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BOUNDARY BEHAVIOR FOR SOLUTIONS OF

SINGULAR QUASI–LINEAR ELLIPTIC EQUATIONS
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Abstract. In this paper, for 1 � γ � 3 our main purpose is to consider the quasilinear elliptic
equation: div(|∇u|m−2∇u) + (m− 1)u−γ = 0 on a bounded smooth domain Ω ⊂ R

N , N > 1 .
We get some first-order estimates of a nonnegative solution u satisfying u = 0 on ∂Ω . For
γ = 1 , we find the estimate: limx→∂Ω u(x)/p(δ (x)) = 1 , where p(r) ≈ r m

√
m log(1/r) near

r = 0 , δ (x) denotes the distance from x to ∂Ω . For 1 < γ � 3 , we obtain

lim
x→∂Ω

u(x)

(bγδ (x))
m

γ+(m−1)
= 1,

where bγ = γ+(m−1)
m ( m

γ−1 )
1
m .

1. Introduction

Let N > 1 and let Ω⊂ R
N be a bounded smooth domain. For γ > 0, we consider

the Dirichlet singular problem

div(|∇u|m−2∇u)+ (m−1)u−γ = 0. (1.1)

Equations of the above form are mathematical models occurring in the study of the
p -Laplace system, generalized reaction-diffusion theory, non-Newtonian fluid theory
([2], [19]), non-Newtonian filtration ([15]) and the turbulent flow of a gas in porous
medium ([13]). In the non-Newtonian fluid theory, the quantity m is a characteristic
of the medium. Media with m > 2 are called dilatant fluids and those with m < 2 are
called pseudoplastics. If m = 2, they are Newtonian fluids.

When m = 2, the following Dirichlet singular problem

Δu+u−γ = 0 in Ω, u = 0 on ∂Ω, (1.2)

where Ω is a bounded smooth domain in R
N has been extensively studied. We refer the

reader to [8], [9], [10], and [20]. In [10], it is proved that problem (1.2) has a classical
solution u ∈C0(Ω) and that, near the boundary ∂Ω , it satisfies

λ p(δ (x)) � u(x) � Λp(δ (x)). (1.3)
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Here p(r) is a (positive) solution to the problem

p′′ + p−γ = 0, p(0) = 0, (1.4)

and λ ,Λ are two suitable positive constants. If γ > 1, one can take p(r) = (bγr)
2

γ+1

with

bγ =
γ +1√
2(γ−1)

. (1.5)

For γ > 1, the estimate (1.5) has been improved in [8], where it is shown that

|u(x)− (bγδ (x))
2

γ+1 | � βδ (x), (1.6)

where β is a suitable constant. For γ > 3, inequality (1.6) has been made more precise
in [20], where the estimate

|u(x)− (bγδ (x))
2

γ+1 | � β (δ (x))
γ+3
γ+1 (1.7)

has been proved.

In [9], one can take p(r) satisfying
∫ p(r)
0

dt√
2 log(1/t)

= r such that:

for γ = 1 the solution to (1.2) satisfies

|u(x)− p(δ (x))| < βδ (x)(log
1

δ (x)
)−ε , ε < 1/2,

for 1 < γ < 3,

|u(x)− (bγδ (x))
2

γ+1 | � β (δ (x))
2γ
γ+1 ,

and for γ = 3,

|u(x)− (2δ (x))
1
2 | � β (δ (x))

3
2 log

1
δ (x)

.

In [17] the singular boundary-value problem

Δu(x)+q(x)u(x)−γ = 0 in Ω, u = 0 on ∂Ω, (1.8)

is considered, where Ω is a sufficiently regular bounded domain in R
N , N � 1, and q

is a sufficiently regular function which is positive in Ω . It’s shown that equation (1.8)
can have a classical solution but not a weak solution. In the case N = 1, this problem
arises in certain problems in fluid mechanics and pseudoplastic flow [8], [20]. The N -
dimensional problem (1.8) has been studied in [10] for general regions. Its results are
divided into two sections; first, the existence of solutions is proved by an upper-lower
solution method, and later, in an extremely complicated way, using localization near
the boundary, the boundary is deduced.

In [3] problem of the type

Δu = f (u) in D, u(x) → ∞ as x → ∂D, (1.9)
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where f : R → R
+ is a nondecreasing function is considered. The solutions of (1.9)

are called large solutions. If ∂Ω is bounded and satisfies an inner and outer sphere
condition, J. Keller [16] has shown that such solutions exist if and only if∫ ∞

0

dt√
2F(t)

< ∞, where F ′(t) = f (t).

The asymptotic behavior of the large solutions near the boundary has been studied in
a series of papers [1], [4], [5], [6], [7], [12], [14], and [18]. It turns out that the first
order approximation depends only on the distance δ (x) = dist{x,∂D} and not on the
geometry of the domain D. The expressions for the asymptotic behavior are particulary
simple for power nonlinearities f (t) = t p, namely

u(x) = (γδ )−
2

p−1 (1+o(1)) as x → ∂D, γ =
p−1√
2(p+1)

,

and for the exponential function f (t) = et , where

u(x) = log
2
δ 2 (1+o(1)) as x → ∂D.

The problem of the second order effects was first discussed by Lazer and Mckenna [18].
They proved that for f (t) = t p with p > 3 and f (t) = et ,

lim
x→∂Ω

(u(x)− (γδ )−
2

p−1 ) = 0 and lim
x→∂Ω

(u(x)− log
2
δ 2 ) = 0.

Let ∂D ∈C4 be compact and let x be the nearest point to x on ∂D . Let H(x) denote
the mean curvature of ∂D at x . C. Bandle in [3] proved that for f (t) = t p with p > 1
and f (t) = et ,

u(x) = (γδ )−
2

p−1 (1+
(N−1)H(x)

p+3
δ +o(δ )) as x → ∂D,

and

u(x) = log
2
δ 2 +(N−1)H(x)δ +o(δ ) as x → ∂D.

It was shown in [23] that problem

div(|∇u|m−2∇u)+q(x)u−γ = 0, x ∈ R
N ,

has a positive entire solution if q ∈C(R+), 0 � γ < p−1, for any

0 < ε < (N− p)(p−1−|r|)/(p−1),

such that ∫ ∞

1
rp+ε−1 +[(N− p)|r|/(p−1)]q(r)dr < ∞,

and for r ∈ (0,1), δ < 1, q(r) = O(r−δ ) .
Motivated by the results of the above cited papers, we further study the boundary

behaviour of solutions to singular elliptic problems (1.1), the results of the semilinear
problem are extended to the quasilinear ones. We can find the related part results for
m = 2 in [9]. By a modification of the method given in [9], we obtain the following
main results.
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2. The case when γ = 1

2.1. The radial case

Introduce the function p = p(r) : (0,1) → R
+ such that

∫ p(r)

0

dt
m
√

mlog(1/t)
= r. (2.1)

Note that p(r) satisfies (|p′|m−2p′)′ +(m−1)p−1 = 0, p(0) = 0. We will prove that

lim
r→0

p(r)
r m
√

mlog(1/r)
= 1. (2.2)

First we show that for r small,

p(r) < r m
√

mlog(1/r). (2.3)

Indeed, (2.3) can be written as

∫ p(r)

0

dt
m
√

mlog(1/t)
= r <

∫ r m
√

mlog(1/r)

0

dt
m
√

mlog(1/t)
,

and the latter inequality holds because

1 <
m
√

m log(1/r)− ( m
√

m log(1/r))
1−m

m
√

m log(1/(r m
√

mlog(1/r)))
,

for r small. Now let us take ε > 0 small. We claim that for r near zero, we have

p(r) > (1− ε)r m
√

mlog(1/r).

This inequality can be written as

∫ p(r)

0

dt
m
√

mlog(1/t)
= r >

∫ (1−ε)r m
√

mlog(1/r)

0

dt
m
√

mlog(1/t)
,

and the latter inequality holds because

1 > (1− ε)
m
√

m log(1/r)− ( m
√

m log(1/r))
1−m

m
√

m log(1/((1− ε)r m
√

mlog(1/r)))
,

for r small. Therefore, (2.2) holds.
For N > 1 we will investigate the problem

div(|∇u|m−2∇u)+ (m−1)u−1 = 0 in B(R), u = 0 on ∂B(R),
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where B(R) is a ball centered at the origin and with radius R . Denoting its solution by
u(x) = z(r),r = |x|, we have

(|z′|m−2z′)′ +
N−1

r
|z′|m−2z′ +(m−1)z−1 = 0, z′(0) = z(R) = 0. (2.4)

Multiplying by z′ and integrating over (0,r) we find

|z′|m +
m

m−1
(N−1)

∫ r

0

|z′|m
t

dt = m log(z(0)/z). (2.5)

Equation (2.5) implies that |z′|m → ∞ as r → R . By (2.4) we find

r(N−1)|z′|m−2z′ = −(m−1)
∫ r

0
tN−1z−1dt,

therefore, z′ < 0, this equation implies

|z′|m−2z′

r
> −m−1

N
z−1.

Using the last inequality and (2.4) we find

0 = (|z′|m−2z′)′ +
N−1

r
|z′|m−2z′ +(m−1)z−1 > (|z′|m−2z′)′ +

1
N

(m−1)z−1.

Hence, (|z′|m−2z′)′ < 0. Then by (2.4) again we find

N−1
r

|z′|m−2z′ +(m−1)z−1 > 0.

Since z′(r) < 0, this inequality means N−1
r |z′|m +(m−1) z′

z < 0. Hence,

d|z′|m
dr

= − m
m−1

(N−1)
|z′|m

r
−m

z′

z
> − m

m−1
(N−1)

|z′|m
r

+
m

m−1
N−1

r
|z′|m = 0.

Therefore, by a result of Lazer-McKenna [9, Lemma 2.1] we have

lim
r→R

∫ r
0

|z′|m
t dt

|z′|m = 0.

The latter result and (2.5) yield

lim
r→R

m log(z(0)/z)
|z′|m = 1

and

lim
r→R

−z′
m
√

m log(1/z)
= 1. (2.6)
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Given ε > 0, there exists rε < R such that

−z′
m
√

m log(1/z)
> 1− ε, ∀r ∈ (rε ,R).

Integrating over (r,R) and recalling that z(R) = 0, we find

∫ z(r)

0

dt
m
√

m log(1/t)
> (1− ε)(R− r). (2.7)

Equation (2.1) with r replaced by R− r becomes

∫ p(R−r)

0

dt
m
√

m log(1/t)
= R− r. (2.8)

Combining (2.8) and (2.7) we get

∫ z(r)

0

dt
m
√

m log(1/t)
> (1− ε)

∫ p(R−r)

0

dt
m
√

m log(1/t)

=
∫ (1−ε)p(R−r)

0

dt
m
√

m log((1− ε)/t)
>

∫ (1−ε)p(R−r)

0

dt
m
√

m log(1/t)
.

Hence we have
z(r) > (1− ε)p(R− r), ∀r ∈ (rε ,R). (2.9)

Now we investigate the problem

div(|∇u|m−2∇u)+ (m−1)u−1 = 0 in B(R,R), u = 0 on ∂B(R,R),

where B(R,R) is the annulus centered at the origin and with radii R, R . Denoting its
solution by u(x) = w(r),r = |x|, we have

(|w′|m−2w′)′ +
N−1

r
|w′|m−2w′ +(m−1)w−1 = 0, w′(R0) = w(R) = 0, (2.10)

where R0 is a particular number with R < R0 < R . Integrating (2.10) over (r,R0) we
find

|w′|m =
m

m−1
(N−1)

∫ R0

r

|w′|m
t

dt +m log
(w(R0)

w

)
. (2.11)

By (2.11) it follows that |w′(r)|m → ∞ as r → R and d(w′)m/dr < 0, by Lazer-
McKenna [9, Lemma 2.1] we find

lim
r→R

∫ R0
r

|w′|m
t dt

|w′|m = 0.

The latter result and (2.11) yield

lim
r→R

w′(r)
m
√

m log(1/w)
= 1.
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Hence, given ε > 0 one finds rε with R < rε < R0 such that

w′(r)
m
√

m log(1/w)
< 1+ ε, ∀r ∈ (R,rε ).

Integration over (R,r) yields

∫ w(r)

0

dt
m
√

m log(1/t)
< (1+ ε)(r−R). (2.12)

Equation (2.1) with r replaced by r−R becomes

∫ p(r−R)

0

dt
m
√

m log(1/t)
= r−R. (2.13)

Combining (2.12) with (2.13) we find

∫ w(r)

0

dt
m
√

m log(1/t)
< (1+ ε)

∫ p(r−R)

0

dt
m
√

m log(1/t)

=
∫ (1+ε)p(r−R)

0

dt
m
√

m log((1+ ε)/t)
<

∫ (1+ε)p(r−R)

0

dt
m
√

m log(1/t)
.

Hence we have
w(r) < (1+ ε)p(r−R), ∀r ∈ (R,rε). (2.14)

2.2. General domains

In this subsection the domain Ω is assumed to be bounded, smooth and satisfy a
uniform interior and exterior sphere solution. Consider the problem

div(|∇u|m−2∇u)+ (m−1)u−1 = 0 in Ω, u = 0 on ∂Ω. (2.15)

Now we introduce the following comparison principles according to Lemma 2.2
and Lemma 2.6 in [11].

LEMMA 1. Let z be solution to

(|z′|m−2z′)′ +(m−1)z−1 > 0, 0 � r < R, z′(0) = z(R) = 0,

and let u be solution to

(|u′|m−2u′)′ +(m−1)u−1 = 0, 0 � r < R, u′(0) = u(R) = 0,

then z(r) < u(r) in [0,R) .

Proof. We argue by contradiction. If the statement of the lemma does not hold the
z(r0)− u(r0) � 0 for some r0 ∈ [0,R). Let r1 be a point of maximum of z(r)− u(r)
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in[0,R]. Since z(R)−u(R) = 0, we may assume that r1 ∈ [0,R). So z′(r1)−u′(r1) = 0
and z(r1)−u(r1) � 0. But this contradicts the inequality

(|z′|m−2z′)′ − (|u′|m−2u′)′ +(m−1)[z−1−u−1] > 0.

The lemma is proved.

LEMMA 2. Let w be solution to

(|w′|m−2w′)′ +(m−1)w−1 < 0, 0 < r < R0, w(R) = w′(R0) = 0,

and let u be solution to

(|u′|m−2u′)′ +(m−1)u−1 = 0, 0 < r < R0, u(R) = u′(R0) = 0,

then w(r) > u(r) in (R,R0].

In the following we denote by x a point of Ω and by δ (x) the distance from x to
∂Ω.

THEOREM 2.1. The solution u(x) to problem (2.15) satisfies limx→∂Ω
u(x)

p(δ (x)) = 1,

where p(r) is the function defined in (2.1) .

Proof. Now let Ω be a bounded domain with a smooth boundary, and let P ∈
∂Ω. We can consider a small ball B = B(R) contained in Ω and tangent to ∂Ω in P.
Furthermore, we can consider a suitable annulus A = A(R,R) containing Ω and such
that the inner boundary is tangent to ∂Ω in P. We may assume that the radius R of the
ball BR is equal to the inner radius of the annulus A(R,R). If z,u,w are the solutions
to problem (2.15) respectively in B,Ω and A then we have z(x) � u(x) � w(x), in Ω .
Using these inequalities (2.9) and (2.14) we get

(1− ε)p(δ (x)) � u(x) � (1+ ε)p(δ (x)).

Since ε is arbitrary, the theorem follows.

3. The case when 1 < γ � 3

3.1. The radial case

For N > 1 we will investigate the problem

div(|∇u|m−2∇u)+ (m−1)u−γ = 0 in Ω, u = 0 on ∂Ω. (3.1)

If Ω is a ball of radius R and if we denote by z(r) the corresponding solution to
problem (3.1) we have

(|z′|m−2z′)′ +
N−1

r
|z′|m−2z′ +(m−1)z−γ = 0, z′(0) = z(R) = 0. (3.2)
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Problem (3.2) has a positive decreasing solution. If we multiply equation (3.2) by mz′
and integrate over (0,r) , we find

(m−1)|z′|m +m(N−1)
∫ r

0

|z′|m
t

dt =
m(m−1)
(γ−1)

(z1−γ − z1−γ(0)). (3.3)

Equation (3.3) implies that |z′|m → ∞ as r → R. Moreover, since by Lazer-McKenna
[9, Lemma 2.1] we have

lim
r→R

∫ r
0

|z′|m
t dt

|z′|m = 0,

equation (3.3) yields

lim
r→R

|z′|m
z1−γ =

m
γ−1

. (3.4)

By using the de l, Hospital rule and (3.4) we find

lim
r→R

z
γ+(m−1)

m

R− r
= lim

r→R

γ +(m−1)
m

z
γ−1
m (−z′) � γ +(m−1)

m
(

m
γ−1

)
1
m = bγ . (3.5)

We have found the well-known expansion

z
γ+(m−1)

m = bγ(R− r)(1+o(1)). (3.6)

Now let Ω be the annulus B(R,R) . If w(r) denotes the corresponding solution to
our problem, we have

(|w′|m−2w′)′ +
N−1

r
|w′|m−2w′ +(m−1)w−γ = 0, w′(R0) = w(R) = 0, (3.7)

where R0 is a particular number with R < R0 < R . The function w(r) is increasing in
(R,R0) . Integrating over (r,R0) we find

|w′|m =
m

m−1
(N−1)

∫ R0

r

|w′|m
t

dt +m
1

1− γ
(w1−γ (R0)−w1−γ(r)). (3.8)

By (3.8) it follows that w′(r) → ∞ as r → R . Moreover, using Lazer-McKenna [9,
Lemma 2.1] we find

lim
r→R

∫ R0
r

|w′|m
t dt

|w′|m = 0,

the latter result and (3.8) yield

lim
r→R

|w′|m
w1−γ =

m
γ−1

. (3.9)

Using the de l, Hospital rule and (3.9) we find

lim
r→R

w
γ+(m−1)

m

r−R
= lim

r→R

γ +(m−1)
m

w
γ−1
m w′ � γ+(m−1)

m
(

m
γ−1

)
1
m = bγ . (3.10)

We have found the well-known expansion

w
γ+(m−1)

m = bγ(r−R)(1+o(1)). (3.11)
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3.2. General domains

The domain Ω is assumed to be bounded, smooth and satisfy a uniform interior
and exterior sphere condition. Consider the problem (3.1).

THEOREM 3.1. The solution u(x) to problem (3.1) satisfies

lim
x→∂Ω

u(x)

(bγδ (x))
m

γ+(m−1)
= 1.

Proof. Proceed as in the proof of Theorem 2.1 and use the same comparison
principle.
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