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GLOBAL HÖLDER SOLUTIONS FOR ABSTRACT

NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

EDUARDO HERNÁNDEZ

(Communicated by L. Berezansky)

Abstract. We study the existence of global α -Hölder mild solutions and S -classical solutions
for a class of abstract neutral functional differential equations defined on whole the real axis.
Some concrete applications to ordinary and partial differential equations are considered.

1. Introduction

In this paper we study the existence of α -Hölder solutions for a class of abstract
neutral functional differential equations of the form

d
dt

[x(t)+g(t)xt] = Ax(t)+ f (t)xt , t ∈ R. (1.1)

In this system, A is the infinitesimal generator of an hyperbolic C0 -semigroup of
bounded linear operators (T (t))t�0 on a Banach space (X ,‖ · ‖) , the history xt(θ ) :=
x(t +θ ), xt : (−∞,0] → X , belongs to some abstract phase space B defined axiomat-
ically and g, f :∈ C(R;L (B,X) , where L (B,X) is the space of bounded linear
operators from Z into W.

The literature related ordinary neutral functional differential equations is very ex-
tensive and we refer the reader to the book by Hale & Lunel [7] for details. Concerning
partial neutral functional differential equations on bounded intervals we cite Hale [8],
Wu [18, 19, 20], Adimy [1] and Hernández et all [10] for finite delay equations, and
Hernández et all [9, 13] and Hernández [11] for the case of equations with infinite de-
lay. To the best of our knowledge, the problem of the existence of solutions defined on
the whole real axis (in particular, the existence of α -Hölder mild solutions and regular
solutions) for equations in the abstract form (1.1) is an untreated topic in the literature,
and it is the main motivation of this paper.

Abstract neutral differential equations described in the abstract from (1.1) arise,
for instance, in the theory of heat conduction in fading memory materials. In the clas-
sic theory of heat conduction, it is assumed that the internal energy and the heat flux
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depends linearly on the temperature u(·) and on its gradient ∇u(·) . Under these con-
ditions, the classical heat equation describes sufficiently well the evolution of the tem-
perature in different types of materials. However, this description is not satisfactory in
materials with fading memory. In the theory developed in [6, 17], the internal energy
and the heat flux are described as functionals of u(·) and ux(·) . The following equation,
see [2, 4, 5, 15], has been frequently used to describe this phenomena

d
dt

[
u(t,x)+

∫ t

−∞
k1(t − s)u(s,x)ds

]
= c�u(t,x)+

∫ t

−∞
k2(t − s)�u(s,x)ds,

u(t,x) = 0, x ∈ ∂Ω.

In this equation, Ω⊂Rn is open, bounded and has smooth boundary, (t,x)∈ [0,∞)×Ω ,
u(t,x) represents the temperature in x at the time t , the letter c denotes a physical
constant and ki : R → R , i = 1,2, are the internal energy and the heat flux relaxation
respectively. By assuming that k2 ≡ 0, we can represent the above system in the abstract
form (1.1). In the last section, we consider two additional concrete applications to
ordinary and partial differential equations.

We include now some definitions, properties and technicalities. In this paper,
the pair (X ,‖ · ‖) is a Banach space and A is the infinitesimal generator of an ana-
lytic semigroup of bounded linear operators, (T (t))t�0 , on (X ,‖ · ‖) . We also assume
σ(A)∩ iR = /0 and σ+(A) = {λ ∈ σ(A) : Re(λ ) > 0} is bounded. Under these condi-
tions, the sets σ−(A) = {λ ∈ σ(A) : Re(λ ) < 0} and σ+(A) = {λ ∈ σ(A) : Re(λ ) > 0}
are closed, disjoint and there exists δ > 0 such that

sup{Re(λ ) : λ ∈ σ−(A)} < −δ < 0 < δ < inf{Re(λ ) : λ ∈ σ+(A)}.
Let Ω ⊂ R2 be an open bounded set with smooth boundary ∂Ω such that σ+(A) ⊂
Ω⊆ C+ = {λ ∈ C : Re(λ ) > 0} and P : X → X be the operator defined by

Px =
1

2π i

∫
∂Ω

R(μ ;A)xdμ , x ∈ X ,

with ∂Ω oriented counterclockwise. In the next result, X1 = P(X) , X2 = (I −P)(X)
and A1 : X1 → X , A2 : D(A2) = {x ∈ D(A) : x ∈ X2, Ax ∈ X2} → X2, are the operators
defined by A1x = Ax for x ∈ X1 and A2y = Ay for y ∈ D(A2) . The next result can be
found in [16].

PROPOSITION 1.1. The following properties are valid.

(a) The operator P is a projection, P(X) ⊂ D(An) for all n ∈ N , T (t)Px = PT (t)x for
all x ∈ X and T (t)Xi ⊂ Xi for i = 1,2, and every t � 0 .

(b) A1(X1) ⊂ X1 , σ(A1) = σ+(A) and R(λ : A1) = R(λ : A)|X1 for all λ ∈ ρ(A1) .
Moreover, A1 is the generator of a C0 -group (TA1(t))t�0 on X1 and TA1(t) = T (t)|X1

for every t � 0 .

(c) σ(A2) = σ−(A) , R(λ : A2) = R(λ : A)|X2 for all λ ∈ ρ(A2) , A2 is the generator
of a uniformly stable analytic semigroup (TA2(t))t�0 on X2 , TA2(t) = T (t)|X2 for every
t � 0 and T (t) = TA1(t)+TA2(t) for each t � 0 .
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(d) There are γ > 0 and positive constants Ci,di , i ∈ N , such that

‖AiT (−t)P‖ � die−ωt and ‖AiT (t)(I−P)‖ � Cie−γt for all t � 0 .

From Lunardi [16] we also remark the following result. In this result, [D(A)]
represent the domain of A endowed with the graph norm.

PROPOSITION 1.2. Let f ∈ L∞(R,X) and assume u ∈ C1(R,X)∩C(R, [D(A)])
is a bounded solution of the equation

x′(t) = Ax(t)+ f (t), t ∈ R.

Then

u(t) =
∫ t

−∞
T (t − τ)(I−P) f (τ)dτ−

∫ ∞

t
T (t − τ)P f (τ)dτ, t ∈ R.

In this work we employ an axiomatic definition for the phase space B , which is
similar to the one used in [14]. Specifically, B is a vector space of functions mapping
(−∞,0] into X endowed with a seminorm ‖ · ‖B such that the next axioms hold.

(A) If x : (−∞,σ +a) �→ X , a > 0, σ ∈ R , is continuous on [σ ,σ +a) and xσ ∈ B ,
then for every t ∈ [σ ,σ +a) the following hold:

(i) xt is in B ;

(ii) ‖x(t)‖ � H‖xt‖B ;

(iii) ‖xt‖B � K(t−σ)sup{‖x(s)‖ : σ � s � t}+M(t−σ)‖xσ‖B,

where H > 0 is a constant; K,M : [0,∞) �→ [1,∞) , K is continuous, M is locally
bounded and H,K,M are independent of x(·) .
(A1) For the function x(·) in (A) , the function t → xt is continuous from [σ ,σ + a)
into B .

(B) The space B is complete.

(C2) If (ϕn)n∈N is a uniformly bounded sequence in C((−∞,0],X) given by functions
with compact support and ϕn → ϕ in the compact-open topology, then ϕ ∈ B and
‖ϕn−ϕ‖B → 0 as n → ∞.

REMARK 1.1. In this paper we suppose that L is a positive constant such that
‖ϕ‖B � Lsupθ�0 ‖ϕ(θ )‖ for each ϕ ∈ B bounded continuous. We cite [14, Proposi-
tion 7.1.1] for additional details related this condition.

EXAMPLE 1.1. The phase space Cr × Lp(η ,X) Let r � 0, 1 � p < ∞ and let
η : (−∞,−r] �→ R be a nonnegative measurable function which satisfies the conditions
(g-5)-(g-6) in the terminology of [14]. Briefly, this means that η is locally integrable
and there exists a non-negative locally bounded function ζ on (−∞,0] such that η(ξ +
θ ) � ζ (ξ )η(θ ) for all ξ � 0 and θ ∈ (−∞,−r) \Nξ , where Nξ ⊆ (−∞,−r) is a set
with Lebesgue measure zero.
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The space B =Cr×Lp(η ,X) consists of all classes of functions ϕ : (−∞,0] �→X
such that ϕ is continuous on [−r,0] , Lebesgue-measurable on (−∞,0) and η‖ϕ‖p is
Lebesgue integrable on (−∞,−r) . The seminorm in Cr ×Lp(η ,X) is given by

‖ ϕ ‖B:= sup{‖ϕ(θ )‖ : −r � θ � 0}+
(∫ −r

−∞
η(θ )‖ϕ(θ )‖pdθ

)1/p

.

The space B = Cr × Lp(η ,X) satisfies axioms (A), (A1) and (B). Moreover, when
r = 0 and p = 2, we can take:

H = 1, K(t) = 1+
(∫ 0

−t
η(θ )dθ

)1/2

and M(t) = γ(−t)1/2 for t � 0 ,

(see [14, Theorem 1.3.8] for details).

In this paper, Cb(I;Z) is the space of all the bounded continuous functions from an

interval I ⊂R into Z provided with the sup-norm denoted by ‖ · ‖Cb(I;Z) and Cβ
b (I;Z) ,

β ∈ (0,1) , represents the space formed for all the β -Hölder Z -valued bounded contin-
uous functions from I into Z with the norm

‖ ξ ‖Cγ
b(I;Z)=‖ ξ ‖

Cb(I;Z) +[| ξ |]Cγ
b(I;Z),

where [| ξ |]Cγ
b(I;Z) = supt,s∈I;t �=s

‖ξ (s)−ξ (t)‖Z
(t−s)γ . In the rest of this paper, we will write

simply ‖ · ‖Cb(Z) and ‖ · ‖Cα
b (Z) when non confusion on the interval I arise.

This paper has tree sections. In the next section we discuss the existence of Hölder
mild solutions and classical solutions for the equation (1.1). In the last section, we
consider some concrete applications to ordinary and partial differential equations.

2. Existence of solution

In this section, we discuss the existence of Cα -Hölder mild and S -classical so-
lutions for the equation (1.1). Motivated from Proposition 1.2 and the development in
[9, 12], we introduce the following of mild solution for (1.1). In the rest of this paper,
we denote by gu and fu the functions given by gu(t) = g(t)ut and fu(t) = f (t)ut .

DEFINITION 2.1. A function u ∈Cα
b (R;X) is called of Cα -Hölder mild solution

of the neutral equation (1.1) if

u(t) = −gu(t)−
∫ t

−∞
AT (t− s)(I−P)gu(s)ds+

∫ ∞

t
AT (t − s)Pgu(s)ds

+
∫ t

−∞
T (t− s)(I−P)T (t− s) fu(s)ds−

∫ ∞

t
T (t − s)P fu(s)ds, ∀t ∈ R.

DEFINITION 2.2. A function u ∈ Cα
b (R;X) is called of S -classical solution of

(1.1) if u ∈ Cb(R, [D(A)]) , the functions t → u(t)+ g(t,ut) belongs to C1
b(R,X) and

the equation (1.1) is verified.
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To establish our results, we always assume that the following condition is verified.

(Hg) There are a Banach space (Y,‖ · ‖Y ) continuously included in X and a function
H ∈ L1((0,∞),(0,∞)) such that ‖ AT (t)(I −P) ‖L (Y,X)� e−γtH(t) for all t � 0 and
g ∈C([0,a]×B;Y ) .

REMARK 2.1. The assumption (Hg) is linked to the integrability of the function
s → AT (t − s)gu(s) . We note that except trivial cases, the operator function AT (·) is
not integrable in the operator topology on [0,b] , for b > 0. See [10, 11] for additional
details related this type of conditions in the theory of neutral equations.

To establish the main result of this section we need some preliminary lemmas.

LEMMA 2.1. Let g ∈Cα
b (R;Y ) and ϒig : R → X , i = 1,2 be the functions given

by

ϒ1g(t) =
∫ t

−∞
AT (t − s)(I−P)g(s)ds, t ∈ R,

ϒ2g(t) =
∫ ∞

t
AT (t− s)Pg(s)ds, t ∈ R.

Then ϒig ∈Cα
b (R;X) , i = 1,2 , and:

‖ ϒ1g ‖Cb(X)�‖ g ‖Cb(Y )‖ e−γ(·)H(·) ‖L1([0,∞)),

‖ ϒ2g ‖Cb(X)�
d1

γ
‖ g ‖Cb(X),

[| ϒ1g |]Cα
b (X) � [| g |]Cα (Y ) ‖ e−γ(·)H(·) ‖L1([0,∞)),

[| ϒ2g |]Cα
b (X) � d1

γ
[| g |]Cα (X).

Proof. From the estimate

∫ t

−∞
‖AT (t− s)(I−P)g(s) ‖ ds

�
∫ t

−∞
‖ AT (t− s)(I−P) ‖L(Y,X)‖ g(s) ‖Y ds

�
∫ t

−∞
e−γ(t−s)H(t− s) ‖ g ‖Cb(Y ) ds

�‖ g ‖Cb(Y )‖ e−γ(·)H(·) ‖L1([0,∞)),

and the Bochner’s criterion for integrable functions we obtain that the function s →
AT (t − s)(I−P)g(s) is integrable on (−∞,t] for all t ∈ R , ϒ1g ∈Cb(X) and

‖ ϒ1g ‖Cb(X)�‖ g ‖Cb(Y )‖ e−γ(·)H(·) ‖L1([0,∞)) .
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On the other hand, for s < t we get

‖ ϒ1g(t)−ϒ1g(s) ‖ �
∫ ∞

0
‖ AT (τ)(I−P)(g(t− τ)−g(s− τ)) ‖ dτ

� [| g |]Cα (Y )

∫ ∞

0
e−γτH(τ)dτ(t − s)α ,

which implies that ϒ1g ∈Cα(R,X) and

[| ϒ1 |]Cα
b (X) � [| g |]Cα (Y) ‖ e−γ(·)H(·) ‖L1([0,∞)) . (2.1)

This complete the proof related the properties of ϒ1 . The rest of the proof is similar,
we omit the details. �

Proceeding as in the proof of Lemma 2.1, we can show the following result.

LEMMA 2.2. Let f ∈Cα
b (R;X) and ϒi : R → X , i = 3,4 be the functions given

by

ϒ3 f (t) =
∫ t

−∞
T (t − s)(I−P) f (s)ds, t ∈ R,

ϒ4 f (t) =
∫ ∞

t
T (t− s)P f (s)ds, t ∈ R.

Then ϒi ∈ Cα
b (R;X) , ‖ ϒ3 f ‖Cb(X)‖� C0

γ ‖ f ‖Cb(X) , ‖ ϒ4 f u ‖Cb(X)� d0
γ ‖ f ‖Cb(X) ,

[| ϒ3 f |]Cα
b (X) � [| f |]Cα

b (X)
C0
γ and [| ϒ4 f |]Cα

b (X) � d0
γ [| f |]Cα

b (X).

In Theorem 2.1 below, we establish the existence of Cα -Hölder mild solutions for
(1.1). In this result, ic represent the inclusion map from Y into X and L is the constant
introduced in Remark 1.1.

THEOREM 2.1. Assume g ∈Cα
b (R,L (B,Y )) , f ∈Cα

b (R,L (B,X)) and

L ‖ g ‖Cα
b (L (B,Y )) (‖ ic ‖L (Y,X) + ‖ e−γ(·)H(·) ‖L1([0,∞)) +

d1

γ
)

+L ‖ f ‖Cα
b (L (B,X)) (

C0 +d0

γ
) < 1.

Then there exists a unique mild solution u ∈Cα
b (R;X) of the neutral equation (1.1) .

Proof. Let Γ : Cα
b (R;X) →Cα

b (R;X) be the map defined by

Γu(t) = −gu(t)−
∫ t

−∞
AT (t− s)(I−P)gu(s)ds+

∫ ∞

t
AT (t − s)Pgu(s)ds

+
∫ t

−∞
T (t − s)(I−P) fu(s)ds−

∫ ∞

t
T (t− s)P fu(s)ds.



ABSTRACT NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS 33

From the assumption on f (·) and g(·) , and Lemmas 2.1 and 2.2 we infer that Γ well
defined.

In order to prove that Γ is a contraction on Cα
b (R;X) , we take u,v ∈ Cα

b (R;X)
and w = u− v . If in the Lemmas 2.1 and 2.2 we use gw and fw in the place of g and
f , we get

‖ ϒ1gw ‖Cα
b (X) + ‖ ϒ2gw ‖Cα

b (X) + ‖ ϒ3 fw ‖Cα
b (X) + ‖ ϒ4 fw ‖Cα

b (X)

�‖ ic ‖L (Y,X)‖ g ‖Cα
b (L (B,Y ))‖ w ‖Cα

b (X)

+ ‖ gw ‖Cα
b (L (Y )) (‖ e−γ(·)H(·) ‖L1([0,∞)) +

d1

γ
)+ ‖ fw ‖Cα (X) (

C0 +d0)
γ

�‖ g ‖Cα
b (L (B,Y )) (‖ ic ‖L (Y,X) + ‖ e−γ(·)H(·) ‖L1([0,∞)) +

d1

γ
)L ‖ w ‖Cα

b (X)

+ ‖ f ‖Cα (L (B,X)) (
C0 +d0

γ
)L ‖ w ‖Cα

b (X),

which implies there exists Θ ∈ (0,1) such that ‖ Γu−Γv ‖Cα
b (X) Θ ‖ u− v ‖Cα

b (X) for
all u,v ∈Cα

b (R;X) . Thus, Γ is a contraction and there exists a unique fixed point u(·)
of Γ . Obviously, u(·) is a Cα -mild solution of (1.1). The proof is complete. �

We finish this section with the following result on the existence of S -classical
solutions for (1.1).

THEOREM 2.2. Assume g ∈Cα
b (R,L (B, [D(A)])) , f ∈Cα

b (R,L (B,X)) and

L

[
‖ g ‖Cα

b (L (B,[D(A)])) (‖ ic ‖L ([D(A)],X) +
C0 +d0

γ
)+ ‖ f ‖Cα

b (L (B,X)) (
C0 +d0

γ
)
]

< 1.

Then there exists a unique mild solution u ∈Cα
b (R;X) of the neutral equation (1.1) .

Proof. Since H ≡ 1, from Theorem 2.1 there exists a unique Cα -Hölder mild
solution u(·) of (1.1). Let y : R → X be the function given by y(t) = u(t)+ gu(t) .
Noting that g is D(A)-valued, we see that

y(t) =
∫ t

−∞
T (t − s)(I−P)[−Agu(s)+ fu(s)]ds

−
∫ ∞

t
T (t − s)P[−Agu(s)+ fu(s)]ds, ∀ t ∈ R. (2.2)

Moreover, since the functions −Agu and fu are α -Hölder continuous on R , from (2.2)
it is easy to show that y ∈Cb(R, [D(A)])∩C1

b(R,X) and y′(t) = Ay(t)−Agu(t)+ fu(t)
for all t ∈ R . Finally, by noting that u(t) = −gu(t)+ y(t) ∈ D(A) for all t ∈ R , we get

d
dt

(u(t)+gu(t)) = Ay(t)−Agu(t)+ fu(t)

= A(u(t)+gu(t))−Agu(t)+ fu(t)
= Au(t)+ fu(t), t ∈ R, (2.3)

which complete the proof that u(·) is a S -classical solutions of (1.1). �
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3. Applications

In this section we consider some applications of our abstract results. To begin, we
consider an ordinary differential equation described on a finite dimensional space. We
note that in this case our results are easily applicable since A is a bounded linear oper-
ator and the operator function AT (·) is integrable on bounded intervals (the condition
Hg is verified with Y = X ).

Motivated by the development in [3], we consider the neutral equation

d
dt

[
u(t)−λ

∫ t

−∞
C(t,t− s)u(s)ds

]
= Au(t)+λ

∫ t

−∞
B(t,t− s)u(s)ds

− p(t)+q(t), (3.1)

which arises in the study of the dynamics of income, employment, value of capital
stock, and cumulative balance of payment, see [3] for details. In this equation, λ is a
real number, the state u(t) ∈ Rn , C(·),B(·) are n× n matrix continuous functions, A
is a constant n× n matrix, p(·) represents the government intervention and q(·) the
private initiative.

To treat this equation, we take B =C0×Lp(η ,X) with X = Rn , see Example 1.1,
and we assume σ(A)∩ iR = /0 . In what follows, γ,di,L and Ci are as in the Section 1.
Next, we suppose

L1
g(t) = (

∫ 0

−∞
|C(t,τ) |2 η(τ)dτ)

1
2 and L1

f (t) = (
∫ 0

−∞
| B(t,τ) |2 η(τ)dτ)

1
2

are finite for all t ∈ R and there are c,b ∈C(R, [0,∞)) and α ∈ (0,1) such that

|C(t,τ)−C(s,τ) | � c(τ) | t− s |α , t,s,τ ∈ R,

| B(t,τ)−B(s,τ) | � b(τ) | t− s |α , t,s,τ ∈ R.

We also assume L2
g = (

∫ 0
−∞ | c(t,τ) |2 η(τ)dτ) 1

2 and L1
f = (

∫ 0
−∞ | b(t,τ) |2 η(τ)dτ) 1

2

are finite.
To describe the equation (3.1) in the abstract form (1.1), we introduce the maps

f ,g : R×B → X defined by:

g(t,ψ) = −λ ∫ 0
−∞C(t,−s)ψ(s)ds and f (t,ψ) =

∫ 0
−∞B(t,−s)ψ(s)ds− p(t)+q(t).

The proof of the next result, which is a consequence of Theorem 2.1, is omitted. In
this result, we said that u∈Cb(R;X) is a Cα -mild solution of (3.1) if u(·) is a Cα -mild
solution of the associated abstract equation (1.1).

PROPOSITION 3.1. Assume the above conditions are verified, p,q ∈Cα
b (R) and

L

[(
sup
t∈R

L1
g(t)+L2

g

)
‖ A ‖ (1+

1
γ

+
d0

γ
)+

(
sup
t∈R

L1
f (t)+L2

f

)
(
C0 +d0

γ
)
]

< 1.

Then there exists a unique Cα -mild solution of (3.1) .
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To complete this section, we consider briefly the partial differential system

∂
∂ t

[
u(t,ξ )+

∫ 0

−∞

∫ π

0
b0(t)b1(s,η ,ξ )u(t + s,η)dηds

]

=
∂ 2

∂ξ 2 u(t,ξ )+a0(t)a1(ξ )u(t,ξ )+
∫ 0

−∞
a2(t)a3(s)u(t + s,ξ )ds, (3.2)

u(t,0) = u(t,π) = 0, (3.3)

for (t,ξ ) ∈ R × [0,π ] , which arise in control systems which are described by ab-
stract functional differential equations with feedback control governed by proportional
integro-differential law, see [9, Examples 4.2] for details.

Next, X = L2([0,π ]) and let A be the operator given by Ax = x′′ with domain
D(A) := {x ∈ X : x′′ ∈ L2([0,π ]), x(0) = x(π) = 0}. It is well known that A is the in-
finitesimal generator of an analytic semigroup (T (t))t�0 on X . Furthermore, A has a
discrete spectrum with eigenvalues of the form −n2,n∈ N, and corresponding normal-
ized eigenfunctions given by zn(ξ ) := ( 2

π )
1
2 sin(nξ ). In addition, the set {zn : n ∈ N}

is an orthonormal basis for X and

T (t)x =
∞

∑
n=1

e−n2t〈x,zn〉zn for x ∈ X and Ax = −
∞

∑
n=1

n2〈x,zn〉zn for x ∈ D(A).

From the above, we see that ‖ T (t) ‖� e−t for all t � 0.
We can also define the fractional powers of A , see [16] for details. For x ∈ X and

α ∈ (0,1) ,

(−A)−αx =
∞

∑
n=1

1
n2α 〈x,zn〉zn,

the operator (−A)α : D((−A)α) ⊆ X → X is given by

(−A)αx =
∞

∑
n=1

n2α〈x,zn〉zn, for all x ∈ D((−A)α) ,

where

D((−A)α) = {x ∈ X :
∞

∑
n=1

n2α〈x,zn〉zn ∈ X}.

Moreover, for α = 1
2 we have that:

‖(−A)−1/2‖ = 1 and ‖ (−A)
1
2 T (t) ‖� 1√

2
e
−t
2 t−

1
2 for all t > 0 .

As in the first example, we take B = C0 × Lp(η ,X) as phase space. Next, we
suppose that the following condition hold.

(i) The functions ∂ i

∂ζ i b1(τ,η ,ζ ) , i = 0,1 are Lebesgue measurable, b1(τ,η ,π) = 0,

b1(τ,η , 0) = 0 for every (τ,η) , b0 ∈Cα
b (R) for some α ∈ (0,1) and

Lg := max{
∫ π

0

∫ 0

−∞

∫ π

0
η(τ)

(
∂ i

∂ζ i b1(τ,η ,ζ )
)2

dηdτdζ : i = 0,1} < ∞.
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(ii) The functions ai are continuous, a0,a2 ∈Cα
b (R,R) and

Lf =‖ a1 ‖ +(
∫ 0

−∞
| a3(s) | 1

2 η(s)ds)
1
2 < ∞.

Under these conditions, we can define the functions f , g : C(R×B;X) by

g(t,ψ)(ξ ) = b0(t)
∫ 0

−∞

∫ π

0
b1(s,η ,ξ )ψ(s,η)dηds,

f (t,ψ)(ξ ) = a0(t)a1(ξ )ψ(0,ξ )+a2(t)
∫ 0

−∞
a3(s)ψ(s,ξ )ds,

which permit to describe the system (3.2)-(3.3) in the abstract form (1.1). Moreover,
from (i) and (ii), it follows that g ∈Cα

b (R;L (B,X 1
2
)) , f ∈Cα(R×B;L (X)) and

‖ g ‖Cα
b (R,L (B,X 1

2
)) � ‖ b0 ‖Cα

b (R) Lg,

‖ f (t, ·) ‖Cα
b (R,L (B,X)) � (‖ a0 ‖Cα

b (R) + ‖ a1 ‖Cα
b (R))Lf , (3.4)

for each t ∈ R .
In the next result, which is a consequence of Theorem 2.1, we said that a function

u ∈Cb(R;X) is a α -Hölder mild solution of (3.2)-(3.3) if u(·) ∈Cα
b (R;X) and u(·) is

a mild solution of the associated abstract equation (1.1). The numbers γ,L and Ci are
as in the first section.

PROPOSITION 3.2. If L
[
‖ b0 ‖Cα

b (R)
Lg√

2
+(‖ a0 ‖Cα

b (R) + ‖ a1 ‖Cα
b (R))LfC0

]
< 1,

then there exits a unique α -Hölder mild solution of (3.2)-(3.3) .

Next, we said that a function u(·) is a S -classical solution of (3.2)-(3.3) if u(·) is
a S -classical solution of the associated equation (1.1).

PROPOSITION 3.3. Assume that the above conditions are verified. Suppose, in
addition, that the functions ∂ i

∂ζ i b1(τ,η ,ζ ) , i = 0,1,2 are Lebesgue measurable and

L1
g := max

{∫ π

0

∫ 0

−∞

∫ π

0
η(τ)

(
∂ i

∂ζ i b1(τ,η ,ζ )
)2

dηdτdζ : i = 0,1,2
}

< ∞. (3.5)

Then there exists a unique S-classical solution of (3.2)-(3.3) .

Proof. Under condition (3.5), the function g verifies the condition Hg with Y =
[D(A)] . Now, the assertion follows from Theorem 2.2. �
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