− 1) , i.e., r =
q/2+1 < 2n/(n−1) , we get v ∈ Lq/2+1,∞(QT ) if q � 2.
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4. Apriori estimates

The main result theorems 2.1 and 2.2 are proved using the following fixed point
argument. We fix ξ ∈W 1,1

4 (QT ) and we consider the following auxiliary problems:

〈∂tu,v〉(J1,2
0 (Ω))′×J1,2

0 (Ω) +
∫
Ω

(
μ(ξ )Du : Dv+v⊗u : ∇u

)
dx

=
∫
Ω

f ·vdx, a.e. t ∈ [0,T ], ∀v ∈ J1,2
0 (Ω), u

∣∣
t=0 = u0 in Ω; (16)

〈∂tθ ,η〉H−1(Ω)×H1
0 (Ω) +

∫
Ω

(
k(ξ )∇θ ·∇η+u ·∇θη

)
dx

=
∫
Ω

(
μ(ξ )|Du|2 +g

)
ηdx, a.e. t ∈ [0,T ], ∀η ∈ H1

0 (Ω), θ
∣∣
t=0 = θ0 in Ω. (17)

In this section, we assume the existence of solutions to (16)-(17) and we prove
some apriori estimates. In order to emphasize the key ideas, in the sequel the apriori
estimates technique is taken care of (see Remark 4.1).

PROPOSITION 4.1. Under the assumptions f ∈ L2(QT ) , (7) and u0 ∈ J1,2
0 (Ω) ,

if ∇ξ ∈ L4(QT ) then any possible solution u of (16) is such that ∇u belongs to a
bounded set of L∞(0,T ;L2(Ω))∩ L2(0,T ;J1,2

0 (Ω)) depending on ξ in the sense of
(19) and (20) , respectively. Moreover, it satisfies

‖∇u‖4
4,QT

� F
( μ4

2

2μ3
0

‖∇ξ‖4
4,QT

)
, (18)

with F the positive strictly increasing function on its argument defined by

F (d) =
4
μ0

(
T‖∇u0‖2

2,Ω+
4
μ0

‖f‖2
2,QT

)2
F(d);

F(d) = exp[d](1+d exp[d]).

Proof. We choose v = Δu as a test function in (16) (cf. Remark 4.1), then

∫
Ω
∂t(∇u) ·∇udx+

∫
Ω
{μ ′(ξ )∇ξ ⊗Du+ μ(ξ )∇2u} : ∇2udx

= −
∫
Ω
Δu⊗u : ∇udx−

∫
Ω

f ·Δudx.

Here ∇2u = (∂kDi j) is a third order tensor, with Di j =((∂ jui+∂iu j)/2) , and ∇ξ⊗Du :
∇2u = ∂kξDi j∂kDi j under the Einstein convention.

Using the assumption (7) and the property of the convective term vanishes in the
two dimensional space (cf. [17], for instance) we have

1
2

d
dt
‖∇u‖2

2,Ω+ μ0

∫
Ω
|∇2u|2dx � μ2

∫
Ω
|∇ξ ⊗Du : ∇2u|dx+

∫
Ω
|f ·Δu|dx.
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Applying the Hölder’s inequality and integrating in time for each t ∈]0,T [ , it follows

1
2
‖∇u‖2

2,Ω(t)+ μ0

∫ t

0

∫
Ω
|∇2u|2dxds

� 1
2
‖∇u(0)‖2

2,Ω+ μ2

∫ t

0
‖∇ξ‖4,Ω‖∇u‖4,Ω‖∇2u‖2,Ω ds+

∫ t

0
‖f‖2,Ω‖∇2u‖2,Ω ds.

Applying Lemma 3.1, (15) with n = 2 and v = ∇u , to the second term on right hand
side of the above inequality and successively using the Young’s inequality, we obtain

1
2
‖∇u‖2

2,Ω(t)+μ0

∫ t

0
‖∇2u‖2

2,Ω ds � 1
2
‖∇u(0)‖2

2,Ω ds+
μ4

2

4μ3
0

∫ t

0
‖∇ξ‖4

4,Ω‖∇u‖2
2,Ω ds

+
3μ0

4

∫ t

0
‖∇2u‖2

2,Ω ds+
2
μ0

∫ t

0
‖f‖2

2,Ωds+
μ0

8

∫ t

0
‖∇2u‖2

2,Ω ds.

Thus, we deduce

1
2
‖∇u‖2

2,Ω(t)+
μ0

8

∫ t

0
‖∇2u‖2

2,Ω ds

� 1
2
‖∇u0‖2

2,Ω+
2
μ0

∫ t

0
‖f‖2

2,Ωds+
μ4

2

4μ3
0

∫ t

0
‖∇ξ‖4

4,Ω‖∇u‖2
2,Ω ds.

Thus we conclude the estimate in L∞(0,T ;L2(Ω)) with help of the Gronwall’s
lemma

ess sup
t∈[0,T ]

‖∇u‖2
2,Ω � (T‖∇u0‖2

2,Ω+
4
μ0

‖f‖2
2,QT

)exp [G (ξ )] (19)

where G (ξ ) = μ4
2

2μ3
0
‖∇ξ‖4

4,QT
.

Next the estimate in L2(0,T ;H1
0(Ω)) follows

‖∇2u‖2
2,QT

� 4
μ0

(T‖∇u0‖2
2,Ω+

4
μ0

‖f‖2
2,QT

)(1+G (ξ )exp [G (ξ )]) . (20)

Finally applying Lemma 3.1, (15) with n = 2 and v = ∇u , ∇u belonging to
L2(0,T ;H1

0(Ω)∩L2,∞(QT ) implies (18).

REMARK 4.1. The correctness of the test function should be understood as local,
after flattening the boundary, and by the well-known method of tangential differential
quotients due to Nirenberg, i.e. making use of the operator

τi,hv(x,t) = v(x+hei,t), 1 � i � n−1, h ∈ R,

and ei being the unit vector in the direction xi then, for h �= 0 small enough, we take
(
τi,h + τi,−h−2

h2

)
v.
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Next applying discrete integration by parts, using the fact that the adjoint of the operator
τi,h is τi,−h , the square integrability to all second derivatives of u follows from the
passage to the limit as h tends to zero.

LEMMA 4.1. Under the assumptions of Proposition 4.1, (8) , θ0 ∈ L2(Ω) and
g ∈ L2(QT ) , then any possible solution (u,θ ) of (16)-(17) satisfies

‖u‖4
4,QT

� 1
μ0

(
T‖u0‖2

2,Ω+
1
μ0

‖f‖2
2,QT

)2
, (21)

‖θ‖4
4,QT

� 1
k0

(
T‖θ0‖2

2,Ω+
2
k0

(
μ2

1F (
μ4

2

2μ3
0

‖∇ξ‖4
4,QT

)+‖g‖2
2,QT

))2

. (22)

Proof. The energy inequalities hold

‖u‖2
2,Ω(t)+ μ0

∫ t

0
‖∇u‖2

2,Ωds � ‖u0‖2
2,Ω+

1
μ0

∫ t

0
‖f‖2

2,Ωds; (23)

‖θ‖2
2,Ω(t)+ k0

∫ t

0
‖∇θ‖2

2,Ωds � ‖θ0‖2
2,Ω+

1
k0

∫ t

0

(
μ1‖∇u‖2

4,Ω+‖g‖2,Ω
)2

ds.

To prove the estimates in L∞(0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω)) we do simultaneously as

in standard manner. Using (15) and (18) we obtain (21)-(22).

REMARK 4.2. If g = −θ |θ |1/2 the energy inequality on θ given in the proof of
Lemma 4.1 can be simplified since∫

Ω
gθdx = −

∫
Ω
|θ |1/2θ 2dx � 0.

Consequently (22) reads

‖θ‖4
4,QT

� 1
k0

(
T‖θ0‖2

2,Ω+
μ2

1

k0
F (

μ4
2

2μ3
0

‖∇ξ‖4
4,QT

)
)2

. (24)

PROPOSITION 4.2. Under the assumptions of Lemma 4.1, and θ0 ∈ H1
0 (Ω) , if

∇ξ ∈ L4(QT ) then any possible solution θ of (17) is such that ∇θ belongs to a
bounded set of L∞(0,T ;L2(Ω))∩L2(0,T ;H1

0(Ω)) depending on ξ in the sense of (26)
and (27) , respectively. Moreover, it satisfies

‖∇θ‖4
4,QT

� H

(
μ4

2

2μ3
0

‖∇ξ‖4
4,QT

,
2k4

2

k3
0

‖∇ξ‖4
4,QT

)
(25)

where H is defined, for all d1,d2 ∈ R , by

H (d1,d2) =
4
k0

(
T‖∇θ0‖2

2,Ω+
4
k0

(μ2
1F (d1)+‖g‖2

2,QT
)
)2

F(d2 +
2

μ0k3
0

(T‖u0‖2
2,Ω+

1
μ0

‖f‖2
2,QT

)2),

with F and F given as in Proposition 4.1.
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Proof. Proceeding as in the proof of Proposition 4.1, we choose η = Δθ as a test
function in (17), then we have

1
2
‖∇θ‖2

2,Ω(t)+ k0

∫ t

0
‖∇2θ‖2

2,Ωds � 1
2
‖∇θ (0)‖2

2,Ω

+ k2

∫ t

0
‖∇ξ‖4,Ω‖∇θ‖4,Ω‖∇2θ‖2,Ω ds+

∫ t

0
‖u‖4,Ω‖∇θ‖4,Ω‖∇2θ‖2,Ωds

+ μ1

∫ t

0
‖∇u‖2

4,Ω‖∇2θ‖2,Ωds+
∫ t

0
‖g‖2,Ω‖∇2θ‖2,Ωds,

denoting by ∇2 the tensor (∂i j) of second order spatial derivatives.
Applying interpolation (15) and the Young’s inequality, we deduce

1
2
‖∇θ‖2

2,Ω(t)+ k0

∫ t

0
‖∇2θ‖2

2,Ω ds � 1
2
‖∇θ0‖2

2,Ω

+
1

4k3
0

∫ t

0
(k2‖∇ξ‖4,Ω+‖u‖4,Ω)4 ‖∇θ‖2

2,Ωds

+
3k0

4

∫ t

0
‖∇2θ‖2

2,Ω ds+
2
k0

∫ t

0

(
μ2

1‖∇u‖4
4,Ωds+‖g‖2

2,Ω
)

ds+
k0

8

∫ t

0
‖∇2θ‖2

2,Ωds.

Using (18) and (21), from the Gronwall’s lemma we conclude

ess sup
t∈[0,T ]

‖∇θ‖2
2,Ω

�
(

T‖∇θ0‖2
2,Ω+

4
k0

(μ2
1F (

μ4
2

2μ3
0

‖∇ξ‖4
4,QT

)+‖g‖2
2,QT

)
)

exp [I (ξ )] (26)

where

I (ξ ) =
2k4

2

k3
0

‖∇ξ‖4
4,QT

+
2

μ0k3
0

(
T‖u0‖2

2,Ω+
1
μ0

‖f‖2
2,QT

)2

.

Then we get

‖∇2θ‖2
2,QT

� 4
k0

(
T‖∇θ0‖2

2,Ω+
4
k0

(μ2
1F (

μ4
2

2μ3
0

‖∇ξ‖4
4,QT

)+‖g‖2
2,QT

)
)

(1+I (ξ )exp[I (ξ )]) (27)

and consequently (25).

REMARK 4.3. For g = −θ |θ |1/2 , the proof of Proposition 4.2 is still valid if we
take into account that ∫

Ω
gΔθdx � ‖θ‖4,Ω‖θ‖1/2

2,Ω‖Δθ‖2,Ω.

Consequently, using (24) we conclude (25) with ‖g‖2,QT replaced by

C(|Ω|)((T‖θ0‖2
2,Ω+

μ2
1

k0
F (

μ4
2

2μ3
0

‖∇ξ‖4
4,QT

))/k0)3/8.
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PROPOSITION 4.3. Under the assumptions (6)-(7) and (9) , if ξ ∈ W 1,1
4 (QT )

such that ∇ξ (0) = ∇θ0 then any solution u of (16) is such that ∂tu belongs to a
bounded set of L∞(0,T ;L2(Ω))∩L2(0,T ;H1

0(Ω)) depending on ξ in the sense of (30)
and (31) , respectively. Moreover, it satisfies

‖∂tu‖4
4,QT

� P

(
μ4

2

2μ3
0

‖∇ξ‖4
4,QT

,
μ2

2

μ0
‖∂tξ‖4

4,QT

)
(28)

where P is defined, for all d1,d2 ∈ R , by

P(d1,d2) =
1
μ0

(
TA2 +‖∂tf‖2

2,QT
+d2 +

μ2
2

μ0
F (d1)

)2

F(A ),

A = T +
2

μ2
0

(
T‖u0‖2

2,Ω+
1
μ0

‖f‖2
2,QT

)
,

with F and F given as in Proposition 4.1, and A denoting some constant depending
on μ1 , μ2 , ‖∇u0‖(1),2,Ω, ‖∇θ0‖4,Ω and ‖f(0)‖2,Ω .

Proof. Differentiating (16) with respect to time and choosing v = ∂tu as a test
function (cf. Remark 4.4), and using the orthogonality property of the convective term
(cf. [11, p. 128]), we obtain

1
2

d
dt
‖∂tu‖2

2,Ω+
∫
Ω
[μ ′(ξ )∂tξDu+ μ(ξ )∂tDu] : D∂tudx

=
∫
Ω
∂ 2
t u∂tudx+

∫
Ω
∂t [μ(ξ )Du] : D∂tudx

= −
∫
Ω
∂tu⊗ ∂tu : ∇udx+

∫
Ω
∂t f ·∂tudx.

Using the assumption (7), the Hölder’s inequality and integrating in time for each t ∈
]0,T [ , it follows

1
2
‖∂tu‖2

2,Ω+ μ0

∫ t

0

∫
Ω
|∇∂tu|2dxds � 1

2
‖∂tu(0)‖2

2,Ω+
∫ t

0
‖∂tf‖2,Ω‖∂tu‖2,Ω ds

+μ2

∫ t

0
‖∂tξ‖4,Ω‖∇u‖4,Ω‖∇∂tu‖2,Ω ds+

∫ t

0
‖∂tu‖2

4,Ω‖∇u‖2,Ω ds. (29)

Let us study separately each term of the right hand side of the above inequality.
First term. To estimate ‖∂tu(0)‖2

2,Ω we choose v = ∂tu(0) as a test function in (16) for
the particular case t = 0. Thus, we observe that

‖u′(0)‖2
2,Ω+

∫
Ω

u′(0)⊗u0 : ∇u0 dx−
∫
Ω

f(0) ·u′(0)dx

= −
∫
Ω
μ(ξ (0))Du0 : Du′(0)dx.
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Using the Green’s formula and (9) it follows

‖u′(0)‖2
2,Ω+

∫
Ω

u′(0)⊗u0 : ∇u0 dx−
∫
Ω

f(0) ·u′(0)dx

=
∫
Ω
μ ′(ξ (0))Du0 : ∇ξ (0)⊗u′(0)dx+

∫
Ω
μ(ξ (0))Δu0 ·u′(0)dx.

Applying the Hölder’s inequality, we get

‖u′(0)‖2,Ω � μ2‖∇θ0‖4,Ω‖∇u0‖4,Ω+ μ1‖∇u0‖(1),2,Ω+
+‖u0‖4,Ω‖∇u0‖4,Ω+‖f(0)‖2,Ω := A.

Note that f ∈ L2(QT ) and ∂t f ∈ L2(QT ) then f ∈C([0,T ];L2(Ω)) .
Second term. It is sufficient the use of the Young’s inequality.
Third term. Applying the Young’s inequality, it follows:

μ2‖∂tξ‖4,Ω‖∇u‖4,Ω‖∇∂tu‖2,Ω � μ2
2

2μ0
{‖∂tξ‖4

4,Ω+‖∇u‖4
4,Ω}

+
μ0

4
‖∇∂tu‖2

2,Ω.

Forth term. Applying the interpolation inequality (15), with n = 2 and v = ∂tu , and
using the Young’s inequality, it follows

‖∂tu‖2
4,Ω‖∇u‖2,Ω � ‖∂tu‖2,Ω‖∇∂tu‖2,Ω‖∇u‖2,Ω

� 1
μ0

‖∇u‖2
2,Ω‖∂tu‖2

2,Ω+
μ0

4
‖∇∂tu‖2

2,Ω.

Substituting each calculation in (29), we get

‖∂tu‖2
2,Ω + μ0

∫ t

0
‖∇∂tu‖2

2,Ω ds � A2 +
∫ t

0
‖∂t f‖2

2,Ωds

+
μ2

2

μ0

∫ t

0

(‖∂tξ‖4
4,Ω+‖∇u‖4

4,Ω
)
ds+

∫ t

0

(
1+

2
μ0

‖∇u‖2
2,Ω

)
‖∂tu‖2

2,Ω ds.

From the Gronwall’s lemma and using (18) and (23), we conclude that

ess sup
t∈[0,T ]

‖∂tu‖2
2,Ω �

[
TA2 +‖∂tf‖2

2,QT

+
μ2

2

μ0

(
‖∂tξ‖4

4,QT
+F (

μ4
2

2μ3
0

‖∇ξ‖4
4,QT

)
)]

exp[A ]. (30)

Subsequently we obtain that

‖∇∂tu‖2
2,QT

� 1
μ0

[
TA2 +‖∂tf‖2

2,QT

+
μ2

2

μ0

(
‖∂tξ‖4

4,QT
+F (

μ4
2

2μ3
0

‖∇ξ‖4
4,QT

)
)]

(1+A exp[A ]) (31)

and that ∂tu verifies (28).
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REMARK 4.4. To differentiate (16) with respect to the variable t and the choice
of the test function have meaning in the following sense. We first form the difference
ratio of the identity with respect to t , choose as a test function the difference ratio of
the solution with respect to t , and then pass to the limit as �t → 0. Or equivalently,
the argument of Remark 4.1 can be repeated.

PROPOSITION 4.4. Under the assumptions (6)-(9) and (11) , if ξ ∈ W 1,1
4 (QT )

such that ∇ξ (0) = ∇θ0 any solution θ given at Proposition 4.2 is such that ∂tθ be-
longs to L2(0,T ;H1

0 (Ω))∩L∞(0,T ;L2(Ω)) . In particular, the following estimate holds

‖∂tθ‖4
4,QT

� Q
( μ4

2

2μ3
0

‖∇ξ‖4
4,QT

,
2k4

2

k3
0

‖∇ξ‖4
4,QT

,

μ2
2

μ0
‖∂tξ‖4

4,QT
,
2k4

2

k2
0

‖∂tξ‖4
4,QT

,
μ4

2

2k0
‖∂tξ‖4

4,QT

)
, (32)

with Q the positive strictly increasing function on its arguments defined by

Q(d1,d2,d3,d4,d5) = (TB2 +d4 +H (d1,d2)

+
1
μ0

(
TA2 +‖∂tf‖2

2,QT
+d3 +

μ2
2

μ0
F (d1)

)
(1+A exp[A ])

+P(d1,d3)+F (d1)+‖∂tg‖2
2,QT

)F(T +
1

2k0
F (d1)+d5),

with correspondent estimative functions according to Propositions 4.1, 4.2, 4.3, and
B denoting some constant depending on k1 , k2 , μ1 , ‖∇u0‖4,Ω, ‖∇θ0‖(1),2,Ω and
‖g(0)‖2,Ω . Moreover, ∇θ belongs to Lq(QT ) for any q < 6 .

Proof. We recall the equation in the sense of distributions

∂tθ +u ·∇θ −∇ · (k(ξ )∇θ ) = μ(ξ )|Du|2 +g in QT .

Differentiating the above equation with respect to time, we deduce

∂ 2
t θ −∇ · (k(ξ )∂t∇θ ) = ∇ · (k′(ξ )∂tξ∇θ )− ∂tu ·∇θ

−u ·∂t∇θ + μ ′(ξ )∂tξ |Du|2 + μ(ξ )2Du : ∂tDu+ ∂tg. (33)

If multiply (33) by η = ∂tθ , using the orthogonality property of the convective
term, after standard calculations it follows

1
2

∫ t

0

d
dt
‖∂tθ‖2

2,Ωds+ k0

∫ t

0

∫
Ω
|∇∂tθ |2dxds

�
∫ t

0

∫
Ω

k′(ξ )∂tξ∇θ ·∇∂tθdxds+
∫ t

0

∫
Ω
∂tu ·∇θ∂tθdxds

+
∫ t

0

∫
Ω
(μ ′(ξ )∂tξ |Du|2 +2μ(ξ )∂tDu : Du)∂tθdxds+

∫ t

0

∫
Ω
∂t g∂tθdxds.
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Using the assumption (7) and the Hölder’s inequality, we get

1
2
‖∂tθ‖2

2,Ω(t)+ k0

∫ t

0
‖∇∂tθ‖2

2,Ω ds � 1
2
‖∂tθ (0)‖2

2,Ω

+ k2

∫ t

0
‖∂tξ‖4,Ω‖∇θ‖4,Ω‖∇∂tθ‖2,Ω ds

+
∫ t

0
‖∂tu‖4,Ω‖∇θ‖4,Ω‖∂tθ‖2,Ωds+ μ2

∫ t

0
‖∂tξ‖4,Ω‖∇u‖2

4,Ω‖∂tθ‖4,Ω ds

+2μ1

∫ t

0
‖∇∂tu‖2,Ω‖∇u‖4,Ω‖∂tθ‖4,Ω ds+

∫ t

0
‖∂tg‖2,Ω‖∂tθ‖2,Ωds. (34)

Let us examine separately each term of RHS of the above inequality.
First term. Choosing η = ∂tθ (0) as a test function in (17) for the particular case t = 0
and applying (9), we obtain

‖θ ′(0)‖2
2,Ω+

∫
Ω

u0 ·∇θ0θ ′(0)dx−
∫
Ω

g(0)θ ′(0)dx−
∫
Ω
μ(ξ (0))|Du0|2θ ′(0)dx

= −
∫
Ω

k(ξ (0))∇θ0 ·∇θ ′(0)dx =
∫
Ω

(
k(ξ (0))Δθ0 + k′(ξ (0))|∇θ0|2

)
θ ′(0)dx.

Consequently, we find

‖θ ′(0)‖2,Ω � k1‖∇θ0‖(1),2,Ω+ k2‖∇θ0‖2
4,Ω+‖u0‖4,Ω‖∇θ0‖4,Ω

+‖g(0)‖2,Ω+ μ1‖∇u0‖2
4,Ω := B.

Note that g ∈ L2(QT ) and ∂t g ∈ L2(QT ) then g ∈C([0,T ];L2(Ω)) .
Second and third terms. Applying the Young’s inequality, we have

k2‖∂tξ‖4,Ω‖∇θ‖4,Ω‖∇∂tθ‖2,Ω � k4
2

k2
0

‖∂tξ‖4
4,Ω+

1
4
‖∇θ‖4

4,Ω+
k0

4
‖∇∂tθ‖2

2,Ω;

‖∂tu‖4,Ω‖∇θ‖4,Ω‖∂tθ‖2,Ω � 1
4
‖∂tu‖4

4,Ω +
1
4
‖∇θ‖4

4,Ω+
1
2
‖∂tθ‖2

2,Ω.

Forth term. Using interpolation inequality (15) and the Young’s inequality we get

μ2‖∂tξ‖4,Ω‖∇u‖2
4,Ω‖∂tθ‖4,Ω � μ2‖∂tξ‖4,Ω‖∇u‖2

4,Ω‖∇∂tθ‖1/2
2,Ω‖∂tθ‖1/2

2,Ω

� 1
2
‖∇u‖4

4,Ω+
μ4

2

4k0
‖∂tξ‖4

4,Ω‖∂tθ‖2
2,Ω+

k0

4
‖∇∂tθ‖2

2,Ω,

Fifth term. Using interpolation inequality (15) and the Young’s inequality we get

μ1‖∇∂tu‖2,Ω‖∇u‖4,Ω‖∂tθ‖4,Ω � μ1‖∇∂tu‖2,Ω‖∇u‖4,Ω‖∇∂tθ‖1/2
2,Ω‖∂tθ‖1/2

2,Ω

� μ2
1

2
‖∇∂tu‖2

2,Ω+
1

4k0
‖∇u‖4

4,Ω‖∂tθ‖2
2,Ω+

k0

4
‖∇∂tθ‖2

2,Ω.

Sixth term. It is sufficient the use of the Young’s inequality.
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Then, introducing all these terms in (34) we conclude

‖∂tθ‖2
2,Ω(t)+

k0

2

∫ t

0
‖∇∂tθ‖2

2,Ω ds � B2 +
2k4

2

k2
0

∫ t

0
‖∂tξ‖4

4,Ω ds+
∫ t

0
‖∇θ‖4

4,Ωds

+ μ2
1

∫ t

0
‖∇∂tu‖2

2,Ω ds+
∫ t

0

(
1+

1
2k0

‖∇u‖4
4,Ω+

μ4
2

2k0
‖∂tξ‖4

4,Ω
)‖∂tθ‖2

2,Ω ds

+
1
2

∫ t

0
‖∂tu‖4

4,Ωds+
∫ t

0
‖∇u‖4

4,Ω ds+
∫ t

0
‖∂t g‖2

2,Ωds.

Recalling Propositions 4.1, 4.2 and 4.3, we use the Gronwall’s lemma to obtain

ess sup
t∈[0,T ]

‖∂tθ‖2
2,Ω � exp[B(ξ )]

(
TB2 +

2k4
2

k2
0

‖∂tξ‖4
4,QT

+H

(
μ4

2

2μ3
0

‖∇ξ‖4
4,QT

,
2k4

2

k3
0

‖∇ξ‖4
4,QT

)
+ μ2

1‖∇∂tu‖4
2,QT

+P

(
μ4

2

2μ3
0

‖∇ξ‖4
4,QT

,
μ2

2

μ0
‖∂tξ‖4

4,QT

)
+F

(
μ4

2

2μ3
0

‖∇ξ‖4
4,QT

)
+‖∂tg‖2

2,QT

)
, (35)

with

B(ξ ) = T +
(

F (
μ4

2

2μ3
0

‖∇ξ‖4
4,QT

)+ μ4
2‖∂tξ‖4

4,QT

)
/(2k0).

Applying (31) and this result in the last expression we conclude the desired result and
consequently (32).

Finally applying Proposition 4.2, ∇θ belongs to L2(0,T ;H1(Ω))∩L∞(0,T ;L2(Ω)) .
Since we also have ∂t∇θ ∈ L2(QT ) then Proposition 3.2 implies that ∇θ belongs to
Lq(QT ) for any q < 6.

REMARK 4.5. For g = −θ |θ |1/2 , the result of Proposition 4.4 is still valid if in
its proof we take into account that

∫
Ω
∂t g∂tθdx = −3

2

∫
Ω
|θ |1/2|∂tθ |2dx � 0.

PROPOSITION 4.5. Under the assumptions (7) and (11) , if θ is any solution
given at Proposition 4.4, then ∂ 2

t θ belongs to L2(0,T ;H−1(Ω)) .

Proof. Considering (33) and since we already proved that

∂tu and ∇θ ∈ L4(QT ),

u ∈ L∞(0,T ;L2(Ω)) and ∂t∇θ ∈ L2(QT ),

∇u ∈ L∞(0,T ;L2(Ω)) and ∇∂tu ∈ L2(QT ),

|∇u|2 ∈ L4(0,T ;L4/3(Ω)),
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we have
∂ 2
t θ −∇ · (k′(ξ )∂tξ∇θ + k(ξ )∇∂tθ ) ∈ L2(0,T ;L1(Ω).

Taking the operator div: L2(Ω) → H−1(Ω) , it permits to get

∇ · (k′(ξ )∂tξ∇θ + k(ξ )∇∂tθ ) ∈ L2(0,T ;H−1(Ω)),

then it results that ∂ 2
t θ ∈ L2(0,T ;H−1(Ω)).

PROPOSITION 4.6. Under the assumptions of Propositions 4.2, 4.3 and 4.4, any
solution θ of (17) is such that ∂tθ belongs to L∞(0,T ;L2+δ (Ω)) for some δ > 0 , and
consequently to L4+δ (QT ) .

Proof. In consequence of Proposition 4.5, ∂ 2
t θ does not belong in L2(QT ) and we

cannot apply the argument used in Proposition 4.4. Let us argue as in [2], multiplying
(33) by η = ∂tθ |∂tθ |δ and integrating over the space variable, we obtain

∫
Ω
∂ 2
t θ∂tθ |∂tθ |δdx+(1+ δ )

∫
Ω
(k(ξ )∂t∇θ + k′(ξ )∂tξ∇θ ) ·∇(∂tθ |∂tθ |δ )dx

+
∫
Ω
∂t(u ·∇θ )∂tθ |∂tθ |δdx =

∫
Ω
∂t(μ(ξ )|Du|2)∂tθ |∂tθ |δdx+

∫
Ω
∂t g∂tθ |∂tθ |δdx.

Applying the Hölder’s inequality under the relations for the exponents

1
4

+
1−2δ

4
+

1+ δ
2

= 1,
1
2

+
1
5

+
3−5δ

10
+
δ
2

= 1, δ <
1
2

(
<

3
5

)
,

it follows

1
2+ δ

∫ t

0

d
dt
‖∂tθ‖2+δ

2+δ ,Ωds+ k0(1+ δ )
∫ t

0

∫
Ω
|∇∂tθ |2|∂tθ |δdxds

� I1 + I2 + I3 + I4 + I5 +
∫ t

0

∫
Ω
∂t g∂tθdxds,

with

I1 := k2(1+ δ )
∫ t

0
‖∂tξ‖4,Ω‖∇θ‖4/(1−2δ ),Ω‖∇∂tθ‖2,Ω‖∂tθ‖δ2,Ωds,

I2 :=
∫ t

0
‖∂tu‖4,Ω‖∇θ‖4/(1−2δ ),Ω‖∂tθ‖1+δ

2,Ω ds,

I3 :=
∫ t

0
‖u‖5,Ω‖∇∂tθ‖2,Ω‖∂tθ‖10/(3−5δ ),Ω‖∂tθ‖δ2,Ω ds,

I4 := μ2

∫ t

0
‖∂tξ‖4,Ω‖Du‖2

8/(1−2δ ),Ω‖∂tθ‖1+δ
2,Ω ds,

I5 := 2μ1

∫ t

0
‖∂tDu‖2,Ω‖Du‖5,Ω‖∂tθ‖10/(3−5δ ),Ω‖∂tθ‖δ2,Ωds.
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From Proposition 4.4, ∂tθ belongs to L2(0,T ;H1(Ω))∩L∞(0,T ;L2(Ω)) and ∇θ be-
longs to Lq(QT ) ↪→ L4/(1−2δ ),4(QT ) ↪→ L4/(1−2δ ),4/3(QT ) for any q < 6. Conse-
quently, choosing δ < 1/6 we obtain

I1 � C‖∂tξ‖4,QT ‖∇θ‖4/(1−2δ ),4,QT
‖∇∂tθ‖2,QT ess sup

t∈[0,T ]
‖∂tθ‖δ2,Ω ,

I2 � ‖∂tu‖4,QT ‖∇θ‖4/(1−2δ ),4/3,QT
ess sup

t∈[0,T ]
‖∂tθ‖1+δ

2,Ω ,

observing that from Proposition 4.3 and Lemma 3.1, ∂tu belongs to L2(0,T ;H1(Ω))∩
L∞(0,T ;L2(Ω)) ↪→ L4(QT ) .

Thanks to Proposition 4.1, we get u ∈ L∞(0,T ;H1(Ω)) ↪→ L∞(0,T ;L5(Ω)) , and
thanks to Proposition 4.4, we get ∂tθ belongs to L2(0,T ;H1(Ω))∩L∞(0,T ;L2(Ω)) ↪→
L10/(3−5δ ),2(QT ) for any δ < 3/5. Then, we obtain

I3 � ‖u‖5,∞,QT ‖∇∂tθ‖2,QT ‖∂tθ‖10/(3−5δ ),2,QT
ess sup

t∈[0,T ]
‖∂tθ‖δ2,Ω.

Thanks to Propositions 4.1 and 3.2, ∇u belongs to

L2(0,T ;H1(Ω))∩L∞(0,T ;L3(Ω)) ↪→ L8/(1−2δ ),8/3(QT )

for any δ < 1/6. Then, it follows

I4 � C‖∂tξ‖4,QT ‖∇u‖2
8/(1−2δ ),8/3,QT

ess sup
t∈[0,T ]

‖∂tθ‖1+δ
2,Ω .

From Proposition 4.1, ∇u belongs to L2(0,T ;H1(Ω))∩L∞(0,T ;L2(Ω)) . From
Proposition 4.3, ∂tu belongs to L2(0,T ;H1(Ω))∩L∞(0,T ;L2(Ω)) . In particular, ap-
plying Proposition 3.2 we have ∇u ∈ L5(QT ). From Proposition 4.4, ∂tθ belongs to
L2(0,T ;H1(Ω))∩L∞(0,T ;L2(Ω)) ↪→ L10/(3−5δ ),10/3(QT ) for any δ < 1/5. Then, we
obtain

I5 � C‖∇u‖5,QT ‖∂t∇u‖2,QT ‖∂tθ‖10/(3−5δ ),10/3,QT
ess sup

t∈[0,T ]
‖∂tθ‖δ2,Ω.

Therefore we conclude an estimate for ∂tθ in L2+δ ,∞(QT ) and applying Lemma
3.1 we obtain L2+δ ,∞(QT )∩L2(0,T ;H1(Ω)) ↪→ L4+δ (QT ) .

5. Proof of Theorem 2.1

In order to apply Schauder theorem, we build an operator L defined on W 1,1
4 (QT ) ,

which maps
ξ ∈ K �→ u = u(ξ ) �→ θ ∈W 1,1

4 (QT ),

where K := {ξ ∈W 1,1
4 (QT ) : ∇ξ (0) = ∇θ0, ‖ξ‖� R} , and u and θ are the solutions

to the problems (16) and (17), respectively.
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Step 1. Let us prove that L is a well defined mapping. For each ξ ∈W 1,1
4 (QT ) ,

from the existence theory for the Navier-Stokes system there is a unique 2-dimensional
solution u∈L∞(0,T ;L2(Ω))∩L2(0,T ;J1,2

0 (Ω)) to (16), ∂tu∈L2(0,T ;(J1,2
0 (Ω))′) (see

for example [11, 14, 25]). Hence, thanks to Proposition 4.1 we have ∇u ∈ L4(QT ).
Thus from the existence theory for the parabolic equations there is

θ ∈ L∞(0,T ;L2(Ω))∩L2(0,T ;H1
0 (Ω)),

which is the unique solution to the problem (17) so that ∂tθ ∈ L2(0,T ;H−1(Ω)) . Then,
Propositions 4.2 and 4.4 guarantee the sufficient regularity to obtain θ ∈W 1,1

4 (QT ).
Step 2. From Propositions 4.2 and 4.4, L maps the convex closed set K into

itself, choosing R > 0 such that

R � H (
μ4

2

2μ3
0

R,
2k4

2

k3
0

R)+Q(
μ4

2

2μ3
0

R,
2k4

2

k3
0

R,
μ2

2

μ0
R,

2k4
2

k2
0

R,
μ4

2

2k0
R) (36)

under the assumption (12).
Step 3. In order to prove that L is compact, we take a sequence ξm weakly

convergent to ξ in W 1,1
4 (QT ) , and corresponding solutions um and θm to the problems

(16) and (17), respectively. The estimates (25) and (32) infer that we can extract a
subsequence, still denoted by θm , such that

∇θm ⇀ ∇θ in L4(QT ), ∂tθm ⇀ ∂tθ in L4(QT ).

From Propositions 4.2 and 4.4, we have ∇θm and ∂t∇θm bounded in L2(0,T ;H1
0(Ω))

and L2(QT ) , respectively. Moreover ∂tθm bounded in L2(0,T ;H1
0 (Ω)) and from

Proposition 4.5 we get ∂ 2
t θm bounded in L2(0,T ;H−1(Ω)) . Then by a compactness

result (cf. [22] or [24, p. 90]) we obtain

∇θm → ∇θ in L2(0,T ;Lq(Ω)), q < ∞,

∂tθm → ∂tθ in L2(0,T ;Lq(Ω)), q < ∞.

In order to apply these strong convergences we use Proposition 3.2 to ∇θm ob-
taining that it is bounded in L5(QT ) and consequently

∇θm → ∇θ in L4(QT ).

Next using Proposition 4.6, it follows

∂tθm → ∂tθ in L4(QT ).

Therefore we conclude that θ is the limit solution to the problem (17).
In conclusion, Schauder Theorem guarantees the existence of at least one fixed

point and accordingly there exists a strong solution (u,θ ) in the conditions of Theorem
2.1.

Finally let us prove that the strong solution is Hölder continuous. From Proposition
4.1, ∇u belongs to L2(0,T ;H1(Ω))∩ L∞(0,T ;L2(Ω)) . From Proposition 4.3, ∂tu
belongs to L2(0,T ;H1(Ω))∩L∞(0,T ;L2(Ω)) . In particular, applying Proposition 3.1
we have ∇u∈L3,∞(QT ) , that is, u belongs to L∞(0,T ;W1,3

0 (Ω)) ↪→ L∞(0,T ;C0,α(Ω))
for 0 < α < 1/3. Thus using Lemma 3.2 we conclude that u is Hölder continuous.
Analogous for θ .
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6. Proof of Theorem 2.2

We argue as in the proof of Theorem 2.1. Let L be the operator which maps

ξ ∈ K ⊂W 1,1
4 (QT ) �→ u = u(ξ ) �→ θ ∈W 1,1

4 (QT ),

where u and θ are the solutions to the problems (16) and (17) with g replaced by
−θ |θ |1/2 , respectively.

Proceeding as in steps 1 and 2, the operator L is well defined considering Re-
marks 4.3 and 4.5. Consequently the argument of the proof of Theorem 2.1 can be
followed mutatis mutandis. In particular, we have, for all q < 6,

|∇θ |2, |∇u|2 ∈ Lq/2(QT ); u ·∇θ ∈ Lq(QT ),

the corresponding term to the heat production |θ |1/2θ ∈ L∞(QT ) and θ is Hölder con-
tinuous. Thus, applying the regularity theory for the heat equation

∂tθ − k(θ )Δθ = k′(θ )|∇θ |2 + μ(θ )|Du|2−|θ |1/2θ −u ·∇θ in QT ,

we find that θ ∈W 2,1
q/2(QT ) .

7. Uniqueness (Proof of Theorem 2.3)

7.1. Uniqueness in Theorem 2.1

We proceed in a classical manner. We suppose the existence of two solutions
(u1,θ1) and (u2,θ2) and we define u = u1 − u2 and θ = θ1 − θ2 . So that (u,θ )
verifies the following variational formulation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω∂tu ·vdx+

∫
Ω μ(θ1)Du : Dvdx =

∫
Ω(μ(θ2)− μ(θ1))Du2 : Dvdx

−∫
Ω

(
∇u2 : v⊗u+∇u : v⊗u1

)
dx

a.e. t ∈ [0,T ] ∀v ∈ J1,2
0 (Ω), u

∣∣
t=0 = 0 in Ω;∫

Ω(∂tθ )ηdx+
∫
Ω k(θ1)∇θ ·∇ηdx =

∫
Ω(k(θ2)− k(θ1))∇θ2 ·∇ηdx

−∫
Ω

(
u ·∇θ2 +u1 ·∇θ

)
ηdx+

∫
Ω(μ(θ1)|Du1|2 − μ(θ2)|Du2|2)ηdx

a.e. t ∈ [0,T ] ∀η ∈ H1
0 (Ω), θ

∣∣
t=0 = 0 in Ω.

(37)

Taking v = u and η = θ , using (7) and the orthogonality property to the convec-
tive terms, and summing the resulting relations we find

1
2

d
dt
‖u‖2

2,Ω+
1
2

d
dt
‖θ‖2

2,Ω+ μ0‖Du‖2
2,Ω+ k0‖∇θ‖2

2,Ω

� −
∫
Ω
∇u2 : u⊗udx−

∫
Ω

u ·∇θ2θdx+
∫
Ω
(μ(θ2)− μ(θ1))Du2 : Dudx

+
∫
Ω
(k(θ2)− k(θ1))∇θ2 ·∇θdx

+
∫
Ω
(μ(θ1)− μ(θ2))|Du1|2θdx+

∫
Ω
μ(θ2)Du : D(u1 +u2)θdx.
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Arguing as in [11, p. 154] we get

I1 :=
∣∣∣∣
∫
Ω
∇u2 : u⊗udx

∣∣∣∣ � ‖∇u2‖2,Ω‖u‖2
4,Ω

� μ0

8
‖∇u‖2

2,Ω+
2
μ0

‖∇u2‖2
2,Ω‖u‖2

2,Ω.

Analogously we have

I2 :=
∣∣∣∣
∫
Ω

u ·∇θ2θdx

∣∣∣∣ � ‖u‖4,Ω‖∇θ2‖2,Ω‖θ‖4,Ω

� μ0

8
‖∇u‖2

2,Ω+
1

2μ0
‖∇θ2‖2

2,Ω‖u‖2
2,Ω+

k0

8
‖∇θ‖2

2,Ω+
1

2k0
‖∇θ2‖2

2,Ω‖θ‖2
2,Ω.

Next using the Mean Value Theorem, for every X = (x,t) ∈ QT there exists ψX

between θ1(X) and θ2(X) such that

|μ(θ1)− μ(θ2)| = μ ′(ψX )|θ |,
and successively applying (7) and the Hölder’s inequality

I3 :=
∫
Ω
|μ(θ1)− μ(θ2)||Du2 : Du|dx � μ2‖θ‖4,Ω‖Du2‖4,Ω‖Du‖2,Ω.

Applying (14) this term can be estimated as follows

I3 � μ2‖θ‖1/2
2,Ω‖∇θ‖1/2

2,Ω‖∇u2‖4,Ω‖∇u‖2,Ω

� 2μ4
2

k0μ2
0

‖θ‖2
2,Ω‖∇u2‖4

4,Ω+
k0

8
‖∇θ‖2

2,Ω+
μ0

4
‖∇u‖2

2,Ω.

Analogously we get

I4 : =
∫
Ω
(k(θ2)− k(θ1))∇θ2 ·∇θdx

� k2‖θ‖1/2
2,Ω‖∇θ‖3/2

2,Ω‖∇θ2‖4,Ω � 2k4
2

k3
0

‖θ‖2
2,Ω‖∇θ2‖4

4,Ω+
3k0

8
‖∇θ‖2

2,Ω

and also

I5 : =
∫
Ω
(μ(θ1)− μ(θ2))|Du1|2θdx

� μ2‖θ‖2
4,Ω‖∇u1‖2

4,Ω � 2μ2
2

k0
‖θ‖2

2,Ω‖∇u1‖4
4,Ω+

k0

8
‖∇θ‖2

2,Ω.

Finally we have

I6 : =
∫
Ω
μ(θ2)Du : D(u1 +u2)θdx � μ1‖θ‖4,Ω‖∇(u1 +u2)‖4,Ω‖∇u‖2,Ω

� 2μ4
1

k0μ2
0

‖θ‖2
2,Ω‖∇(u1 +u2)‖4

4,Ω+
k0

8
‖∇θ‖2

2,Ω+
μ0

4
‖∇u‖2

2,Ω.
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Then these inequalities imply

d
dt

(‖u‖2
2,Ω+‖θ‖2

2,Ω
)

� 4
μ0

(‖∇u2‖2
2,Ω+‖∇θ2‖2

2,Ω
)‖u‖2

2,Ω

+
(

C(|Ω|,k0,k2)‖∇θ2‖4
4,Ω+

C(μ0,μ1,μ2)
k0μ2

0

(‖∇u2‖4
4,Ω+‖∇u1‖4

4,Ω
))‖θ‖2

2,Ω.

Considering that (u,θ )|t=0 = (0,0) , the Gronwall’s lemma allows us to conclude that
(u,θ ) = (0,0) .

7.2. Uniqueness in Theorem 2.2

Proceeding as in Section 7.2 we find

1
2

d
dt
‖u‖2

2,Ω+
1
2

d
dt
‖θ‖2

2,Ω+ μ0‖Du‖2
2,Ω+ k0‖∇θ‖2

2,Ω

� I1 + I2 + I3 + I4 + I5 + I6−
∫
Ω
(|θ1|1/2−|θ2|1/2)θ2θdx.

For every t ∈ [0,T ] , define

[|θ1|1/2 + |θ2|1/2 > 0] = {x ∈Ω : |θ1(x,t)|1/2 + |θ2(x,t)|1/2 > 0}.

Then the last term in RHS of the above inequality reads

−
∫
Ω
(|θ1|1/2−|θ2|1/2)θ2θdx = −

∫
[|θ1|1/2+|θ2|1/2>0]

|θ1| − |θ2|
|θ1|1/2 + |θ2|1/2

θ2θdx

�
∫

[|θ1|1/2+|θ2|1/2>0]

|θ2|
|θ1|1/2 + |θ2|1/2

θ 2dx �
∫
Ω
|θ2|1/2θ 2dx � ‖θ2‖1/2

∞,Ω‖θ‖2
2,Ω.

Therefore we can conclude the desired uniqueness.
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[3] A. BERMÚDEZ DE CASTRO, Continuum Thermomechanics, Progress in Mathematical Physics , 43,
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[17] J. MÁLEK, J. NEČAS, M. ROKYTA AND M. RUŽIČKA, Weak and Measure-valued solutions to evo-
lutionary PDEs, Chapman and Hall, London, 1996.

[18] B. MOHAMMADI AND O. PIRONNEAU, Analysis of the K-Epsilon turbulence model, Research in
Applied Mathematics. Wiley/Masson, 1994.

[19] J. NAUMANN, On the existence of weak solutions to the equations of non-stationary motion of heat-
conducting incompressible viscous fluids, Math. Meth. Appl. Sci., 29 (2006), 1883–1906.
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