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UNIFORM ATTRACTORS FOR THE NON–AUTONOMOUS

PARABOLIC EQUATION WITH NONLINEAR LAPLACIAN

PRINCIPAL PART IN UNBOUNDED DOMAIN

GUANG-XIA CHEN

(Communicated by D. Hilhorst)

Abstract. In this paper, we are concerned with the asymptotic behavior of the solution for the
non-autonomous parabolic equation with nonlinear Laplacian principal part in R

n. The exis-
tence of the (L2(Rn),L2(Rn)) -uniform attractor, the (L2(Rn),Lp(Rn)) -uniform attractor and
the (L2(Rn),W 1,p(Rn)∩Lq(Rn)) -uniform attractor will be proved.

1. Introduction

The main purpose of this paper is to prove the existence of uniform attractors for
the following non-autonomous parabolic equation:

ut −div(|∇u|p−2∇u)+λ |u|p−2u+ f (u) = g(t,x) in R
n× [τ,+∞), (1.1)

with initial data

u(x,τ) = uτ , ∀τ ∈ R, (1.2)

where p > 2, λ > 0, g(t,x) ∈ L∞(R,L2(Rn)), and f ∈ C1(R) satisfies the following
conditions:

f (0) = 0, f ′(u) � −l, (1.3)

α1|u|q−β1|u|p + γ1|u|2 � f (u)u � α2|u|q +β2|u|p + γ2|u|2, q � 2, (1.4)

for some positive constants l, αi, βi , γi ( i = 1,2) and λ > β1.
There is a large literature on the existence of global attractors of solutions to the

autonomous problem (1.1)-(1.2) in bounded domain Ω. In [2], A. V. Babin and M.
I. Vishik studied the abstract evolution equations with monotone principal part, they
proved the existence of (L2(Ω),L2(Ω))-global attractor and the (L2(Ω),W 1,p

0 (Ω)∩
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Lq(Ω))w -global attractor for this problem. After that, the authors of [5] obtained the as-
sociated semigroup has an (L2(Ω),W 1,p

0 (Ω)∩Lq(Ω))-global attractor under some addi-
tional conditions (see [5] for details). In [15], by use of the asymptotic a priori estimate
initiated in [17], the authors proved the existence of the (L2(Ω),W 1,p

0 (Ω)∩ Lq(Ω))-
global attractor, where λ = 0 and the nonlinear term f (u) is arbitrary polynomial
growth. For some other results concerning this problem in bounded domains, see [6]
and the references therein.

The existence of global attractor for nondegenerate parabolic equations in un-
bounded domains was investigated in [1,8] in some weighted spaces. Later, these results
were extended to degenerate parabolic equation in unbounded domains (see [9,10]).
However, when working in weighted spaces, the initial data are always assumed to be
in the same spaces. In order to solve this problem, the authors of [3,14] used a suit-
able cut-off function to prove the asymptotic compactness of the associated semigroup
for reaction-diffusion equation; in the following, applying this method, the authors in
[12] proved the existence of the (L2(Rn),L∞(Rn))-global attractor when n � p, and

the (L2(Rn),L
np

n−p (Rn))-global attractor when n > p . And in [16], the authors proved
the existence of the (L2(Rn),W 1,p(Rn)∩Lq(Rn))-global attractor by combining cut-off
function method and asymptotic a priori estimate.

For the non-autonomous problems in bounded domain Ω, in [18], the authors
proved that the associated family of processes for p-Laplacian equation (i.e.λ = 0 in
(1.1)) possesses uniform attractors in the spaces Lq(Ω)(∀q � 2) and W 1,p

0 (Ω)∩Lq(Ω),
and even that these uniform attractors are coincident with each other.

In this paper, we are interested in the asymptotic behavior of the solution for (1.1-
(1.2). We use the notion of uniform attractors with respect to the initial instant τ ∈ R,
which was introduced by V.V.Chepyzhov and M.I.Vishik in [4], rather than the concept
of uniform attractors with respect to the time symbol σ . This is one of the several re-
lated notions to study the asymptotic behavior for non-autonomous dynamical systems
(see [4,7] and the references therein), and it means that whenever the obits start going,
wherever the obits come from in the phase space, all these obits are attracted by this at-
tractor. So in our work, we must handle the initial instant carefully, at the same time, we
should overcome the difficulties brought by noncompactness of Sobolev embedding.

In order to get the uniform attractors of solution for (1.1)-(1.2), first of all, we pro-
vide some necessary and sufficient conditions for the existence of the uniform attractors
with respect to initial instant (see section 2.1). And then, by applying the cut-off func-
tion method, extended asymptotic a priori estimate (see section 2.2) and differentiating
skills, from section 3 to section 5, we obtain the existence of the (L2(Rn),L2(Rn))-
uniform attractor, the (L2(Rn),Lp(Rn))-uniform attractor and the (L2(Rn),W 1,p(Rn)∩
Lq(Rn))-uniform attractor, respectively.

For convenience, hereafter let |u| be the modulus of u , m(e) (sometimes we write
it as |e|) the Lebesgue measure of e ⊂ R

n, R
n(u � M) = {x ∈ R

n : u(x) � M} and
R

n(u � −M) = {x ∈ R
n : u(x) � −M}, C and c arbitrarily positive constants, which

may be different from line to line and even in the same line.
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2. Preliminaries and abstract results

2.1. Preliminaries

In this subsection, we give some basic definitions (see [2,4] for details) and the
abstract results about the existence of bi-space uniform (with respect to (w. r. t.) τ ∈ R)
attractors. Let X , Y be two Banach spaces, we consider a family of processes {U(t,τ)}
defined on X , i.e., a family {U(t,τ) : −∞< τ � t <∞} of mappings U(t,τ) : X → X ,
such that,

U(τ,τ) = Id (identity),
U(t,τ) = U(t,r)U(r,τ) for all τ � r � t.

DEFINITION 2.1. A set B0 ⊂ Y is called to be (X ,Y )-uniformly (w. r. t. τ ∈
R) absorbing for {U(t,τ)}, if for any bounded subset B ⊂ X , there exists a positive
constant t0 = t0(B), such that:

⋃
τ∈R

U(t + τ,τ)B ⊂ B0 for all t � t0.

A set P ⊂ Y is said to be (X ,Y )-uniformly (w. r. t. τ ∈ R) attracting for {U(t,τ)}, if:

sup
τ∈R

distY (U(t + τ,τ)B,P) → 0 (t → ∞) for any bounded set B ⊂ X .

DEFINITION 2.2. A closed set A ⊂ Y is said to be an (X,Y)-uniform (w. r. t.
τ ∈ R) attractor for the family of processes {U(t,τ)} , if it is (X ,Y )-uniformly (w. r.
t. τ ∈ R) attracting and it is contained in any closed (X ,Y )-uniformly (w. r. t. τ ∈ R)
attracting set A ′ for {U(t,τ)} : A ⊂ A ′.

DEFINITION 2.3. A family of process {U(t,τ)} is called (X ,Y )-uniformly (w. r.
t. τ ∈ R) asymptotically compact if for any bounded subset B ⊂ X and any sequences
{τn} ⊂ R, tn → +∞ as n → +∞ and {xn} ⊂ B, {U(tn + τn,τn)xn}∞n=1 is precompact
in Y.

LEMMA 2.4. Let {U(t,τ)} be a family of processes acting on X . If it is (X ,Y )-
uniformly (w. r. t. τ ∈R ) asymptotically compact, then for any bounded subset B⊂X ,

the set
⋂
t�0

⋃
τ�t

⋃
h∈R

U(τ +h,h)B
Y

is nonempty, compact and it is the minimal set which

uniformly (w. r. t. τ ∈ R ) attracts B in the topology of Y.

Proof. Denote by

ω(B) :=
⋂
t�0

⋃
τ�t

⋃
h∈R

U(τ +h,h)B
Y
,

it is obvious that y ∈ ω(B) if and only if there exist sequences {τn} ⊂ R, tn → +∞ as
n→+∞ and {xn} ⊂ B, such that U(tn +τn,τn)xn → y in Y. Thus from the assumption
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that {U(t,τ)} is (X ,Y )-uniformly (w. r. t. τ ∈ R) asymptotically compact, we deduce
that ω(B) is nonempty.

In order to prove the compactness of ω(B), we need to verify that for any se-
quence {yn} ⊂ ω(B), there exists a convergent subsequence of {yn} in Y. In fact, by
the definition of ω(B), there exist sequences {τ i

n}∞i=1, {tin}∞i=1 and {xi
n}∞i=1, such that

for any n ∈ N, U(tin + τ i
n,τ i

n)x
i
n → yn as i → +∞. Therefore, for the subsequences

{tii}∞i=1, {τ i
i}∞i=1 and {xi

i}, the (X ,Y )-asymptotic compactness of U(t,τ) implies that
there exists subsequence of {U(tii + τ i

i ,τ i
i )x

i
i}∞i=1 which converges to some y0 ∈ ω(B),

and it is easy to see that y0 is a cluster point of {yn}.
Finally, we prove the minimal property of ω(B). Let P be another closed set,

which uniformly (w. r. t. τ ∈ R) attracts B in the topology of Y, we will show that
ω(B) ⊂ P. For any y ∈ ω(B), there exist sequences {τn} ⊂ R, tn → ∞ as n → ∞,
and {xn} ⊂ B, such that U(tn + τn,τn)xn → y in Y . On the other hand, P is (X ,Y )-
uniformly (w. r. t. τ ∈ R) attracting B , i.e.,

lim
t→∞

sup
τ∈R

distY (U(t + τ,τ)B,P) = 0,

then, we have
lim

tn→∞
sup
τn∈R

distY (U(tn + τn,τn)xn,P) = 0,

from the closeness of P , we conclude that y ∈ P, therefore, ω(B) ⊂ P. �

THEOREM 2.5. Let {U(t,τ)} be a family of processes acting on X . Then {U(t,τ)}
possesses a compact (X ,Y )-uniform (w. r. t. τ ∈ R ) attractor A0, if and only if the
following conditions hold:
1.) there exists B0 ⊂ Y, which is (X ,Y )-uniformly (w. r. t. τ ∈ R) absorbing for
{U(t,τ)},
2.) {U(t,τ)} is (X ,Y )-uniformly (w. r. t. τ ∈ R ) asymptotically compact.
Moreover,

A0 =
⋂
t�0

⋃
τ�t

⋃
h∈R

U(τ +h,h)B0

Y
.

Proof. ⇐) From lemma 2.4, we know that A0 is nonempty, compact, and A0 is
the minimal set which uniformly attracts B0 in the topology of Y, therefore, it suffices
to show that A0 is (X ,Y )-uniformly (w. r. t. τ ∈ R) attracting any bounded subset
B ⊂ X .

Since B0 is (X ,Y )-uniformly (w. r. t. τ ∈ R) absorbing, then for any τ ∈ R and
B⊂ X bounded, there is a positive constant t1 = t1(B), such that

⋃
τ∈R

U(t +τ,τ)B ⊂ B0

for all t � t1. Thus, we have

U(t + τ+h,τ)B = U(t + τ+h,t + τ)U(t + τ,τ)B ⊂U(t + τ+h,t + τ)B0,

for any τ ∈ R, h � 0 and any t � t1 . On the other hand, A0 is (X ,Y )-uniformly (w. r.
t. τ ∈ R) attracting for B0 , therefore,

lim
h→∞

sup
τ∈R

distY (U(t + τ+h,τ)B,A0) = 0,
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for any t � t1 . Therefore, A0 is an (X ,Y )-uniform (w. r. t. τ ∈ R) attractor for the
family of processes {U(t,τ)}.

⇒) Assume that A0 is the (X ,Y )-uniform (w. r. t. τ ∈ R) attractor, then it is
easy to see that any ε -neighborhood Nε(A0) of A0 in Y is (X ,Y )-uniformly (w. r. t.
τ ∈ R) absorbing.

Now, we prove that {U(t,τ)} is (X ,Y )-uniformly asymptotically compact. If not,
there exist sequences {τn} ⊂ R, tn → ∞ (n → ∞) and {xn} ⊂ B, such that {U(tn +
τn,τn)xn} is not precompact, then there exists some ε0 > 0, such that:

d(U(ti + τi,τi)xi,U(t j + τ j,τ j)x j) � ε0 > 0 for i 
= j.

On the other hand, since A0 is uniformly attracting for {U(t,τ)}, we have

lim
n→∞

sup
τn

distY (U(tn + τn,τn)xn,A0) = 0,

then from the compactness of A0, there exists some y ∈ A0, which is a cluster point
of {U(tn + τn,τn)xn}, this will lead a contradiction. �

2.2. Abstract results

In this subsection, we will extend the ideas of asymptotic a priori estimate in
[13,16,17] to non-autonomous dynamical systems, which is useful to prove the exis-
tence of uniform (w. r. t. τ ∈ R) attractors in Lp(Rn) (p � 2) for the family of
processes {U(t,τ)}.

LEMMA 2.6. (see [13]) Let B⊂ L2(Rn)∩Lp(Rn) be bounded in both L2(Rn) and
Lp(Rn). Then for any ε > 0, B has a finite ε -net in Lp(Rn) if there exists a positive
constant M = M(ε) which depends on ε, such that:
1.) B has a finite (3M)(2−p)/2(ε/2)p/2 -net in L2(Rn);
2.) for all u ∈ B,

(∫
Rn(|u|�M)

|u|pdx

)1/p

< 2−(2p+2)/pε.

LEMMA 2.7. Assume {U(t,τ)} be a family of processes acting on L2(Rn) and
Lp(Rn) (p � 1), {U(t,τ)} possesses a bounded (L2(Rn),Lp(Rn))-uniformly (w. r. t.
τ ∈ R) absorbing set. Then for any τ ∈ R and any bounded subset B ⊂ L2(Rn), there
exist positive constants t0 = t0(B,ε) and M = M(ε), such that

m(Rn(|U(t,τ)uτ | � M)) < ε for any uτ ∈ B and t � t0 + τ.

Proof. Let B0 be a bounded (L2(Rn),Lp(Rn))-uniformly (w. r. t. τ ∈ R) absorb-
ing set, which is bounded by M1. Then, for any bounded subset B ⊂ L2(Rn), there is a
positive constant t0(B) such that⋃

τ∈R

U(t + τ,τ)B ⊂ B0, t � t0,
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thus, for any τ ∈ R and uτ ∈ B, we have

|U(t,τ)uτ |pp � M1, t � t0 + τ,

that is

M1 �
∫

Rn
|U(t,τ)uτ |pdx �

∫
Rn(|U(t,τ)uτ |�M)

|U(t,τ)uτ |pdx

�
∫

Rn(|U(t,τ)uτ |�M)
Mpdx � Mp ·m(Rn(|U(t,τ)uτ | � M)),

taking M � (M1/ε)1/p, we have m(Rn(|U(t,τ)uτ | � M)) < ε. �

LEMMA 2.8. (see [13]) Let B be a bounded subset in Lp(Rn) (p � 1). If B has
a finite ε -net in Lp(Rn) , then there exists an M = M(B,ε) such that for any u∈ B, the
following estimate is valid: ∫

Rn(|u|�M)
|u|pdx � 2p+1ε p.

From theorem 2.5 and lemma 2.6, we can get the abstract result on the existence
of the (L2(Rn),Lp(Rn))-uniform (w. r. t. τ ∈ R) attractor, i.e. the following theorem.

THEOREM 2.9. Let {U(t,τ)} be a family of processes acting on L2(Rn) and on
Lp(Rn), where 2 � p < ∞. Suppose that {U(t,τ)} has a compact (L2(Rn),L2(Rn))-
uniform (w. r. t. τ ∈ R ) attractor. Then {U(t,τ)} has a compact (L2(Rn),Lp(Rn))-
uniform (w. r. t. τ ∈ R ) attractor provided that the following conditions hold:
1.) {U(t,τ)} has a bounded (L2(Rn),Lp(Rn))-uniformly (w. r. t. τ ∈ R) absorbing
the set B0 ;
2.) for any ε > 0, τ ∈ R and any bounded subset B ⊂ L2(Rn), there exist positive
constants M = M(ε) and t0 = t0(ε), such that∫

Rn(|U(t,τ)uτ |�M)
|U(t,τ)uτ |pdx � ε, for any uτ ∈ B and t � t0 + τ. (2.1)

3. The existence of (L2(Rn),W 1,p(Rn)∩Lq(Rn))-uniformly absorbing set and the
(L2(Rn),L2(Rn))-uniform attractor

We start with the following general existence and uniqueness of solution which
can be obtained by the standard Faedo-Galerkin methods (see [2,11,14]). Here we only
state the result:

THEOREM 3.1. Assume that f satisfies (1.3) and (1.4) , g(t) ∈ L2
loc(R,L2(Rn)).

Then for ∀τ ∈ R, ∀uτ ∈ L2(Rn) and ∀T � τ, there exists a unique solution u =
u(T,τ;uτ) for problem (1.1)-(1.2) . Moreover,

u ∈ L∞(τ,T ;L2(Rn))∩Lp(τ,T ;W 1,p(Rn))∩Lq(τ,T ;Lq(Rn)),

and the mapping uτ → u(t,τ;uτ) is weakly continuous in L2(Rn).
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From theorem 3.1, we can define a family of processes {U(t,τ) :−∞< τ � t <∞}
in L2(Rn) which is weakly continuous,

U(t,τ)uτ = u(t) := u(t,τ;uτ), for all t � τ, (3.1)

where u(t) is the solution of (1.1) with initial data u(τ) = uτ ∈ L2(Rn).

THEOREM 3.2. Assume that (1.3)-(1.4) hold and g(t) ∈ L∞(R,L2(Rn)). Then
for any bounded subset B ⊂ L2(Rn) and any τ ∈ R, there exists t1(B) > 0, such that

|u|22 + |u|qq + |u|pp + |∇u|pp � R0 for any t � t1(B)+ τ and uτ ∈ B,

where R0 > 0 is independent of B.

Proof. Multiplying (1.1) by u and integrating on R
n, after the standard integration

by parts, we have

1
2

d
dt
|u|22 + |∇u|pp +λ |u|pp +

∫
Rn

f (u)udx =
∫

Rn
g(t)udx,

applying (1.4) and Young’s inequality, we have

1
2

d
dt
|u|22 +

∫
Rn

(|∇u|p +(λ −β1)|u|p +α1|u|q + γ1|u|2
)
dx

� c
∫

Rn
|g(t)|2dx+

γ1
2

∫
Rn

|u|2dx, (3.2)

that is

d
dt
|u|22 + γ1|u|22 � c

∫
Rn

|g(t)|2dx,

Gronwall’s inequality yields that

|u(t)|22 � e−γ1(t−τ)|uτ |22 + c
∫ t

τ
e−γ1(t−s)|g(s)|22ds

� e−γ1(t−τ)|uτ |22 +C(1− e−γ1(t−τ)),

from which, we can find a t0(B) > 0 large enough, such that |u(t)|22 � R1 for ∀uτ ∈ B
and t � t0(B)+ τ.

In addition, integrating (3.2) about s from t−1 to t (t � t0(B)+τ+1), we know
that

1
2
|u(t)|22 + c

∫ t

t−1

(|∇u(s)|pp + |u(s)|pp + |u(s)|qq + |u|22
)
ds

� 1
2
|u(t−1)|22 + c

∫ t

t−1

∫
Rn

|g(t)|2dxds � C(R1). (3.3)
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Set F(u) =
∫ u
0 f (s)ds, after precise calculation we can deduce from (1.3) and (1.4)

that

1
2
γ1|u|2 +

α1

q
|u|q− β1

p
|u|p � F(u) � α3|u|q +β3|u|p + γ3|u|2, (3.4)

where α3, β3, γ3 > 0, therefore,

1
2
γ1|u|22 +

α1

q
|u|qq−

β1

p
|u|pp �

∫
Rn

F(u)dx � α3|u|qq +β3|u|pp + γ3|u|22. (3.5)

Combining (3.3) and (3.5), we have∫ t

t−1

(
|∇u(s)|pp + |u(s)|pp +

∫
Rn

F(u(s))
)

ds � C. (3.6)

On the other hand, taking inner product of (1.1) by ut , we obtain

|ut |22 +
d
dt

(
1
p
|∇u|pp +

λ
p
|u|pp +

∫
Rn

F(u)dx

)
=

∫
Rn

g(t)utdx

� 1
2

∫
Rn

|g(t)|2dx+
1
2

∫
Rn

|ut |2dx, (3.7)

which implies that,

d
dt

(
1
p
|∇u|pp +

λ
p
|u|pp +

∫
Rn

F(u)dx

)
� 1

2

∫
Rn

|g(t)|2dx,

then inequality (3.6) and uniform Gronwall’s inequality yield that

1
p
|∇u(t)|pp +

λ
p
|u(t)|pp +

∫
Rn

F(u(t)) � C,

notice (3.5) and the fact that λ > β1, we obtain

|u(t)|22 + |u(t)|qq + |u(t)|pp + |∇u(t)|pp � R0 for any uτ ∈ B, (3.8)

the proof is completed. �

REMARK 3.3. In the proof of theorem 3.2, we take inner product of (1.1) by ut to
obtain (3.7), in fact, we must be in the face of the regularity of solution there. However,
by applying Galerkin approximation, the required regularity of solution is not difficult
to prove, therefore, we only give formal deduction.

From theorem 3.2, we set B0 by

B0 := {v ∈ L2(Rn)∩Lq(Rn)∩W 1,p(Rn) : |u|22 + |u|qq + |u|pp + |∇u|pp � R0}, (3.9)

it is easy to see that B0 is (L2(Rn),L2(Rn))-uniformly (w. r. t. τ ∈ R) absorb-
ing, (L2(Rn),Lp(Rn))-uniformly (w. r. t. τ ∈ R) absorbing and (L2(Rn),Lq(Rn)∩
W 1,p(Rn)) -uniformly (w. r. t. τ ∈ R) absorbing for the family of processes {U(t,τ)} .
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LEMMA 3.4. Assume that (1.3)-(1.4) hold and g(t) ∈ L∞(R,L2(Rn)). Then for
any ε > 0,τ ∈ R and any bounded subset B ⊂ L2(Rn), there exist positive constants
t0(ε,B) and R(ε), such that for ∀r > R(ε),∫

|x|�r
|u(t)|2dx � Cε, f or ∀uτ ∈ B and t � t0 + τ,

in which u(t) = U(t,τ)uτ , and C is independent of B.

Proof. Choosing a smooth function θ (s), such that 0 � θ (s) � 1 for any s � 0,
and

θ (s) = 0 for 0 � s � 1, θ (s) = 1 for s � 2, (3.10)

then there exists a constant M, such that |θ ′(s)| � M for s ∈ R
+.

Denote θr(x) := θ (|x|2/r2). Multiplying (1.1) by θ p
r (x)u and integrating on R

n ,
we get that

1
2

d
dt

∫
Rn
θ p

r |u|2dx−〈div(|∇u|p−2∇u),θ p
r u〉+λ

∫
Rn
θ p

r |u|pdx+
∫

Rn
θ p

r f (u)udx

=
∫

Rn
θ p

r g(t)udx � γ1
2

∫
Rn
θ p

r |u|2dx+ c
∫

Rn
θ p

r |g(t)|2dx. (3.11)

Now, we bounded the second term of (3.11) as follows,

〈−div(|∇u|p−2∇u),θ p
r u〉 =

∫
Rn
θ p

r |∇u|pdx+
∫

Rn

2px
r2 θ ′

rθ
p−1
r |∇u|p−2u∇udx, (3.12)

and ∣∣∣∣
∫

Rn

2px
r2 θ ′

rθ
p−1
r |∇u|p−2u∇udx

∣∣∣∣ � M
r

∫
r�|x|�√

2r
θ p−1

r |∇u|p−1|u|dx

� C
r
(|u|pp +θ p

r |∇u|p/(p−1)
p )

� C1(M,R0)
r

, as t > t1(B)+ τ, (3.13)

here, t1(B) is given as in theorem 3.2.
In addition, from (1.4) we have

γ1
∫

Rn
θ p

r |u|2dx+α1

∫
Rn
θ p

r |u|qdx−β1

∫
Rn
θ p

r |u|pdx �
∫

Rn
θ p

r f (u)udx

� α2

∫
Rn
θ p

r |u|qdx+β2

∫
Rn
θ p

r |u|pdx+ γ2
∫

Rn
θ p

r |u|2dx, (3.14)

combining (3.12)-(3.14) and (3.11) implies

1
2

d
dt

∫
Rn
θ p

r |u|2dx+
γ1
2

∫
Rn
θ p

r |u|2dx � c
∫
|x|�r

θ p
r |g(t)|2dx+

C1

r
, (3.15)
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since g(t) ∈ L∞(R,L2(Rn)), we get that∫
|x|�r

θ p
r |g(t)|2dx → 0 as r → +∞,

so for arbitrary ε > 0, there exists R1 > 0, such that
∫
|x|�r θ

p
r |g(t)|2 � Cε for r � R1.

Therefore, taking R = max{R1,C1/ε}, we have

d
dt

∫
Rn
θ p

r |u|2dx+ γ1
∫

Rn
θ p

r |u|2dx � Cε, t > t1(B)+ τ, (3.16)

by use of the Gronwall’s inequality, we obtain that∫
Rn
θ p

r |u|2dx � Cε, (3.17)

the proof is completed. �

Thanks to the theorem 3.2 and lemma 3.4, according to the method of cut-off
function used in [3,12,14], we know that {U(t,τ)} is (L2(Rn),L2(Rn))-uniformly (w.
r. t. τ ∈ R) asymptotically compact, so we have the corollary below:

COROLLARY 3.5. Suppose (1.3)-(1.4) hold and g(t) ∈ L∞(R,L2(Rn)). Then
there exists an (L2(Rn),L2(Rn))-uniform (w. r. t. τ ∈ R ) attractor A2 for the family
of processes {U(t,τ)} associated with problem (1.1)-(1.2) , and

A2 =
⋂
t�0

⋃
h∈R

⋃
τ�t

U(h+ τ,h)B0

L2

,

here B0 is the (L2(Rn),L2(Rn))-uniformly (w. r. t. τ ∈ R ) absorbing set defined by
(3.9).

4. Asymptotic a priori estimate, existence of the (L2(Rn),Lq(Rn))-uniform
attractor and the (L2(Rn),Lp(Rn))-uniform attractor

In this section, we will give asymptotic a priori estimates for the unbounded part of
the modulus |u| for the solution of problem (1.1)-(1.2) in spaces Lq(Rn) and Lp(Rn),
they are important for us to get the (L2(Rn),Lq(Rn))-uniformly (w. r. t. τ ∈R) asymp-
totic compactness and the (L2(Rn),Lp(Rn))-uniformly (w. r. t. τ ∈ R) asymptotic
compactness for the family of processes {U(t,τ)} associated with (1.1)-(1.2).

THEOREM 4.1. Assume that (1.3)-(1.4) hold and g(t) ∈ L∞(R,L2(Rn)). Then
for any τ ∈R, ε > 0 and any bounded subset B⊂ L2(Rn), there exist positive constants
t0 = t0(B,ε) and M = M(ε), such that∫

Rn(|u|�M)
(|u(t)|q + |u(t)|p)dx � Cε, for any t � t0 + τ and uτ ∈ B, (4.1)

here u(t) = U(t,τ)uτ , C is independent of B.
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Proof. From the absolute continuity of integrable function, for any fixed ε > 0,
there exists a δ > 0, such that if e ⊂ R

n and m(e) < δ , then
∫

e
|g|2dx < ε. (4.2)

On the other hand, from lemma 2.7, lemma 2.8 and theorem 3.2, we know that
there exist t1 = t1(B,ε) and M1 = M1(ε) such that for any uτ ∈ B and t � t1 + τ, we
have

m(Rn(|u(t)| � M1)) � min{ε,δ}, (4.3)

and ∫
Rn(|u(t)|�M1)

|u(t)|2dx � ε. (4.4)

Moreover, from (1.3) and (1.4) we can take M0 large enough such that

α1|u|q−1−β1|u|p−1 + γ1|u|
� f (u) � α2|u|q−1 +β2|u|p−1 + γ2|u| in R

n(u � M0), (4.5)

Now, take M2 = max{M0,M1} and t � t1 + τ.
Let (u−M2)+ denote the positive part of u−M2, that is

(u−M2)+ =

{
u−M2, u � M2

0, u � M2.

Multiplying (1.1) by (u−M2)+ and integrating on R
n, we have

1
2

d
dt

∫
Ω2

|(u−M2)+|2dx+
∫
Ω2

|∇u|pdx+λ
∫
Ω2

|u|p−2u(u−M2)+dx

+
∫
Ω2

f (u)(u−M2)+dx =
∫
Ω2

g(t)(u−M2)+dx,

where Ω2 � R
n(u � M2), then

1
2

d
dt

∫
Ω2

|(u−M2)+|2dx+
∫
Ω2

|∇u|pdx+λ
∫
Ω2

|u|pdx+
∫
Ω2

f (u)udx

�
∫
Ω2

g(t)(u−M2)+dx+M2

[
λ

∫
Ω2

|u|p−1dx+
∫
Ω2

f (u)dx

]
,

from (4.3)-(4.5) and Young’s inequality, it becomes

1
2

d
dt

∫
Ω2

|(u−M2)+|2dx+
∫
Ω2

|∇u|pdx+(λ −β1)
∫
Ω2

|u|pdx
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+α1

∫
Ω2

|u|qdx+ γ1
∫
Ω2

|u|2dx

� C
∫
Ω2

|g(t)|2dx+
γ1
4

∫
Ω2

|(u−M2)+|2dx+Cε+
λ −β1

2

∫
Ω2

|u|pdx

+
γ1
4

∫
Ω2

|u|2dx,

since (4.2) holds, we have

1
2

d
dt

∫
Ω2

|(u−M2)+|2dx

+
∫
Ω2

(
|∇u|p +

λ −β1

2
|u|pdx+

γ1
2
|u|2 +α1|u|q

)
dx � Cε, (4.6)

from the fact that
∫
Ω2

|u|2dx �
∫
Ω2

|(u−M2)+|2dx, and Gronwall’s inequality, we get
that ∫

Ω2

|(u(t)−M2)+|2dx < Cε, for t− τ � τ2(ε). (4.7)

In addition, for any r � t + τ2, integrating (4.6) from r to r +1 with respect to t,
and applying (4.7), we get that

∫
Ω2

|(u(r+1)−M2)+|2dx

+
∫ r+1

r

∫
Ω2

(
|∇u(t)|p +

λ −β1

2
|u(t)|pdx+

γ1
2
|u(t)|2 +α1|u(t)|q

)
dxdt � Cε,

notice that (3.5), we have

∫ r+1

r

∫
Ω2

(|∇u(t)|p + |u(t)|pdx+ |u(t)|2 + |u(t)|q +F(u(t))
)
dxdt � Cε. (4.8)

On the other hand, multiplying (1.1) by (u−M2)+t and integrating on R
n, we

have∫
Rn

|(u−M2)+t |2dx+
∫

Rn
|∇u|p−2∇u∇(u−M2)+t dx+λ

∫
Rn

|u|p−2u · (u−M2)+t dx

+
∫

Rn
f (u) · (u−M2)+t dx =

∫
Rn

g(t) · (u−M2)+t dx,

from Young’s inequality,

∫
Rn

|(u−M2)+t |2dx+
1
p

d
dt

∫
Ω2

|∇u|pdx+
λ
p

d
dt

∫
Ω2

|u|pdx+
d
dt

∫
Ω2

F(u)dx

=
∫
Ω2

g(t) · (u−M2)+t dx � 1
2

∫
Ω2

|g(t)|2dx+
1
2

∫
Ω2

|(u−M2)+t |2dx,
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then we have

1
2

∫
Rn

|(u−M2)+t |2dx+
d
dt

∫
Ω2

(
1
p
|∇u|p +

λ
p
|u|p +F(u)

)
dx

� 1
2

∫
Ω2

|g(t)|2dx � Cε,

recalling (4.8) and applying uniform Gronwall’s inequality, we obtain∫
Ω2

(
1
p
|∇u(t)|p +

λ
p
|u(t)|p +F(u(t))

)
dx � Cε,

employing (3.5) once again, we get that∫
Ω2

(|∇u(t)|p + |u(t)|p + |u|q + |u|2))dx � Cε. (4.9)

Repeating the same steps above, just taking |(u + M2)−| instead of (u−M2)+,
and replacing (u−M2)+t with (u+M2)−t , we obtain∫

Rn(u�−M2)

(|∇u(t)|p + |u(t)|p + |u|q + |u|2))dx � Cε, (4.10)

combining (4.9) with (4.10), we conclude that for any M � M2,∫
Rn(|u|�M)

(|∇u(t)|p + |u(t)|p + |u|q + |u|2))dx � Cε,

and the proof is completed. �

Collecting theorem 4.1, corollary 3.5 and theorem 2.9, the (L2(Rn),Lq(Rn))-
uniform (w. r. t. τ ∈ R) attractor and the (L2(Rn),Lp(Rn))-uniform (w. r. t. τ ∈ R)
attractor for {U(t,τ)} can be constructed, to be precise, the following theorems hold:

THEOREM 4.2. Suppose (1.3) and (1.4) hold, g(t)∈ L∞(R,L2(Rn)). Then there
exists an (L2(Rn),Lq(Rn))-uniform (w. r. t. τ ∈ R ) attractor Aq for the family of
processes {U(t,τ)} associated with (1.1)-(1.2) . And

Aq =
⋂
t�0

⋃
h∈R

⋃
τ�t

U(h+ τ,h)B0

Lq

,

here B0 is the (L2(Rn),Lq(Rn))-uniformly (w. r. t. τ ∈ R ) absorbing set defined by
(3.9) .

THEOREM 4.3. Under the same assumptions of preceding theorem 4.2, there ex-
ists an (L2(Rn),Lp(Rn))-uniform (w. r. t. τ ∈ R ) attractor Ap for {U(t,τ)} associ-
ated with problem (1.1)-(1.2) , and

Ap =
⋂
t�0

⋃
h∈R

⋃
τ�t

U(h+ τ,h)B0

Lp

,

where B0 is defined by (3.9) .
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5. The existence of (L2(Rn),W 1,p(Rn)∩Lq(Rn))-uniform attractor

In this section, we prove the existence of the (L2(Rn),W 1,p(Rn)∩Lq(Rn))-uniform
(w. r. t. τ ∈ R) attractor. Firstly, we give a priori estimates about ut in L2 -norm.

LEMMA 5.1. Assume that f satisfies (1.3)-(1.4) , g ∈ W 1,∞(R,L2(Rn)). Then
for any τ ∈ R and any bounded subset B ⊂ L2(Rn), there is a positive constant t0 =
t0(B), such that

|ut(t)|22 � M, for any uτ ∈ B and t � t0 + τ.

where ut(t) = d
dt (U(t,τ)uτ), and M is a positive constant which is independent of B.

Proof. We give the formal calculations, the rigorous proof can be obtained by
Galerkin approximation. Differentiating (1.1) and setting v = ut , we have

vt −div(|∇u|p−2∇v)− (p−2)div(|∇u|p−4(∇u ·∇v)∇u)

+λ (p−1)|u|p−2v+ f ′(u)v = g′(t), (5.1)

where ” · ” denotes the dot product in R
n.

Multiplying (5.1) by v and integrating on R
n, we obtain that

1
2

d
dt
|v(t)|22 +

∫
Rn

|∇u|p−2|∇v|2dx+(p−2)
∫

Rn
|∇u|p−4|(∇u ·∇v)|2dx

+λ (p−1)
∫

Rn
|u|p−2|v|2dx+

∫
Rn

f ′(u)|v|2dx

� C
∫

Rn
|g′(t)|2dx+ l

∫
Rn

|v|2dx, (5.2)

from (1.3), we have

1
2

d
dt
|v(t)|22 � C

∫
Rn

|g′(t)|2dx+2l
∫

Rn
|v(t)|2dx. (5.3)

Now, employing (3.7) once again, by integrating about s from t − 1 to t, t �
t0(B)+ τ+1 (t0(B) is as given in theorem 3.2), we have

∫ t

t−1
|ut |22ds � C,

then inequality (5.3) and uniform Gronwall’s inequality tell us∫
Rn

|ut(t)|2dx � M,

for any uτ ∈ B and t � t0(B)+ τ+1, M is independent of B . �

Let ξ (·) ∈C∞(Rn) be such that 0 � ξ (s) � 1, for any s � 0, and

ξ (s) = 1 for 0 � s � 1, ξ (s) = 0 for s � 2.
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Furthermore, define ξk(x) = ξ (
|x|2
k2 ) for any k ∈ R

+ .

Now, we prove that {U(t,τ)} is in fact (L2(Rn),W 1,p(Rn)∩Lq(Rn))-uniformly
(w. r. t. τ ∈ R) asymptotically compact. From theorem 4.2, it is sufficient to prove that
for any fixed k, {ξkU(tn + τn,τn)uτn} is precompact in W 1,p(Rn) for any sequences
{uτn} ⊂ B0, {τn} ⊂ R and tn → +∞ (n → ∞), where B0 is (L2(Rn),W 1,p(Rn) ∩
Lq(Rn))-uniformly (w. r. t. τ ∈ R) absorbing for {U(t,τ)}.

THEOREM 5.2. Assume that f satisfies (1.3)-(1.4) , g∈W 1,∞(R,L2(Rn)). Then
the family of processes {U(t,τ)} is (L2(Rn),W 1,p(Rn)∩Lq(Rn))-uniformly (w. r. t.
τ ∈ R ) asymptotically compact.

Proof. Let B0 be the (L2(Rn),W 1,p(Rn)∩Lq(Rn))-uniformly (w. r. t. τ ∈ R)
absorbing set obtained in (3.9), then according to theorem 2.5, we need only to show
that

for any {uτn} ⊂ B0, {τn} ⊂ R and tn → +∞ as n → ∞,

{ξkU(tn + τn,τn)uτn}∞n=1 is precompact in W 1,p(Rn)∩Lq(Rn), (5.4)

thanks to theorem 4.2, it is sufficient to verify that for every fixed k, we have

for any {uτn} ⊂ B0, {τn} ⊂ R and tn → +∞ as n → ∞,

{ξkU(tn + τn,τn)uτn}∞n=1 is precompact in W 1,p(Rn). (5.5)

In fact, from corollary 3.5, theorem 4.2 and theorem 4.3, we know that for every
fixed k, {ξkU(tn +τn,τn)uτn}∞n=1 is precompact in L2(Rn), Lq(Rn) and Lp(Rn). With-
out loss of generality, we assume that {ξkU(tn + τn,τn)uτn}∞n=1 is a Cauchy sequence
in L2(Rn), Lq(Rn) and Lp(Rn).

Now, we prove that for every fixed k, {ξkU(tn + τn,τn)uτn}∞n=1 is a Cauchy se-
quence in W 1,p(Rn). Denote by un

τn(tn) := U(tn + τn,τn)uτn , and recall the property
of p-Laplacian operator for p � 2: there exists a positive constant δ , such that for all
u1, u2 ∈W 1,p(Rn) ,

〈Au1−Au2,ξ p
k (u1−u2)〉 � δ‖(u1−u2)‖p

W 1,p

+
∫

Rn

2px
k2 ξ ′

kξ
p−1
k (|∇u1|p−2∇u1−|∇u2|p−2∇u2)(u1−u2)dx, (5.6)

where Au =−div(|∇u|p−2∇u)+λ |u|p−2u and 〈·, ·〉 is the L2 -inner product. Then from
equation (1.1), we have

〈Aun
τn(tn)−Aum

τm(tm),ξ p
k (un

τn(tn)−um
τm(tm))〉

= 〈g(tn + τn)− d
dt

un
τn(tn)− f (un

τn(tn))+
d
dt

um
τm(tm)+ f (um

τm(tm))−g(tm + τm),
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ξ p
k (un

τn(tn)−um
τm(tm))〉

�
∫

Rn

∣∣∣∣ d
dt

un
τn(tn)−

d
dt

um
τm(tm)

∣∣∣∣ · |ξ p
k (un

τn(tn)−um
τm(tm))|dx

+
∫

Rn
| f (un

τn(tn))− f (um
τm(tm))| · |ξ p

k (un
τn(tn)−um

τm(tm))|dx

+
∫

Rn
|g(tn + τn)−g(tm + τm)| · |ξ p

k (un
τn(tn)−um

τm(tm))|dx

�
∣∣∣∣ d
dt

un
τn(tn)−

d
dt

um
τm(tm))

∣∣∣∣
2
· |ξk(un

τn(tn)−um
τm(tm))|2

+C(1+ |un
τn(tn)|qq + |um

τm(tm)|qq) · |ξk(un
τn(tn)−um

τm(tm))|qq
+C(1+ |un

τn(tn)|pp + |um
τm(tm)|pp) · |ξk(un

τn(tn)−um
τm(tm))|pp

+C(1+ |un
τn(tn)|22 + |um

τm(tm)|22) · |ξk(un
τn(tn)−um

τm(tm))|22
+C|g(tn + τn)−g(tm + τm)|2 · |ξk(un

τn(tn)−um
τm(tm))|2, (5.7)

which, combining with lemma 5.1, yields (5.4) immediately. �

COROLLARY 5.3. Under the same assumptions in theorem 5.2, there exists a sub-
set Ap,q, which is compact in W 1,p(Rn)∩ Lq(Rn) , and uniformly (w. r. t. τ ∈ R )
attracts all the bounded subset of L2(Rn) in the topology of W 1,p(Rn)∩Lq(Rn). More-
over,

Ap,q =
⋂
t�0

⋃
h∈R

⋃
τ�t

U(t +h,h)B0

W 1,p∩Lq

,

in which B0 is given by (3.9) .

REMARK 5.4. From the prove above, we can deduce that A2, Ap, Aq and Ap,q

coincide with each other. Furthermore, from the relationship among uniform attractors,
uniform pullback attractors and uniform forward attractors (see [4,7]), we know that
problem (1.1)-(1.2) possesses (L2(Rn),Lp(Rn))-uniform forward (pullback) attractor
and (L2(Rn),Lq(Rn)∩W 1,p(Rn))-uniform forward (pullback) attractor under the same
conditions in corollary 5.3, and these attractors are included in the uniform attractor
(see [4,7] for detail). However, when we relax the conditions, especially the conditions
on g(t), the existence of (L2(Rn),Lq(Rn)∩W1,p(Rn))-uniform attractor is unknown.
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