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A CLASS OF NON–UNIFORMLY ELLIPTIC EQUATIONS
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Abstract. We prove comparison, existence and regularity results for problems whose model case
is: ⎧⎨

⎩
−div

(
Du

(1+|u|)θ
)

+λu = f in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open set in R
N , N > 2 , θ � 0 and λ > 0 .

1. Introduction

In this paper we study a class of non-uniformly elliptic problems whose model
case is: ⎧⎨

⎩
−div

(
Du

(1+|u|)θ
)

+λu = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded open set of R
N , N > 2, θ � 0, λ is a positive constant, and

f is a measurable function on whose summability will be made different assumptions.
The main difficulty dealing with such kind of problems is the presence of the coeffi-
cient 1

(1+|u|)θ , which causes a degeneracy when u becomes large. This implies that the

principal part of the operator, namely A(u) = −div
(

Du
(1+|u|)θ

)
, may not be coercive on

H1
0 (Ω) , so that we cannot apply the classical Leray–Lions methods of [24] to prove

the existence results, even if f is regular. This problem can be overcome reasoning by
approximation, obtaining suitable a priori estimates which allow to pass to the limit.

A priori estimates and existence results for such kind of problems, in the case
λ = 0, have been obtained by several authors using different techniques (see e.g. [1],
[2], [9], [11], [12], [27]). As well-known, one of these is the symmetrization method,
which allows to “compare” a solution to problem (1.1) by means of the solution to a
problem whose data are spherically symmetric (we recall, for example, [3], [4], [17],
[36], [37], [39], for θ = 0 and λ �= 0, [1], [2], for θ �= 0 and λ = 0).
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In the present paper we are interested in comparing a solution to problem (1.1)
with the solution of a “symmetrized” one which takes into account the influence of the
zero order term, namely

{
−div

(
Dw

(1+|w|)θ
)

+λw = f # in Ω#,

w = 0 on ∂Ω#,
(1.2)

where Ω# is the ball centered at the origin with the same Lebesgue measure of |Ω| and
f # is the radially decreasing rearrangement of f (see Section 2 for precise definitions).
More precisely, we will prove that

∫ s

0
u∗(t)dt �

∫ s

0
w∗(t)dt, for all s ∈ [0, |Ω|],

where u∗ and w∗ denote the decreasing rearrangements of u and w which are the
solutions to problems (1.1) and (1.2), respectively. The symmetrization method allows
to obtain a priori estimates which are the main tool in order to obtain existence and
regularity results.

In the hypothesis λ = 0, the cases 0 � θ � 1 and θ > 1 are completely different.
More precisely, assuming 0 � θ < 1, it has been proved in [1], [11] and [12], that if
the datum f is in Lp(Ω) , with p � 2N

N+2−θ(N−2) , then there exists a solution in the

energy space H1
0 (Ω) , and such a solution is bounded if p > N

2 . Moreover, if f is less
regular, then it is possible to prove the existence of distributional or entropy solutions
(for renormalized solutions with θ < 1 see [8]). We observe that if θ = 0, which
means that the operator is not degenerate, the quoted results coincide with the classical
one (see [35]). Finally, in the limit case θ = 1, it is possible to prove the existence of a
bounded solution if f belongs to Lp(Ω) , with p > N

2 (see, for example, [1], [2], [11]).

In the other case, with θ > 1, the existence of solutions is related to a smallness
assumption on the Lp -norm of f , with p > N

2 . Indeed, if f is not sufficiently small,
examples are given when f ∈ L∞(Ω) and the solutions un of problems approximating
(1.1) converge to a function which is +∞ on a set of positive Lebesgue measure (see
[1]). Nevertheless, it is possible to adapt the definition of renormalized solution in order
to obtain existence results without requiring any smallness assumption on the data (see
[9]).

In general, the presence of the lower–order term, with λ > 0, may change the
nature of the existence results. Indeed, if θ > 1, for f ∈ Lp(Ω) , with p > min{θ +
2, N

2 θ} , we prove the existence of solutions in the energy space H1
0 (Ω) without any

smallness assumption on f (see also [11], [14]). In particular, such a solution is
bounded if f is in Lp(Ω) , with p > N

2 θ . On the other hand, if f is less regular,
we prove the existence of an entropy solution to problem (1.1). We stress that, thanks
to the presence of λ > 0, the solutions of (1.1) belong to the same Lebesgue space of
the datum f . This is the crucial point in order to prove the above existence results.

We want to emphasize that if u is a positive solution of (1.1) one can perform the
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change of variable v =
∫ u
0 (1+ s)−θds . If θ �= 1 problem (1.1) becomes⎧⎪⎨

⎪⎩
−Δv+λ

((
1

(1−(θ−1)v)

) 1
θ−1 −1

)
= f in Ω,

v = 0 on ∂Ω.

(1.3)

Such kind of problem has been studied in [10] with θ > 1, where the existence of a
bounded solution v ∈ H1

0 (Ω) is proved, with f nonnegative and belonging to L1(Ω) .
We also investigate the regularity of solutions by varying the summability of datum

f in some Lorentz spaces Lp,q (see Definition 3.2 in Section 3).
In particular we prove that there exist bounded solutions also for f ∈ L

N
2 θ ,θ , while

if we require less summability, namely f ∈ L
N
2 θ ,q with q > θ , then the solution u is in

Lr , for any r < +∞ . Moreover, we show that in the limit case f ∈ L
N
2 θ ,∞ , in general,

the summability of u is not greater than the summability of f unless we impose a
smallness condition on f (see Section 7).

As regards the regularity of solutions of (1.1), in the case λ = 0, we quote, for
example, the papers [1], [2], [12], [20].

We stress that the parabolic problem associated to elliptic operator of (1.1) has
been studied in [16] when λ = 0 and assuming a smallness hypothesis on some norm
of the initial data and of the source f , and in [31], with λ = 0 and f = 0, without any
smallness assumption on the initial data.

Finally, existence result for such kind of problems under different assumptions on
the equation have been obtained by several authors. We address, for example, to [13],
[15], [26], [30], [32], [33], [38].

The paper is organized as follows. In sections 2 and 3 we make precise the as-
sumptions on the data of the problem, and we recall some basic facts about decreasing
rearrangements and Lorentz spaces. In Section 4 we prove uniqueness results for weak
and entropy solutions of (1.1). In Section 5 we prove the quoted comparison result. To
this end, we obtain an integral inequality for solutions to problem (1.1) in terms of their
decreasing rearrangements. In Section 6, using this inequality, we prove a priori esti-
mates in Lebesgue and Sobolev spaces for solutions of suitable approximate problems
of (1.1). Finally, in sections 7 and 8 we prove, respectively, the existence and regularity
results quoted above.

We point out that such results are proved for solutions to a class of boundary value
problems which can be written in the form{−div(a(x,u,Du))+λu = f in Ω

u = 0 on ∂Ω,
(1.4)

where a(x,s,ξ ) verifies suitable conditions (see Section 2 for precise assumptions).

2. Statement of the problem and definitions of solutions

We deal with Dirichlet problems of the form{−div(a(x,u,Du))+λu = f in Ω,
u = 0 on ∂Ω,

(2.1)
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where Ω is a bounded open set in R
N , N � 3, λ is a positive constant and a :Ω×R×

R
N → R

N is a Carathéodory function verifying the following assumptions:

α
(1+ |s|)θ |ξ |

2 � a(x,s,ξ ) ·ξ (2.2)

and

|a(x,s,ξ )| � h(x)+ c1|s|+ c2|ξ | (2.3)

for a.e. x ∈ Ω , ∀ s ∈ R and ∀ξ ∈ R
N , where θ , α , c1 and c2 are positive constants,

h ∈ L2(Ω) and

(a(x,s,ξ )−a(x,s,ξ ′)) · (ξ − ξ ′) > 0, (2.4)

for a.e. x∈Ω , ∀ s∈R and ∀ξ ,ξ ′ ∈R
N , ξ �= ξ ′ . Moreover, f is a measurable function

on whose summability we will make different assumptions.
In this context we deal with some classes of solutions.

DEFINITION 2.1. Let f ∈ L
2N

N+2 (Ω) . We say that u ∈ H1
0 (Ω) is a weak solution

to problem (2.1) if

∫
Ω

a(x,u,Du) ·Dϕ dx+λ
∫
Ω

uϕ dx =
∫
Ω

fϕ dx, ∀ϕ ∈ H1
0 (Ω). (2.5)

We observe that, in general, if the datum f is in L1(Ω) , we no longer obtain solutions
in the energy space H1

0 (Ω) . For this reason we need to introduce a different definition
of solution.

Given h > 0, we denote with Th(s) the truncation function at level ±h , defined as

Th(s) =
{

s if |s| � h,
hsigns if |s| > h.

DEFINITION 2.2. A measurable function u ∈ L1(Ω) is an entropy solution to
problem (2.1) if Tk(u) ∈ H1

0 (Ω) for all k > 0 and it holds

∫
Ω

a(x,u,Du) ·DTk(u−ϕ)dx+λ
∫
Ω

uTk(u−ϕ)dx �
∫
Ω

f Tk(u−ϕ)dx (2.6)

for any k > 0 and ϕ ∈ H1
0 (Ω)∩L∞(Ω) .

We observe that first integral in the left–hand is well defined, since |u|� k+‖ϕ‖L∞ = M
on the set |u−ϕ |� k , so we have

∫
Ω

a(x,u,Du) ·DTk(u−ϕ)dx =
∫
Ω

a(x,TM(u),DTM(u)) ·DTk(u−ϕ)dx, (2.7)

which is finite by the growth assumption on a(x,s,ξ ) .
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3. Preliminaries

We recall some definitions about decreasing rearrangement of functions.
Let Ω be a bounded open set of R

N and u : Ω → R a measurable function. If
we denote with |E| the Lebesgue measure of a measurable set E contained in R

N , we
define the decreasing rearrangement of u the function

u∗(s) = sup{t � 0 : μu(t) > s}, s � 0,

where
μu(t) = |{x ∈Ω : |u(x)| > t}|, t � 0,

is the distribution function of u . The function μu is decreasing and right continuous,
and u∗ is the generalized inverse of μu . We recall that, being

∫
Ω
|u|pdx = p

∫ +∞

0
t p−1μu(t)dt, p � 1, (3.1)

the Lp –norm, for every 1 � p < +∞ , is invariant with respect to rearrangement, that is

‖u‖Lp(Ω) = ‖u#‖Lp(Ω#).

Moreover, if u ∈ L∞(Ω) , by definition

u∗(0) = esssup
Ω

|u|.

If u and v are measurable functions, then the Hardy and Littlewood inequality
states that ∫

Ω
u(x)v(x)dx �

∫ |Ω|

0
u∗(s)v∗(s)ds. (3.2)

DEFINITION 3.1. The spherically symmetric decreasing rearrangement of u is
defined by

u#(x) = u∗(ωn|x|n), x ∈Ω#,

where Ω# is the ball centered at the origin having the same measure as Ω and ωn is
the measure of the unit ball in R

N .

For general results about rearrangements we refer to [5], [21], [23], [28], [37].

DEFINITION 3.2. A measurable function u :Ω→R belongs to the Lorentz space
Lp,q(Ω) , 1 < p < +∞ , if the quantity

‖u‖Lp,q =

⎧⎪⎪⎨
⎪⎪⎩

{∫ +∞

0

[
t1/pu∗∗(t)

]q dt
t

}1/q

, 0 < q < +∞,

sup
0<t<+∞

t1/pu∗∗(t), q = +∞,
(3.3)

is finite, where u∗∗(s) = s−1 ∫ s
0 u∗(σ)dσ .
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We remark that the quantity in (3.3) can be equivalently defined replacing u∗∗ with
u∗ . We recall that the Marcinkiewicz space Mp(Ω) with 0 < p < +∞ contains all the
measurable functions u such that

μu(t) � c
t p , ∀t > 0,

for some positive constant c , and we put ‖u‖Mp = sups∈[0,|Ω|] s1/pu∗(s) . Moreover,
Mp = Lp,∞ for 1 < p < +∞ . It is well-known that Lorentz and Marcinkiewicz spaces
are related in the following way:

Lr ⊂ Lp,1 ⊂ Lp,q ⊂ Lp,p = Lp ⊂ Lp,r ⊂ Lp,∞ = Mp ⊂ Lq,

for 1 < q < p < r < +∞ . More details on Lorentz spaces can be found, for example,
in [22], or in [7].

Now we want to recall a property of Marcinkiewicz spaces which will be useful in
the following.

First of all, we give a sense to the gradient of a measurable function such that the
truncates of u are Sobolev functions (see [6]).

LEMMA 3.1. Given a measurable function u : Ω→ R such that for every k > 0
the truncated function Tk(u) belongs to W 1,1

loc (Ω) , there exists a unique measurable
function v : Ω→ R

N such that

DTk(u) = vχ{|u|<k} a.e. in Ω. (3.4)

Furthermore, u ∈ W 1,1
loc (Ω) if and only if v ∈ L1

loc(Ω) , and then v = Du in the usual
weak sense.

Therefore, if u : Ω → R is such that for every k > 0 the truncated function Tk(u)
belongs to W 1,1

loc (Ω) , we define, Du , the weak gradient of u as the unique function v
which verifies (3.4).

The following technical lemma gives a sufficient condition in order to assure that
the gradient of a function belongs to some Marcinkiewicz space.

LEMMA 3.2. ([6]) Let v be a measurable function belonging to Mγ (Ω) for some
γ � 1 , such that, for every k � 0 , Tk(v) belongs to H1

0 (Ω) . Suppose that

∫
{|v|�k}

|Dv|2dx � ckσ , ∀k > k0, (3.5)

for some non-negative σ , c and k0 . Then the weak gradient of v (in the sense of the
above definition) is such that |Dv| belongs to Mq(Ω) , with q = 2γ/(γ+σ) .
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4. Uniqueness results

The first step in order to obtain the comparison result between the solutions to
problems (2.1) and (1.2) is the proof of an uniqueness result. In this section we show
that, under suitable assumptions on the operator a(x,s,ξ ) , the problem (2.1) admits at
most one solution. Such a result is an immediate consequence of the following classical
pointwise comparison results. Here we study both the case of weak solutions, with

f ∈ L
2N

N+2 (Ω) , and the case of entropy solutions, with f ∈ L1(Ω) .

THEOREM 4.1. Let us assume that (2.2) , (2.3) and (2.4) hold, and f ∈L
2N

N+2 (Ω) .
Suppose that the following Lipschitz condition holds:

|a(x,s,ξ )−a(x,s′,ξ )| � η |ξ ||s− s′|, (4.1)

for a.e. x ∈Ω , ∀ s,s′ ∈ R , ∀ξ ∈ R
N and η is a positive constant.

If u and v are weak solutions to problem (2.1) with L
2N

N+2 data, respectively, f
and g, then

f � g a.e. in Ω implies u � v a.e. in Ω.

Proof. Using as test function in (2.5):

ϕδ =
1
δ

Tδ (u− v)+

with a fixed δ > 0 and subtracting, we get

1
δ

∫
0<u−v<δ

(a(x,u,Du)−a(x,v,Dv)) ·D(u− v)dx

+
λ
δ

∫
Ω
(u− v)Tδ (u− v)+dx =

1
δ

∫
Ω
( f −g)Tδ (u− v)+dx. (4.2)

Adding and subtracting a(x,u,Dv) in the first integral of (4.2), it follows that

1
δ

∫
0<u−v<δ

(a(x,u,Du)−a(x,v,Dv)) ·D(u− v)dx

=
1
δ

∫
0<u−v<δ

(a(x,u,Du)−a(x,u,Dv)) ·D(u− v)dx

+
1
δ

∫
0<u−v<δ

(a(x,u,Dv)−a(x,v,Dv)) ·D(u− v)dx = I1(δ )+ I2(δ ).

Now by hypothesis (2.4) it follows that

I1(δ ) � 0,

and from the Lipschitz condition (4.1) we get

|I2(δ )| � η
∫

0<u−v<δ
|Dv||D(u− v)|dx,
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which implies that
lim
δ→0+

I2(δ ) = 0.

Hence, letting δ going to 0 in (4.2), we obtain

λ
∫
Ω
(u− v)+dx � 0,

which implies that u � v a.e. in Ω .

Now we want to prove the pointwise comparison result for entropy solutions to
problem (2.1) in a special form. To this end, we require an additional assumption on
the principal part of the operator. More precisely, let us consider the following problem:{−div(b(x,u)Du)+λu = f in Ω,

u = 0 on ∂Ω,
(4.3)

where f ∈ L1(Ω) , λ > 0 and b(x,s) :Ω×R→ R is a Carathéodory function verifying
the following assumptions:

α
(1+ |s|)θ � b(x,s) � Λ

(1+ |s|)θ , for a.e. x ∈Ω,∀ s ∈ R, (4.4)

and ∣∣b̃(x,s)− b̃(x,t)
∣∣ � C1|B(|s|)−B(|t|)|, for a.e. x ∈Ω, ∀s, t ∈ R, (4.5)

where α,Λ,C1 are positive constants, θ > 1, b̃(x,s) = b(x,s)(1+ |s|)θ , and the func-
tion B : (0,+∞) → R is defined as

B(s) =
∫ s

0

α
(1+ t)θ

dt.

We restrict our attention to non negative solutions, given by f � 0, and we follow
the technique used in [29].

THEOREM 4.2. Let u,v be two entropy solutions of (4.3) , under the assumptions
(4.4) , (4.5) , with θ > 1 , and non negative L1 data f and g respectively. Then f � g
a.e. in Ω implies u � v a.e. in Ω .

Proof. The solutions u and v are such that |DB(u)| and |DB(v)| are in L2(Ω) .
Indeed, taking ϕ = B(u) as test function in problem (2.1) we get, by hypothesis

(4.4), that ∫
Ω
|D(B(u)|2 dx+λ

∫
Ω

uB(u)dx �
∫
Ω

f B(u)dx,

and being λ > 0, ∫
Ω
|D(B(u)|2 dx � B‖ f‖L1(Ω), (4.6)
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where B = sups>0 B(s) , which is finite since θ > 1. The same reasoning holds for
|DB(v)| .

Hence, the choice of ϕ = Th(u)− Tk(B(u)− B(v))+ as test function in (2.2) is
admissible, that is∫

Ω
b(x,u)Du ·DTk(u−Th(u)+Tk(B(u)−B(v))+)dx

+λ
∫
Ω

uTk(u−Th(u)+Tk(B(u)−B(v))+)dx

�
∫
Ω

f Tk(u−Th(u)+Tk(B(u)−B(v))+)dx. (4.7)

We first observe that, applying the Lebesgue theorem, it is possible to pass to the limit
in the second integral on the left hand side of (4.7) and in the right hand side of (4.7),
as h → +∞ . Moreover, splitting the first integral of (4.7) on the two sets {u � h} and
{u > h} , and using hypothesis (4.4), we have∫

Ω
b(x,u)Du ·DTk(u−Th(u)+Tk(B(u)−B(v))+)dx

�
∫
{u�h}

b(x,u)Du ·DTk(B(u)−B(v))+dx

+
∫
{u>h,|u−h+Tk(B(u)−B(v))+|�k}

b(x,u)Du ·DTk(B(u)−B(v))+dx

= I1 + I2. (4.8)

As regards the last integral I2 , by (4.4) and the Hölder inequality, it follows that

|I2| � c

(∫
{u>h}

|DB(u)|2dx

) 1
2
(∫

{u>h}
|DTk(B(u)−B(v))+|2dx

) 1
2

,

which goes to zero since |DB(u)| and |DB(v)| are in L2(Ω) , and |{u > h}| → 0 as
h → +∞ .

Hence the inequality (4.7), letting h → +∞ , becomes∫
Ω

b(x,u)Du ·DTk(B(u)−B(v))+dx+λ
∫
Ω

uTk(B(u)−B(v))+dx

�
∫
Ω

f Tk(B(u)−B(v))+dx. (4.9)

Similarly as before, if we take ϕ = Th(v)+Tk(B(u)−B(v))+ as test function in
the equation solved by v , we get∫

Ω
b(x,v)Dv ·DTk(v−Th(v)−Tk(B(u)−B(v))+)dx

+λ
∫
Ω

vTk(v−Th(v)−Tk(B(u)−B(v))+)dx

�
∫
Ω

gTk(v−Th(v)−Tk(B(u)−B(v))+)dx,



88 FRANCESCO DELLA PIETRA AND GIUSEPPINA DI BLASIO

and, as h → +∞ ,

−
∫
Ω

b(x,v)Dv ·DTk(B(u)−B(v))+dx−λ
∫
Ω

vTk(B(u)−B(v))+dx

� −
∫
Ω

gTk(B(u)−B(v))+dx. (4.10)

Adding (4.9) and (4.10) and dividing by k , we have

1
k

∫
Ω
(b(x,u)Du−b(x,v)Dv) ·DTk(B(u)−B(v))+dx

+
λ
k

∫
Ω
(u− v)Tk(B(u)−B(v))+dx � 0, (4.11)

since f � g . The first integral of (4.11) can be rewritten as

1
k

∫
Ω
(b̃(x,u)DB(u)− b̃(x,v)DB(v)) ·DTk(B(u)−B(v))+dx

=
1
k

∫
0<B(u)−B(v)<k

b̃(x,u)D(B(u)−B(v)) ·D(B(u)−B(v))dx

+
1
k

∫
0<B(u)−B(v)<k

[b̃(x,u)− b̃(x,v)]DB(v) ·D(B(u)−B(v))dx = J1 + J2,

by adding and subtracting b̃(x,u)DB(v) . Clearly, J1 � 0. For J2 , using condition (4.5)
and Hölder inequality, we get

|J2| � C1

∫
0<B(u)−B(v)<k

|DB(v)||D(B(u)−B(v))|dx

� C1

(∫
0<B(u)−B(v)<k

|DB(v)|2dx

) 1
2
(∫

0<B(u)−B(v)<k
|D(B(u)−B(v))|2dx

) 1
2

,

which goes to zero by letting k → 0. Hence, as k → 0 in (4.11), we get

λ
∫
Ω
(u− v)sign(B(u)−B(v))+dx � 0,

which implies that u � v a.e. in Ω , being B strictly increasing.

5. Comparison result

The aim of this section is to obtain a comparison result between a solution to
problem (2.1) and the solution to the following “symmetrized” problem:{

−div
(

Dw
(1+|w|)θ

)
+λw = f # in Ω#,

w = 0 on ∂Ω#,
(5.1)

where Ω# is the ball centered at the origin with |Ω#| = |Ω| and f # is the radially
symmetric decreasing rearrangement of f .

It is useful to prove the following integral inequality for entropy solutions to prob-
lem (2.1) in order to obtain the comparison result.
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PROPOSITION 5.1. Let u and w be entropy solutions of (2.1) and (5.1) , respec-
tively, with f ∈ L1(Ω) . Then the following inequalities hold:

α
d
dt

∫
|u|�t

|Du|2
(1+ |u|)θ dx+λ

∫ μu(t)

0
u∗(σ)dσ �

∫ μu(t)

0
f ∗(σ)dσ , (5.2)

for a.e. t ∈ (0,+∞) , and

−α (u∗)′(s)
(1+u∗(s))θ

� N−2ω− 2
N

N s−
2
N′

∫ s

0
[ f ∗(σ)−λu∗(σ)]dσ , (5.3)

for a.e. s ∈ (0, |Ω|) . Moreover, if θ > 1 , the following equality holds

−α (w∗)′(s)
(1+w∗(s))θ

= N−2ω− 2
N

N s−
2
N′

∫ s

0
[ f ∗(σ)−λw∗(σ)]dσ , (5.4)

for a.e. s ∈ (0, |Ω|) .

Proof. Let be t,k > 0. Using in (2.6) as test function ϕ = Tt(u) , by hypothesis
(2.2) we easily obtain

α
k

∫
t<|u|�t+k

|Du|2
(1+ |u|)θ dx �

∫
|u|>t

(| f |−λ |u|)dx. (5.5)

Applying the Hardy–Littlewood inequality and the properties of rearrangements, by
letting k → 0 we obtain

α
d
dt

∫
|u|�t

|Du|2
(1+ |u|)θ dx �

∫ μu(t)

0
[ f ∗(σ)−λu∗(σ)]dσ , (5.6)

that is (5.2). In order to obtain (5.3), using the Hölder inequality, we have that

α
(1+ t)θ

(
d
dt

∫
|u|�t

|Du|dx

)2 1
(−μ ′

u(t))
�

∫ μu(t)

0
[ f ∗(σ)−λu∗(σ)]dσ .

From isoperimetric inequality and the Fleming–Rishel formula, it follows that

α
(1+ t)θ

1
(−μ ′

u(t))
� N−2ω− 2

N
N (μu(t))

− 2
N′

∫ μu(t)

0
[ f ∗(σ)−λu∗(σ)]dσ ,

choosing t = u∗(s) and using the properties of rearrangements (see [3] and [34]), we get
(5.3). As regards (5.4), we recall that by Theorem 4.2 the solution w of problem (5.1)
is unique. This implies, by symmetry of data, that w is positive and radially symmetric.
Moreover, setting s = ωN |x|N , and writing w̃(s) = w((s/ωN)1/N) , we obtain

− w̃′(s)
(1+ w̃(s))θ

=
s−2/N′

N2ω2/N
N

∫ s

0
[ f ∗(σ)−λ w̃(σ)]dσ .
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By standard arguments (see for example [18]), it is possible to show that the above inte-
gral is positive and this implies that w = w# . So the arguments leading to (5.3) proceed
in the same way except that the inequalities are replaced by equalities, that gives (5.4).

Now we are able to prove the following comparison between concentrations.

THEOREM 5.1. Let u and w be entropy solutions of (2.1) and (5.1) , respec-
tively, under assumptions (2.2) , (2.3) and (2.4) , with θ > 1 and f ∈ L1(Ω) . Then we
have: ∫ s

0
u∗(σ)dσ �

∫ s

0
w∗(σ)dσ , ∀s ∈ [0, |Ω|].

Proof. Let us define

ζ (s) =
∫ s

0
(u∗(σ)−w∗(σ)) dσ , s ∈ [0, |Ω|].

We have
ζ ′(|Ω|) = 0 and ζ (0) = 0.

We will show that
ζ � 0 in [0, |Ω|].

By contradiction, let us suppose that there exists s such that

ζ (s ) = max
[0,|Ω|]

ζ (s) > 0.

We proceed to distinguish two cases.
If s = |Ω| , then there exists s1 in [0, |Ω|] such that

ζ (s1) = 0 and ζ (s) > 0 in (s1, |Ω|]. (5.7)

Now choosing s in (s1, |Ω|] by (5.3) and (5.4), we get

B(u∗(s)) = −
∫ |Ω|

s

d
dσ

B(u∗(σ))dσ

�
(
Nω1/N

N

)−2 ∫ |Ω|

s
σ− 2

N′
∫ σ

0
[ f ∗(τ)−λu∗(τ)]dτdσ

<
(
Nω1/N

N

)−2 ∫ |Ω|

s
σ− 2

N′
∫ σ

0
[ f ∗(τ)−λw∗(τ)]dτdσ

= −
∫ |Ω|

s

d
dσ

B(w∗(σ))dσ = B(w∗(s)).

So by strict monotonicity of B ,
u∗(s) < w∗(s)

in (s1, |Ω|] , which contradicts (5.7).
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If s < |Ω| , there exist s1,s2 ∈ [0, |Ω|] such that

ζ (s1) = 0, ζ (s) > 0 in (s1,s2) and ζ ′(s2) � 0.

Hence, choosing s in (s1,s2) and using (5.3) and (5.4), we obtain

B(u∗(s))−B(u∗(s2)) = −
∫ s

s2

d
dσ

B(u∗(σ))dσ

�
(
Nω1/N

N

)−2 ∫ s

s2
σ− 2

N′
∫ σ

0
[ f ∗(τ)−λu∗(τ)]dτdσ

<
(
Nω1/N

N

)−2 ∫ s

s2
σ− 2

N′
∫ σ

0
[ f ∗(τ)−λw∗(τ)]dτdσ

= −
∫ s

s2

d
dσ

B(w∗(σ))dσ = B(w∗(s))−B(w∗(s2)),

and being ζ ′(s2) = B(u∗(s2))−B(w∗(s2)) � 0, we get

B(u∗(s)) < B(w∗(s)) in (s1,s2),

which leads to a contradiction.

REMARK 5.1. We emphasize that, using Theorem 4.1 instead of Theorem 4.2 in
Proposition 5.1, the comparison result stated above holds also for weak solutions, with

f ∈ L
2N

N+2 , without any assumption on θ � 0.

REMARK 5.2. We stress that if λ = λ (x) ∈ L∞(Ω) , with λ (x) � 0, the compar-
ison result stated above continues to hold. More precisely, if u and v are respectively
the solutions to problems{−div(a(x,u,Du))+λ (x)u = f in Ω,

u = 0 on ∂Ω,
(5.8)

where a(x,s,ξ ) verifies (2.2) , (2.3) and (2.4) , and

{
−div

(
Dv

(1+|v|)θ
)

+λ#(x)v = f # in Ω#,

v = 0 on ∂Ω#,
(5.9)

where λ#(x) = λ ∗(|Ω|−ωN|x|N) , with x ∈Ω# , is the spherically symmetric increasing
rearrangement of λ , then

∫ s

0
u∗(t)dt �

∫ s

0
v∗(t)dt, for any s ∈ [0, |Ω|].

(see also, for example, [4], [3], [18] in the case θ = 0).
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6. A priori estimates

Let us consider, for any n > 0, the following problem:{−div(an(x,un,Dun))+λun = fn in Ω,
un = 0 on ∂Ω,

(6.1)

where an(x,s,ξ ) = a(x,Tn(s),ξ ) , with x ∈Ω , s ∈ R and ξ ∈ R
N and fn ∈ L∞(Ω) . We

observe that classical results (see, for example, [24], [25]) assure that problem (6.1) has
at least one solution un ∈ H1

0 (Ω)∩L∞(Ω) .

REMARK 6.1. We stress that if un is a weak solution of (6.1), from inequality
(5.2) of Proposition 5.1 we get∫ s

0
u∗n(σ)dσ � 1

λ

∫ s

0
f ∗n (σ)dσ , s ∈ [0, |Ω|], (6.2)

that implies

‖un‖Lp(Ω) � 1
λ
‖ fn‖Lp(Ω), for any 1 � p � +∞, (6.3)

or, more generally,

‖un‖Lp,q � 1
λ
‖ fn‖Lp,q , for any 1 < p � +∞,1 � q � +∞. (6.4)

We emphasize that, if λ = 0, estimate (6.3) does not hold, in general. Moreover,
the cases 0 � θ � 1 and θ > 1 are completely different. Indeed, if θ > 1, the sequence
un could not be bounded in any Lp space, with p � 1. Moreover, it may happen that un

converges to a function which is +∞ on a set of positive Lebesgue measure (see [1]).
In the other case, when 0 � θ < 1, it has been proven that, if 1 < p < N

2 ,

‖un‖Ls � C(‖ fn‖Lp), (6.5)

with s = Np(1−θ)
N−2p (see, for example, [1], [12], [2]). In the limit case, θ = 1, it is possible

to prove the existence of a bounded solution if f belongs to Lp(Ω) , with p > N
2 (see,

for example, [1]).
Hence the presence of the lower–order term, with λ > 0, plays a fundamental

role in order to obtain the estimates (6.3). Moreover, such estimates are independent
from any hypotheses on θ . We observe that, when θ < 1 the estimates obtained with
λ = 0 in [1], [12], [2], are true also if λ > 0. Nevertheless, the presence of the zero–
order term permits, in some cases, to gain a higher summability on the estimates of un .
Indeed, the exponent s in (6.5) is smaller than p , when p < N

2 θ .

PROPOSITION 6.1. Let θ � 1 , and suppose that un is a weak solution to problem
(6.1) . If p > N

2 θ , then
‖un‖L∞(Ω) � C1, (6.6)

and, moreover,
‖un‖H1

0 (Ω) � C2 (6.7)

where C1 and C2 are constants which continuously depend on the Lp norm of fn .
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Proof. The estimate (5.3) can be rewritten as follows:

− (u∗n)′(s)
1+u∗n(s)

� 1

αN2ω2/N
N

s−2/N′
(1+u∗n(s))

θ−1
∫ s

0
f ∗n (σ)dσ .

Using the Hölder inequality and integrating between 0 and |Ω| , we get

log(1+u∗n(0)) �
‖ fn‖Lp(Ω)

αN2ω2/N
N

∫ |Ω|

0
s1/p′−2/N′

(1+u∗n(s))
θ−1 ds

�
‖ fn‖Lp(Ω)

αN2ω2/N
N

[∫ |Ω|

0
s

2p−N−Np
N(p+1−θ ) ds

]1− θ−1
p

‖1+ |un|‖θ−1
Lp(Ω),

and last integral is finite, being p > N
2 θ . Using (6.3) and the Minkowski inequality, the

above inequality becomes

log(1+u∗n(0)) � |Ω| 2
N − θ

p

αλθ−1N2ω2/N
N

(
|Ω| θ−1

p +‖ fn‖θ−1
Lp(Ω)

)
‖ fn‖Lp(Ω),

which gives the estimate (6.6).
As regards the inequality (6.7), integrating between 0 and +∞ the estimate (5.2)

and using (6.6), we get that

α
∫
Ω
|Dun|2 dx � (1+‖un‖L∞)θ

∫ |Ω|

0
f ∗n (s)u∗n(s)ds � C2.

PROPOSITION 6.2. Suppose that un is a weak solution to problem (6.1) .

(i) If θ +2 � p � N
2 θ , then

‖un‖H1
0 (Ω) � C, (6.8)

where the constant C continuously depends on the Lp norm of fn .

(ii) If θ+2
2 � p < θ +2 , then

‖un‖W1,β
0 (Ω)

� C, (6.9)

where β = 2p
θ+2 and C is a constant which continuously depends on the Lp norm of

fn .

(iii) If 1 < p < θ+2
2 , then

‖|Dun|β‖L1(Ω) � C, (6.10)

where β = 2p
θ+2 < 1 and C is a constant which continuously depends on the Lp norm

of fn .

(iv) If p = 1 , then
‖|Dun|‖

M
2

θ+2
� C, (6.11)

where C is a constant which continuously depends on the L1 norm of fn .
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Proof. Let us prove (i). The estimate (5.2) gives

α
d
dt

∫
|un|�t

|Dun|2
(1+ |un|)θ+2−p dx � (1+ t)p−2

∫ μun (t)

0
f ∗n (σ)dσ .

Integrating between 0 and +∞ the above inequality, we get

α
∫
Ω

|Dun|2
(1+ |un|)θ+2−p dx � 1

p−1

∫ |Ω|

0
f ∗n (s)

[
(1+u∗n(s))

p−1 −1
]
ds.

We recall that, under our assumption, θ+2− p � 0. Using Hölder inequality we obtain

α
∫
Ω
|Dun|2 dx � α

∫
Ω

|Dun|2
(1+ |un|)θ+2−p dx � c‖1+ |un|‖p−1

Lp(Ω)‖ fn‖Lp(Ω). (6.12)

Applying the estimate (6.3) to (6.12), we get (6.8).
As regards (ii), if θ+2

2 � p < θ + 2, we get that 1 � β < 2. By the Hölder
inequality we get

∫
Ω
|Dun|β dx �

(∫
Ω

|Dun|2
(1+ |un|)θ+2−p dx

) β
2
(∫

Ω
(1+ |un|)p dx

)1− β
2

.

The right–hand side can be estimated by a constant which depends on the Lp norm of
fn . Indeed we can reason as before for the first integral, while the second one can be
estimated using (6.3).

The same arguments give the case (iii).
Finally, if p = 1, integrating between 0 and k both sides of the inequality (5.6),

we get

α
∫
Ω
|DTk(un)|2 dx � (1+ k)θk‖ fn‖L1(Ω).

Applying Lemma 3.2 we get a uniform bound of |Dun| in the Marcikiewicz space

M
2

θ+2 , which proves (iv).

REMARK 6.2. We emphasize that the range θ + 2 � p � N
2 θ is non–empty if

θ � θ̃ = 4
N−2 .

REMARK 6.3. We stress that if λ > 0 and θ < 1, it is possible to gain a better
summability with respect to the case λ = 0. Indeed, taking into account Remark 6.1,
if p < N

2 θ the gradient estimates obtained in Proposition 6.2, with θ < 1, are stronger
than the corresponding one obtained in [1], [2], [12].

REMARK 6.4. If θ + 2 � p � N
2 θ , the argument used in the proof of the above

theorem allows to prove not only that the H1
0 norm of un is bounded but a more slightly

stronger result, namely that

∫
Ω
|DB̂(un)|2 dx =

∫
Ω

|Dun|2
(1+ |un|)θ+2−p dx � C,
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where B̂(s) =
∫ s
0 (1+ t)−(θ−p+2)/2dt (see also [1]). On the other hand, we can apply

the Sobolev embedding theorem in order to obtain an uniform bound on the L(p−θ) N
N−2

norm of un . Nevertheless, for p < N
2 θ , this is a weaker result than the Lp estimate

(6.3).

7. Existence results

THEOREM 7.1. Let us assume that (2.2) , (2.3) and (2.4) hold.

(a) Let θ � 1 . If f ∈ Lp(Ω) , with p > N
2 θ , then there exists a weak bounded solution

u to problem (2.1) .
(b) Let 0 < θ � 4

N−2 . If f ∈ Lp(Ω) , with p � θ +2 , then there exists a weak solution
u to problem (2.1) .
(c) If f ∈ L1(Ω) , then there exists an entropy solution u to problem (2.1) .

Proof. We first study the case f ∈ L∞(Ω) , and we consider the approximating
problems {−div(a(x,Tn(un),Dun))+λun = f in Ω,

un = 0 on ∂Ω.
(7.1)

As well known (see, for example, [24]), there exists a weak solution un ∈ H1
0 (Ω) of

problem (7.1). By inequality (6.3) with fn = f , we get the uniform estimate

‖un‖L∞(Ω) � 1
λ
‖ f‖L∞(Ω).

Hence, for n sufficiently large, we have that un is also a weak solution to problem (2.1).
Let now f be in Lp(Ω) , p � 1. Using the above argument there exists un ∈H1

0 (Ω)
which solves the approximate problem{−div(a(x,un,Dun))+λun = fn in Ω,

un = 0 on ∂Ω,
(7.2)

with fn = Tn( f ) .
Using (5.6), we get

α
∫
Ω
|DTk(un)|2 dx � (1+ k)θk‖ f‖L1(Ω), (7.3)

which is an uniform estimate with respect to n of the L2 norms of |DTk(un)| . Reason-
ing as in [6], we can conclude that there exists a measurable function u such that, up to
a subsequence,

un → u a.e. in Ω,

and by (7.3)
Tk(un) ⇀ Tk(u) in H1

0 (Ω).
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Moreover, being

∫
Ω

|DTk(u)|2
(1+ |u|)θ dx � liminf

n→+∞

∫
Ω

|DTk(un)|2
(1+ |un|)θ dx,

it follows that
α

∫
Ω
|DTk(u)|2 dx � (1+ k)θk‖ f‖L1(Ω). (7.4)

On the other hand, for any measurable set E ⊆ Ω , by the Hardy and Littlewood
inequality and (6.2) it follows that

∫
E
|un|dx =

∫
E∩{|un|<k}

|un|dx+
∫
E∩{|un|�k}

|un|dx � k|E|+
∫ |{|un|�k}|

0
f ∗(σ)dσ .

Now by the Hardy and Littlewood inequality and (6.2) we get that,

|{|un| � k}| � 1
k

∫ |{|un|�k}|

0
u∗n(σ)dσ � 1

k

∫ |{|un|�k}|

0
f ∗n (σ)dσ � 1

k
‖ f‖L1(Ω),

which vanishes uniformly with respect to n when k → ∞ . Thus for any given ε > 0,
there exists kε such that

∫ |{|un|�kε}|

0
f ∗(σ)dσ � ε, ∀n ∈ N,

and so ∫
E
|un|dx � kε |E|+ ε.

This means ∫
E
|un|dx � ε, for all ε > 0 when |E| → 0,

which implies the equintegrability of un . By the Vitali theorem, we can conclude that
u ∈ L1(Ω) and

un → u in L1(Ω).

We observe that by the estimate (6.11), |Dun| is uniformly bounded in the Marcikiewicz

space M
2

θ+2 . Moreover, using Lemma 3.1, the inequality (7.4) allows to give a sense
to the gradient of u . Being u ∈ L1(Ω) , Lemma 3.2 and inequality (7.4) assure that

|Du| ∈ M
2

θ+2 .
This allows us to claim that, up to a subsequence,

Dun → Du a.e. in Ω.

Such convergence result can be found, for example, in [1].
Now we consider the cases (a) and (b). Choosing ϕ ∈ H1

0 (Ω) as a test function in
problem (7.2), we have∫

Ω
a(x,un,Dun) ·Dϕ dx+λ

∫
Ω

unϕ dx =
∫
Ω

fnϕ dx. (7.5)
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In order to pass to the limit in (7.5), we observe that ‖un‖H1
0 (Ω) are uniformly bounded

since the estimates (6.7) or (6.8) hold, so also |a(x,un,Dun)| is bounded in L2(Ω) by
hypothesis (2.3). Hence

a(x,un,Dun) ⇀ a(x,u,Du) in (L2(Ω))N ,

because Dun converges a.e. to Du in Ω . On the other hand, un strongly converges
to u in L2 . So we can pass to the limit in (7.5), obtaining that u is a weak solution
to problem (2.1). The boundedness of the solution in case (a) follows from estimate
(6.6) .

Now let us consider the case (c).
Fixed k > 0 and ϕ ∈H1

0 (Ω)∩L∞(Ω) , we want to pass to the limit in the following
expression∫

Ω
a(x,un,Dun) ·DTk(un−ϕ)dx+λ

∫
Ω

unTk(un−ϕ)dx =
∫
Ω

fnTk(un−ϕ)dx. (7.6)

Since un and fn strongly converge to u and f in L1 respectively, and Tk(un − ϕ)
∗−weakly converges to Tk(u−ϕ) , we get

lim
n→+∞

∫
Ω

unTk(un−ϕ)dx =
∫
Ω

uTk(u−ϕ)dx,

lim
n→+∞

∫
Ω

fnTk(un−ϕ)dx =
∫
Ω

f Tk(u−ϕ)dx.

As the first term of the left-hand side of (7.6) is concerned, we can split it into the sum∫
{|un−ϕ|�k}

a(x,un,Dun) ·Dundx−
∫
{|un−ϕ|�k}

a(x,un,Dun) ·Dϕ dx. (7.7)

As regards the second term of (7.7), it can be rewritten as∫
{|un−ϕ|�k}

a(x,un,Dun) ·Dϕ dx =
∫
{|un−ϕ|�k}

a(x,TM(un),DTM(un)) ·Dϕ dx,

where M = k+‖ϕ‖L∞ . We observe that |a(x,TM(un),DTM(un))| is bounded in L2(Ω)
by (2.3). Hence, being TM(un) ⇀ TM(u) in H1

0 (Ω) , and Dun → Du a.e. in Ω , we get

a(x,TM(un),DTM(un)) ⇀ a(x,TM(u),DTM(u)) weakly in (L2(Ω))N .

Therefore

lim
n→+∞

∫
{|un−ϕ|�k}

a(x,un,Dun) ·Dϕ dx =

=
∫
{|u−ϕ|�k}

a(x,TM(u),DTM(u)) ·Dϕ dx =
∫
{|u−ϕ|�k}

a(x,u,Du) ·Dϕ dx.

As regard the first term of (7.7), being a(x,un,Dun) ·Dun � 0 and a(x,un,Dun) →
a(x,u,Du) a.e., by Fatou’s Lemma we get∫

{|u−ϕ|�k}
a(x,u,Du) ·Dudx � liminf

n→+∞

∫
{|un−ϕ|�k}

a(x,un,Dun) ·Dun dx.
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Putting all the terms together, we obtain that∫
Ω

a(x,u,Du) ·DTk(u−ϕ)dx+λ
∫
Ω

uTk(u−ϕ)dx �
∫
Ω

f Tk(u−ϕ)dx,

which means that u is an entropy solution to problem (2.1).

REMARK 7.1. We emphasize that in order to prove the existence of a weak solu-
tion of (2.1) when 0 � θ � 1 and p � 2N

N(1−θ)+2(θ+1) , we can easily adapt the proofs
contained, for example, in [1] or [12].

REMARK 7.2. In Theorem 7.1 we showed that, under the hypotheses (a) or (b),
there exists a weak solution to problem (2.1). Otherwise,requiring instead of (2.3) the
following stronger assumption:

|a(x,s,ξ )| � h(x)+
δ

(1+ |s|)θ |ξ |, (7.8)

with h ∈ L2(Ω) , δ > 0 and θ > 1, we can prove the existence of a solution u which
verifies the identity (2.5) even if we assume a weaker summability on the datum f .
Nevertheless, such solution could not be in the energy space H1

0 (Ω) .
Indeed, taking ϕ = B(|un|)sign(un) as test function in the approximating problems

(7.2) we get, by hypothesis (2.2), that∫
Ω
|D(B(|un|)|2 dx+λ

∫
Ω
|un|B(|un|)dx �

∫
Ω
| fn|B(|un|)dx,

and being λ > 0, ∫
Ω
|D(B(|un|)|2 dx � B‖ f‖L1(Ω), (7.9)

where B = sups>0 B(s) , which is finite since θ > 1.
If f belongs to Lp(Ω) , with p � max{ 2N

N+2 , θ+2
2 } , then the hypothesis (7.8) and

the estimate (7.9) assure that there exists u ∈ W 1,β
0 (Ω) , β = 2p/(θ + 2) , such that

a(x,un,Dun) ⇀ a(x,u,Du) in (L2(Ω))N . Therefore we immediately obtain that u sat-
isfies the identity (2.5).

8. Regularity results

In this section we are interested in regularity results for solutions u to problem
(2.1).

First of all, we observe that the results stated in Remark 6.1 and in the propositions
6.1 and 6.2 hold also for the solutions to problem (2.1). Hence we know how the
summability of u and its gradient vary by varying the summability of the datum in
Lebesgue spaces.

Now we want to study what happens when we choose the datum f in some par-
ticular Lorentz space.
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We emphasize that, when θ � 1, reasoning as in the proof of Proposition 6.1, if
the datum f belongs to Lebesgue space Lq , with q > N

2 θ , the solutions of (2.1) are
bounded. The following result assures that the solutions are bounded also when the
datum f belongs to the Lorentz space L

N
2 θ ,θ .

THEOREM 8.1. Under the assumptions (2.2) , (2.3) and (2.4) , with θ � 1 , de-
noting by u a weak solution to problem (2.1) , the following results hold:

(i) if f ∈ L
N
2 θ ,θ , then u ∈ L∞(Ω);

(ii) if f ∈ L
N
2 θ ,q , with θ < q < +∞ , then u ∈ Lr(Ω) , for any r < +∞ .

Proof. We observe that the estimate (5.3) holds also for a solution u of problem
(2.1). Hence we obtain

− (u∗)′(s)
1+u∗(s)

� 1

αN2ω2/N
N

s−2/N′
(1+u∗(s))θ−1

∫ s

0
f ∗(σ)dσ .

Integrating between s and |Ω| , we get

log(1+u∗(s)) � 1

αN2ω2/N
N

∫ |Ω|

s
τ2/N(1+u∗(τ))θ−1 f ∗∗(τ)

dτ
τ

, (8.1)

where f ∗∗(s) = s−1 ∫ s
0 f ∗(σ)dσ .

As regards the assertion (i), applying the Hölder inequality, recalling Definition
3.2 and choosing s = 0, we have

log(1+u∗(0)) � c

(∫ |Ω|

0
s

2
N ( f ∗∗(s))θ

ds
s

) 1
θ
(∫ |Ω|

0
s

2
N (1+u∗(s))θ

ds
s

)1− 1
θ

= c‖ f‖
L

N
2 θ ,θ ‖1+ |u|‖θ−1

L
N
2 θ ,θ

� C,

where the constant C continuously depends on the L
N
2 θ ,θ norm of f by the estimate

(6.4). Hence we get (i).
In order to prove (ii), applying the Hölder inequality to (8.1) and being q > θ , we

obtain

log(1+u∗(s)) � c

(∫ |Ω|

s
τ

2q
Nθ ( f ∗∗(τ))q dτ

τ

) 1
q
(∫ |Ω|

s
τ

2q′
Nθ ′ (1+u∗(τ))q′(θ−1) dτ

τ

)1− 1
q

� c‖ f‖
L

N
2 θ ,q

(∫ |Ω|

s
τ

2q
Nθ (1+u∗(τ))q dτ

τ

) θ−1
q

(∫ |Ω|

s

dτ
τ

)1− θ
q

Therefore, using (6.4), we get

log(1+u∗(s)) � C

(
log

|Ω|
s

)1− θ
q

,
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which means that

u∗(s) � exp

{
C

(
log

|Ω|
s

)1− θ
q
}

.

By easy computations the above estimate implies that u belongs to Lr(Ω) , for any
r < +∞ .
We emphasize that in the limit case f ∈ L

N
2 θ ,∞ , in general, the summability of the

solution u is not greater than the summability of f , as shown by the following example.

EXAMPLE 8.1. Let Ω = B1(0) = {x ∈ R
N : |x| < 1} , θ = 2 and λ = 1. We

consider the following problem,{
−div

(
Du

(1+|u|)2
)

+u = N
|x| −1 in Ω,

u = 0 on ∂Ω,
(8.2)

where the datum f (x) = N
|x| −1 is such that f ∈ LN,∞ \LN(Ω) . It is not difficult to show

that, being N � 3, the function

u(x) =
1
|x| −1

belongs to H1
0 (Ω) and it is a weak solution to problem (8.2), but u �∈ LN(Ω) .

However, this problem can be avoided by assuming a smallness assumption on the
norm of the datum.

THEOREM 8.2. Let us assume (2.2) , (2.3) and (2.4) , with θ > 1 , f ∈ L
N
2 θ ,∞ ,

and let u a weak solution to problem (2.1) . If p > 0 is such that

‖ f‖θ
L

N
2 θ ,∞ < αN2ω2/N

N

(
λ
2

)θ−1 1
p
, (8.3)

then u ∈ Lp(Ω) .

Proof. Reasoning as in the proof of Theorem 8.1, from (8.1) we obtain that

log(1+u∗(s)) � 2θ−1

αN2ω2/N
N

[∫ |Ω|

s
τ2/N f ∗∗(τ)

dτ
τ

+
∫ |Ω|

s
τ2/Nu∗(τ)θ−1 f ∗∗(τ)

dτ
τ

]

� 2θ−1

αN2ω2/N
N

[
|Ω| 2

Nθ ′ ‖ f‖
L

N
2 θ ,∞ +‖ f‖

L
N
2 θ ,∞

∫ |Ω|

s
τ

2
Nθ ′ u∗(τ)θ−1 dτ

τ

]
.

Using the estimate (6.4) we have that

log(1+u∗(s)) �
2θ−1‖ f‖

L
N
2 θ ,∞

αN2ω2/N
N

⎡
⎣|Ω| 2

Nθ ′ +
‖ f‖θ−1

L
N
2 θ ,∞

λθ−1 log
|Ω|
s

⎤
⎦ ,
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that means

u∗(s) � C

( |Ω|
s

)γ
, where γ =

(
2
λ

)θ−1 ‖ f‖θ
L

N
2 θ ,∞

αN2ω2/N
N

.

This gives the thesis.

We want to stress that even if the datum f is less regular, it is possible to give a
smallness assumption on f in order to assure the existence of bounded solutions.

THEOREM 8.3. Let us assume (2.2) , (2.3) and (2.4) , with θ > 1 , and let u be

a weak solution to problem (2.1) . If f ∈ L
N
2 β ,β , with 1 � β < θ and the following

smallness condition holds,

‖ f‖
L

N
2 β ,β

(
N
2
|Ω| 2

N +
1

λβ ‖ f‖β
L

N
2 β ,β

)1−1/β
<

αN2ω2/N
N

2β−1(θ −β )
, (8.4)

then u ∈ L∞(Ω) .

Proof. We rewrite the estimate (5.3) as follows:

− (u∗)′(s)
(1+u∗(s))θ−β+1

� 1

αN2ω2/N
N

s−2/N′
(1+u∗(s))β−1

∫ s

0
f ∗(σ)dσ .

Integrating between s and |Ω| , using the Hölder inequality and (6.2), we get

B̃(u∗(s)) =
1− (1+u∗(s))β−θ

θ −β

� 1

αN2ω2/N
N

(∫ |Ω|

s
τ

2
N (1+u∗(τ))β

dτ
τ

)1−1/β

‖ f‖
L

N
2 β ,β

� 2β−1

αN2ω2/N
N

‖ f‖
L

N
2 β ,β

(
N
2
|Ω| 2

N +λ−β‖ f‖βN
2 β ,β

)1−1/β
.

This means that if

2β−1

αN2ω2/N
N

‖ f‖
L

N
2 β ,β

(
N
2
|Ω| 2

N +λ−β‖ f‖βN
2 β ,β

)1−1/β
< sup

s�0
B̃(s) =

1
θ −β

, (8.5)

then u ∈ L∞(Ω) .

REMARK 8.1. We stress that, if β = 1, the smallness hypothesis (8.5) coincides
with the condition given in [1]. On the other hand, if β = θ , no smallness assumption
is required to have bounded solution, as proven in Theorem 8.1.
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REMARK 8.2. We explicitly observe that, for 1 � β < θ ,

‖ f‖ N
2 β ,β � C‖ f‖ N

2 θ ,∞.

So it may happen that, if f ∈ L
N
2 θ ,∞ , inequalities (8.3) and (8.4) hold simultaneously.

In such a case Theorem 8.3 gives a stronger regularity result.
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Università degli studi del Molise
Via Duca degli Abruzzi, 86039 Termoli (CB)

Italia
e-mail: francesco.dellapietra@unimol.it

Giuseppina di Blasio
Dipartimento di Matematica
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