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ANISOTROPIC PARABOLIC PROBLEMS WITH MEASURES DATA

FARES MOKHTARI

(Communicated by J. -M. Rakotoson)

Abstract. In this work, we prove the existence of a weak solution of an anisotropic parabolic
problem with measure data ut +Au+F(u,Du) = μ and u(0) = μ0 with μ and μ0 two Radon
bounded measures. The operator A is a Leray-Lions operator with anisotropic growth condi-
tions. Our approach is based on the anisotropic Sobolev inequality, a regularity result, a com-
pactness result, and an integration by parts formula.

1. Introduction

Let us consider the following anisotropic parabolic problem:

(P)

⎧⎨⎩
∂t u+Au+F(t,x,u,Du) = μ in Q = Ω× (0,T),

u(0,x) = μ0(x) in Ω,
u = 0 on (0,T )× ∂Ω,

where Ω is a smooth bounded open set of R
N (N � 2) , T > 0 a real number, μ is a

Radon’s bounded measure on Q , μ0 a Radon’s bounded measure on Ω , and A is the
operator given by Au = −div(â(x,t,u,Du)) . Here, we suppose that â(x,t,u,ξ ) and
F(t,x,u,ξ ) are functions verifying the following conditions.

â.1) There exist two constants α > 0 and β > 0 such that for a.e. (t,x) ∈ Q , all
u ∈ R and ξ ∈ R

N , the function â : Q×R×R
N → R

N satisfies the following growths:

â(t,x,u,ξ )ξ � α
N

∑
i=1

|ξi|pi , â(t,x,u,ξ ) = (a1(t,x,u,ξ ), . . . ,aN(t,x,u,ξ )),

|ai(t,x,u,ξ )| � β
(
|g|+ |u|p +

N

∑
j=1

|ξ j|p j

)1− 1
pi , g ∈ L1(Q), i = 1, . . . ,N.

Here pi are real positive numbers so that:

1+
N

N +1
< pi <

p(N +1)
N

and
1
p

=
1
N

N

∑
i=1

1
pi

, i = 1, . . . ,N.
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â.2) The mapping â is a Carathéodory function, that is to say, the function (t,x,u,ξ ) �→
â(t,x,u,ξ ) is measurable in (t,x) for all (u,ξ ) ∈ R×R

N and continuous in (u,ξ ) for
a.e. (t,x) ∈ Q .

â.3) For a.e. (t,x) ∈ Q , for all u ∈ R and for all ξ �= ξ ′ , we have

(â(t,x,u,ξ )− â(t,x,u,ξ ′))(ξ − ξ ′) > 0.

We shall assume the following growth for F =∑N
i=1 Fi

F) for each i = 1, . . . ,N the function Fi is a Carathéodory function and satisfies the
properties:

uF(t,x,u,ξ ) � 0, a.e. (t,x) ∈ Q, ∀u ∈ R, ξ ∈ R
N ,

|Fi(t,x,u,ξ )| � C(|h|+ |u|p +
N

∑
j=1

|ξ j|p j)1− 1
pi , h ∈ L1(Q), i = 1, . . . ,N,

where C is a nonnegative constant.
This work is a generalization of some results on isotropic or anisotropic problems

given in [2], [3], [6], [9], and [16]. None of them treat the fully parabolic anisotropic
quasilinear case as we are dealing here. If â is a non-uniformly elliptic operator, the
existence of solution for isotropic parabolic equation that involved measure data is stud-
ied in [11]. If â does not depend on (t,x) and u , namely â(t,x,u,ξ ) = â(ξ ) , â(ξ ) is
the vector field whose components are |ξi|pi−2ξi , i = 1, . . . ,N , pi > 1, then it has been

proved in [5] that there exists a weak solution u ∈ X1,−→r
0 (Ω) , −→r = (r1,r2, ...,rN) , for

an anisotropic elliptic problem with (one) Radon’s bounded measure data on Ω with
ri ∈ [1, pi(p−1)N

p(N−1) ) . Fengquan Li in [12] introduced a definition of relaxed solutions de-
fined by J. M. Rakotoson in [17] and new type of the functional sets for anisotropic
parabolic equations. In this paper we treated the anisotropic parabolic case within a
different framework of that of [10] for the formulation but we remain in the framework
of Sobolev’s space. A major difficulty in the parabolic case is the regularity of the
time derivative. With the anisotropic conditions, we also deal with two Radon bounded
measures μ and μ0 as an initial data and 1+ N

N+1 < pi < p(N+1)
N . We think that our

estimates on the gradients are new compared to the isotropic case. To describe briefly
the tools we use, first we have the anisotropic Sobolev inequality to overcome the diffi-
culties of getting the regularity in the Lemmas 2.4, secondly we introduce two Lemmas
2.2 and 2.14 to facilitate the control of the term ∂t un of the regularized problem. Nev-
ertheless, to show that the assumptions of these Lemmas are verified, we prove some
regularity results derived from [4] and [20]. In this paper, we adopt mainly Rakotoson’s
method [16] for proving the existence of the weak solution.

Notations.
Let 1+ N

N+1 < pi <
p(N+1)

N , i = 1, ...,N and −→p = (p1, p2, ..., pN) , and

p− = min{pi, 1 � i � N}, p+ = max{pi, 1 � i � N},

L
−→p (Ω) =

N

∏
i=1

Lpi(Ω), X1,−→p (Ω) = {v ∈ Lp+(Ω) | Dv ∈ L
−→p (Ω)},
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with the norm |v|X1,−→p (Ω) =
N

∑
i=1

(
|v|Lpi + |Div|Lpi

)
, Div =

∂v
∂xi

·
Let D(Ω) be the space of real indefinitely differentiable functions of compact

support in Ω . We introduce the closure of D(Ω) with respect to the above norm:

D(Ω) = X1,−→p
0 (Ω) =

{
v ∈ X1,−→p (Ω) | v = 0 on ∂Ω

}
⊂W 1,p−

0 (Ω).

The norm on this space is |v|
X1,−→p

0 (Ω)
=

N

∑
i=1

(∫
Ω
|Div|pi dx

)1/pi
and its dual is denoted by(

X1,−→p
0 (Ω)

)′
. The overline on a space shall denote the closure with respect to a given

norm. We define also

X = L
−→p (0,T ;X1,−→p

0 (Ω)) =
{

v : [0,T ] → X1,−→p
0 (Ω) measurable and

N

∑
i=1

(∫ T

0

∫
Ω
|Div|pi dxdt

)1/pi
< ∞

}
.

The norm on this space is |v|X =
N

∑
i=1

(∫ T

0

∫
Ω
|Div|pi dxdt

)1/pi
.

We note that

L
−→p (0,T ;X1,−→p

0 (Ω)) ⊂ Lp−(0,T ;W 1,p−
0 (Ω)).

The above norms | · |X1,−→p , | · |
X1,−→p

0
are equivalent on X1,−→p

0 (Ω) . Next we define the

following norm on D(Ω) , for i ,

||v||i = |v|Lpi (Ω) + |Div|Lpi(Ω),

we set
W 1,pi

xi,0
(Ω) = D(Ω)||·||i .

Then one has the following lemma.

LEMMA 1.1. There is ci > 0 such that:

|ϕ |Lpi � ci|Diϕ |Lpi , ∀ϕ ∈W 1,pi
xi,0

(Ω).

Proof. Indeed, let ϕ ∈ D(Ω) and x ∈ supp(ϕ) , then

ϕ(x) =
∫ xi

−∞
Diϕ(x1,x2, ...,xi−1,t,xi+1, ...,xN)dt.

Let x̂i(t) = (x1,x2, ...,xi−1,t,xi+1, ...,xN) , and a > 0 be such that supp(ϕ)⊂ [−a,a]N =
Ra , we have

ϕ(x) =
∫ xi

−a
Diϕ(x̂i(t))dt,
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then

|ϕ(x)| �
∫ xi

−a
|Diϕ(x̂i(t))|dt �

∫ a

−a
|Diϕ(x̂i(t))|dt

� (2a)1− 1
pi

(∫ a

−a
|Diϕ(x̂i(t))|pidt

) 1
pi ,

so that

|ϕ(x)|pi � Ci

∫ a

−a
|Diϕ(x̂i(t))|pi dt.

We integrate on Ra to get ∫
Ra

|ϕ(x)|pi dx � ci

∫
Ra

|Diϕ |pi dx,

so that ∫
Ω
|ϕ(x)|pi dx � ci

∫
Ω
|Diϕ |pi dx, ∀ϕ ∈ D(Ω).

With the density of D(Ω) in W 1,pi
xi,0

(Ω) , we have∫
Ω
|ϕ(x)|pi dx � ci

∫
Ω
|Diϕ |pi dx, ∀ϕ ∈W 1,pi

xi,0
(Ω),

from which we derive∫
Q
|ϕ(x)|pi dx � ci

∫
Q
|Diϕ |pi dx, ∀ϕ ∈W 1,pi

xi,0
(Ω). (1)

Such inequality has been already used in a frame of elliptic anisotropic problem
(see for instance [13]). We shall denote by C or c j various constants depending only
on the structure of â, μ , μ0, Ω and T , for j ∈ IN. If necessary, the index might specify
the dependence with respect to a variable.

COROLLARY 1.1. There hold true:

L
−→p (0,T ;X1,−→p

0 (Ω)) =
N⋂

i=1

Lpi(0,T ;W 1,pi
xi ,0

(Ω)),

X1,−→p
0 (Ω) =

N⋂
i=1

W 1,pi
xi,0

(Ω).

2. The case 1+ N
N+1 < pi <

p(N+1)
N and F = 0

In this section we precise the notion of weak solution of problem (P) . We use a
sequence of problems (Pn) and we show the existence of solutions (un) of (Pn) .
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2.1. Notations and hypotheses

Let T be a real positive number, Ω an open bounded set of R
N , and let the cylin-

der Q = (0,T )×Ω . We denote by M (Ω) the set of bounded Radon measures on Ω ,
and M (Q) the space of boundedRadon measures on Q . We suppose that μ0 ∈M (Ω) ,
μ ∈ M (Q) , and the real numbers pi satisfy

p(N +1)
N

> pi > 2− 1
N +1

, i = 1, . . . ,N.

We define the sign function as:

sign(σ) =

⎧⎨⎩
1, if σ > 0,
0, if σ = 0,
−1, if σ < 0.

Putting K = ((0,T )× ∂Ω)∪ (Ω×{T}) , we denote D(RN+1,K) the set of functions
defined by

D(RN+1,K) = {ϕ ∈ D(RN+1) | ∃ a neighborhoodV of K s. t. ϕ = 0 in V}.

For convenience for the reader, we start with the case F = 0.

DEFINITION 2.1. A function u is a weak solution of problem (P) if:

u ∈ L1(0,T ;W 1,1
0 (Ω)), â(t,x,u,Du) ∈ (L1(Q))N and

−
∫

Q
u∂tϕ dxdt−

∫
Ω
ϕ(0,x)dμ0 +

∫
Q

â(t,x,u,Du)Dϕ dxdt

=
∫

Q
ϕ(t,x)dμ , ∀ϕ ∈ D(RN+1,K).

Our main result is the following.

THEOREM 2.1. Let

1+
N

N +1
< pi <

p(N +1)
N

, i = 1, . . . ,N,

with p � N + N
N+1 , and â an operator which verifies (â.1)-(â.3) . Then the problem

(P) has at least one weak solution u∈L
−→q (0,T ;X1,−→q

0 (Ω)) for all qi ∈ [1, pi
p (p− N

N+1 )) ,
with −→q = (q1,q2, ...,qN) .

Notice that the regularity of u given in the previous Theorem 2.1 guarantees that
â(t,x,u,Du) ∈ (L1(Q))N .

The proof of this Theorem needs several steps: First, we approximate the problem
(P) with sequence of problems (Pn) having smooth solutions (un) . Then, after deriving
uniform estimates on un , we pass to the limit using a compactness results as in [16].
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2.2. Approximation of (P)

Let (μ0n) (resp. (μn)) be a sequence of D(Ω) (resp. D(Q)) which converges to
μ0 (resp. μ ) in D ′(Ω) (resp. D ′(Q)) and which verifies the inequalities

‖μ0n‖L1(Ω) � ‖μ0‖M (Ω) and ‖μn‖L1(Q) � ‖μ‖M (Q), ∀n � 1.

We define the problems (Pn) by:

(Pn)

⎧⎨⎩
∂t un−div(â(t,x,un,Dun)) = μn in Q,

un(0,x) = μ0n(x) in Ω,
un = 0 on (0,T )×Ω.

The existence of a solution un in X ∩L∞(0,T ;L2(Ω)) of the problem (Pn) is classical,
see for instance [4] and [14]. The regularity of u ∈ C

(
[0,T ];L2(Ω)

)
can be justified

using approximation argument as below in Lemma 2.2.
Remarks.

1. Since pi > 1+ N
N+1 , then

1+
N

N +1
− 2N

N +2
=

3N +2
(N +1)(N +2)

> 0,

which implies W 1,pi
0 (Ω) ⊂ L2(Ω), ∀i ∈ {1,2, ...,N} . With the definition of X1,−→p

0 (Ω) ,
we also have

X1,−→p
0 (Ω) ⊂W 1,p−

0 (Ω) ⊂ L2(Ω),

with continuous and dense imbedding.
2. The solution un of problem (Pn) is in Lp(Q) , this because, there exists j ∈

{1, ...,N} so that p j � p . Then un ∈ Lp(Q) .

3. The operator A maps X into
N
∑
i=1

Lp′i(0,T ;(W 1,pi
xi,0

(Ω))′) , p′i = pi/(pi − 1) . In

fact, if for u ∈ X , we put
Au = −div(â(x,t,u,Du)),

we get

‖Au‖X ′ = sup
ϕ∈X
‖ϕ‖�1

∣∣∣ N

∑
i=1

∫
Q

ai(t,x,u,Du)Diϕ dxdt
∣∣∣

� β sup
ϕ∈X
‖ϕ‖�1

N

∑
i=1

∫
Q

(
|g|+ |u|p +

N

∑
j=1

|Dju|p j

)1− 1
pi |Diϕ |dxdt.

And, by using Hölder’s inequality we obtain

‖Au‖X ′ � β sup
ϕ∈X
‖ϕ‖�1

N

∑
i=1

(∫
Q

(
|g|+ |u|p +

N

∑
j=1

|Dju|p j

)
dxdt

)1/p′i(∫
Q
|Diϕ |pidxdt

)1/pi

� β
N

∑
i=1

(∫
Q

(
|g|+ |u|p +

N

∑
j=1

|Dju|p j

)
dxdt

)1/p′i
.
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We deduce, in particular, that the solution un ∈ X of (Pn) satisfies

∂t un ∈
N

∑
i=1

Lp′i(0,T ;(W 1,pi
xi ,0

(Ω))′)+L1(Q),

where Lp′i
(
0,T ;

(
W 1,pi

xi,0
(Ω)
)′)

denotes the dual of Lpi
(
0,T ;W 1,pi

xi,0
(Ω)
)
.

LEMMA 2.1. We have:

Au ∈
N

∑
i=1

Lp′i
(
0,T ;

(
W 1,pi

xi,0
(Ω)
)′)

for u ∈ X .

We shall use the following integration by parts to derive uniform estimates on un .

LEMMA 2.2. Let v ∈ X with ∂t v ∈
N

∑
i=1

Lp′i(0,T ;(W 1,pi
xi,0

(Ω))′) + L1(Q) and v ∈
C
(
[0,T ];L1(Ω)

)
. Let φ : R → R a Lipschitz bounded function, with φ(0) = 0 . Then,

we have in D ′(0,T )

∫ t

0
〈v′(σ),φ(v(σ))〉dσ =

∫
Ω

dx
∫ v(t,x)

0
φ(σ)dσ

−
∫
Ω

dx
∫ v(0,x)

0
φ(σ)dσ , ∀t ∈ [0,T ],

where the brackets 〈·, ·〉 denote a duality product between (X1,−→p
0 (Ω))′ + L1(Ω) and

X1,−→p
0 (Ω)∩L∞(Ω) , p′i = pi/(pi−1) , i = 1, . . . ,N .

Before giving the proof of this Lemma, we note that it extends a result given in
[16] and recall that if f is a function in Lγ (0,T ;Lγ (Ω)) for γ � 1, the sequence ( fn)
defined by

fn(t,x) = n
∫ t+ 1

n

t
f (s,x)ds, t ∈

[
0,T − 1

n

]
verifies, for all 0 � t0 � t1 � T − 1

n , the inequality

∫ t1

t0

∫
Ω
| fn(t,x)|γ dxdt �

∫ T

t0

∫
Ω
| f (t,x)|γ dxdt, ∀γ � 1,

which implies strong convergence of the sequence ( fn) in Lγ (0,T −η ;Lγ (Ω)) to f for
all γ � 1 and η � 1

n .

Proof. [Proof of Lemma 2.2] Fix t ′ ∈ [0,T ] . Since the function

[0,T ] � t �−→
∫ t

t′
〈v′(σ),Φ(v(σ))〉dσ ∈ R
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is in W 1,1(0,T )⊂C(0,T ) , it is enough to show that for all η > 0, we have in D ′(0,T −
η) ,

∫ t

t′
〈v′(σ),φ(v(σ))〉dσ =

∫
Ω

dx
∫ v(t,x)

0
φ(σ)dσ −

∫
Ω

dx
∫ v(t′,x)

0
φ(σ)dσ .

For a function v ∈ X such that v′ ∈ L1(0,T ;L1(Ω)) the result is classical. Let v ∈
X ∩C

(
[0,T ];L1(Ω)

)
, with

v′ =
N

∑
i=1

wi +h, wi ∈ Lp′i(0,T ;(W 1,pi
xi,0

(Ω))′), and h ∈ L1(Q).

Consider the sequence (vn) defined by

vn(t) = n
∫ t+1/n

t
v(s)ds, v ∈

N⋂
i=1

Lpi(0,T −η ,W1,pi
xi,0

(Ω)), η � 1
n
·

We see that the sequence (vn) converges to v in
N⋂

i=1
Lpi(0,T −η ,W 1,pi

xi,0
(Ω)) strongly,

v′n ∈ L1(0,T −η ,L1(Ω)) with

v′n =
N

∑
i=1

wi
n +hn, wi

n(t) = n
∫ t+1/n

t
wi(s)ds and hn(t) = n

∫ t+1/n

t
h(s)ds.

Moreover, for all i = 1, . . . ,N we have:

wi
n → wi strongly in Lp′i(0,T −η ;(W 1,pi

xi,0
(Ω))′),

hn → h strongly in L1(0,T −η ,L1(Ω)).

In fact, we have

|Divn(t)−Div(t)| � n
∫ t+1/n

t
|Div(s)−Div(t)|ds,

then, with the Hölder inequality, we get

|Divn(t)−Div(t)|pi � npi
(1

n

)pi−1 ∫ t+1/n

t
|Div(s)−Div(t)|pi ds.

Integrating first on Ω and after on the interval [0,T −η ] , we obtain∫ T−η

0

∫
Ω
|Divn(t)−Div(t)|pi dxdt

� n
∫ T−η

0

∫ t+1/n

t

(∫
Ω
|Div(s)−Div(t)|pidx

)
dsdt.
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Remark that the sequence of functions

[0,T −η ] � t �→ n
∫ t+1/n

t

(∫
Ω
|Div(s)−Div(t)|pi dx

)
ds

are in L1(0,T −η) and converges strongly in this space to 0 for all i = 1, . . . ,N . There-
fore, we have

‖vn− v‖X → 0 as n → +∞.

For the convergence of wi
n in Lp′i(0,T −η ;(W 1,pi

xi,0
(Ω))′) , we write

‖wi
n(t)−wi(t)‖

(W1,pi
xi,0

(Ω))′ = sup
ϕ∈W

1,pi
xi,0

(Ω)

‖ϕ‖i�1

|〈wi
n(t)−wi(t),ϕ(t)〉|

� n sup
ϕ∈W

1,pi
xi,0

(Ω)

‖ϕ‖i�1

∫ t+1/n

t
|〈wi(s)−wi(t),ϕ(t)〉|ds

� n
∫ t+1/n

t
‖wi(s)−wi(t)‖

(W1,pi
xi,0

(Ω))′ ds.

Since wi ∈ Lp′i(0,T −η ;(W 1,pi
xi,0

(Ω))′) , arguing as before, we deduce that

wi
n → wi strongly in Lp′i(0,T −η ;(W 1,pi

xi,0
(Ω))′), i = 1, . . . ,N.

For the convergence of (hn) to h , we use the following inequality and conclude as
before ∫ T−η

0

∫
Ω
|hn(t)−h(t)|dxdt � n

∫ T−η

0

∫ t+1/n

t

∫
Ω
|h(s)−h(t)|dxdsdt.

To end, writing for all t,t ′ ∈ [0,T −η ] ,

N

∑
i=1

∫ t

t′
〈wi

n(σ),Φ(vn(σ))〉dσ +
∫ t

t′
dσ
∫
Ω

hn(σ ,x)Φ(vn(σ ,x))dx

=
∫ t

t′
〈v′n(σ),Φ(vn(σ))〉dσ =

∫
Ω

dx
∫ vn(t,x)

0
Φ(σ)dσ −

∫
Ω

dx
∫ vn(t′ ,x)

0
Φ(σ)dσ ,

for subsequence of (vn) , denoted in the same way, which converges to v a.e. in (0,T −
η)×Ω , and using a standard argument, we get the desired result using the fact that
v ∈C

(
[0,T ],L1(Ω)

)
.

2.3. Uniform estimates

LEMMA 2.3. If pi > 1+ N
N+1 , i = 1, ...,N , the sequence (un) of solutions of prob-

lems (Pn) remains in a bounded set of L∞(0,T ;L1(Ω)) .
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Proof. For fixed ν > 0, we define the function Sν for all σ ∈ R by

Sν (σ) =
{

sign σ , if |σ | > ν,
σ
ν , if |σ | � ν.

Taking Sν(un) as a test function in (Pn) and integrating over the interval [0,t]⊂ [0,T ] ,
we find:∫ t

0
〈∂t un,Sν (un)〉dt +

∫ t

0

∫
Ω

â(t,x,un,Dun)DunS′
ν(un)dxdt

=
∫ t

0

∫
Ω
μnSν (un)dxdt.

Using Lemma 2.2, the fact that S′
ν � 0 and |Sν | � 1, we obtain, after dropping the

nonnegative term,∫
Ω

∫ un(t,x)

0
Sν(σ)dσdx � ‖μn‖L1(Q) +

∫
Ω

∫ un(0,x)

0
Sν(σ)dσdx

� ‖μn‖L1(Q) +‖μ0n‖L1(Ω). (2)

To go further, we notice that for any α ∈ R∫ α

0
Sν(σ)dσ =

{
α2

2ν , if |α| � ν ,
− ν

2 + |α|, if |α| > ν ,
and lim

ν→0

∫ α

0
Sν(σ)dσ = |α|.

Now, letting ν goes to 0 in relation (2) and using the Lebesgue’s dominated conver-
gence theorem, we have ∀t ∈ [0,T ] ,∫

Ω
|un(t,x)|dx � ‖μn‖L1 +‖μ0n‖L1 � ‖μ‖M (Q) +‖μ0‖M (Ω) = c0.

This finishes the proof of the Lemma.
In the sequel, if −→r = (r1,r2, ...,rN) , we write −→r > 1 to mean that ri > 1, i =

1, ...,N .

LEMMA 2.4. Let pi and qi be such that

1+
N

N +1
< pi <

p(N +1)
N

and qi ∈
[
1,

pi

p
(p− N

N +1
)
)
, i = 1, . . . ,N,

with p � N + N
N+1 , where 1

p = 1
N ∑N

i=1
1
pi

. Then:

• (un) remains in a bounded set of Lq(Q) , where 1
q = 1

N ∑N
i=1

1
qi

,

• (Diun) remains in a bounded set of Lqi(Q) .

Proof. We can assume that qi
pi

= q
p . If not, we set θ = max{ qi

pi
, i = 1, . . . ,N} and

replace qi by θ pi . Observe that, since θ pi � qi , the fact that (Diun) remains in a
bounded set of Lθ pi(Q) implies the result.

From now on, we set qi = θ pi , θ = q
p and θ ∈ [ 1

p+
, 1

p (p− N
N+1 )) .

To carry on the proof, we need the following Lemmas 2.5, 2.6,..., 2.10.
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LEMMA 2.5. Let q be the harmonic of qi , i.e., 1
q = 1

N ∑N
i=1

1
qi

. Then:

1. q < N provided that p � N + N
N+1 ,

2. setting q∗ = Nq
N−q there exists a constant C > 0 such that

∫
Q
|un(x,t)|ddxdt � C

∫ T

0
||un(·,t)||qLq∗ (Ω)

dt,

where d = qN+1
N ·

Proof. [Proof of Lemma 2.5] First, note that q∗ = Nq
N−q > 1. Second, using the

interpolation inequality and the Lemma 2.3, we have

‖un(.,t)‖Ld(Ω) � ‖un(.,t)‖1−τ
L1(Ω)‖un(.,t)‖τLq∗ (Ω)

� C‖un(.,t)‖τLq∗ (Ω), τ =
1−d
1−q∗

q∗

d
· (3)

Choosing d = qN+1
N , we see that

τ =
N

N +1
< 1 and

q∗(1−d)
1−q∗

= q.

Now, integrating (3) on [0,T ] , we obtain∫
Q
|un(x, t)|d dxdt � C

∫ T

0
‖un(.,t)‖dτ

Lq∗ (Ω)dt = C
∫ T

0
‖un(.,t)‖q

Lq∗ (Ω)
dt. (4)

LEMMA 2.6. There exists a constant C > 0 depending only −→q and N such that

for all v ∈ L
−→q (0,T ;X1,−→q

0 (Ω)) there holds true:

‖v‖Lq(0,T ;Lq∗ (Ω)) � C
N

∏
i=1

(∫ T

0

∫
Ω
|Div|qi dxdt

) 1
qiN .

Proof. [Proof of Lemma 2.6] The proof needs the following anisotropic Sobolev
inequality.

LEMMA 2.7. (see [21]).) Let −→α = (α1, . . . ,αN) � 1 and u ∈ X1,−→α
0 (Ω) . Then

‖u‖Ls(Ω) � C
( N

∏
i=1

‖Diu‖Lαi (Ω)

) 1
N
, (5)

where s = α∗ = Nα
N−α if α < N with α given by 1

α = 1
N ∑N

i=1
1
αi

. The constant C
depends on N and αi , i = 1, . . . ,N . Furthermore, if α � N , the inequality (5) is true
for all s � 1 and C depends on s and |Ω| .
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Let us apply this last Lemma with −→α = −→q . We get

∫ T

0

(∫
Ω
|v|q∗ dx

)q/q∗
dt � C

∫ T

0

N

∏
i=1

(∫
Ω
|Div|qi dx

) q
qiN dt.

The fact that ∑N
i=1

q
qiN

= q 1
N ∑N

i=1
1
qi

= 1 and the generalized Hölder inequality, lead to

‖v‖Lq(0,T ;Lq∗ (Ω)) � C
N

∏
i=1

(∫ T

0

∫
Ω
|Div|qi dxdt

) 1
qiN .

This finishes the proof of Lemma 2.6.

LEMMA 2.8. There exists a constant C > 0 (independent of n) such that

yni =
∫

Q
|Diun|qidxdt � C

(
1+

∫
Q
|un|ddxdt

)1−θ
,

with d = qN+1
N , θ = q

p ·

Proof. [Proof of Lemma 2.8] Since p > q+ N
N+1 , we have η = d( 1−θ

θ ) > 1. Let
us choose as a test function in (Pn) :

Φn(un) =
∫ un

0

dσ
(1+ |σ |)η ·

Then, using Lemma 2.3 and the fact that

|Φη(un)|L∞(Q) �
∫ +∞

−∞
dσ

(1+ |σ |)η < +∞,

we deduce ∫
Q

|Diun|pi

(1+ |un|)η dxdt � cη , cη = constant independent of n. (6)

Next, writing

yni =
∫

Q

|Diun|qi

(1+ |un|)ηθ (1+ |un|)ηθ

and using Hölder inequality, the inequality (6) gives

yni � Cθ
η

(∫
Q
(1+ |un|)η θ

1−θ
)1−θ∗

.

Since η θ
1−θ = d , we get the Lemma.

Next, we set Tn =
N

∏
i=1

y
1
qi
ni . Then from Lemma 2.5 and Lemma 2.6, we have
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LEMMA 2.9. There exists a constant C > 0 (independent of n) such that∫
Q
|un|ddxdt � CT

q
N
n .

Proof. [Proof of Lemma 2.9] From Lemma 2.5,∫
Q
|un|ddxdt � C‖un‖q

Lq(0,T ;Lq∗ (Ω))
(7)

and Lemma 2.6, we get that

‖un‖q
Lq(0,T ;Lq∗ (Ω))

� CT

q
N
n . (8)

The combination of these two relations, it gives the result.

LEMMA 2.10. There exists a constant C > 0 (independent of n) such that

Tn � C, ∀n � 1.

Proof. [Proof of Lemma 2.10] From Lemma 2.8, we have

Tn =
N

∏
i=1

y
1
qi
ni � C

N
q

(
1+

∫
Q
|un|ddxdt

) (1−θ )N
q

. (9)

Using Lemma 2.9, we have from (9)

Tn � C
(
1+T

q
N
n

) (1−θ )N
q � c(1+T

1−θ
n ). (10)

Since 1−θ < 1, Lemma 2.10 follows from (10).

COROLLARY 2.1. (of Lemma 2.10) There exists a constant C > 0 (independent
of n) such that

||un||Lq(0,T ;Lq∗ (Ω)) � C, ∀n � 1.

Now, Lemmas 2.8, 2.9, 2.10 and its corollary imply the proof of Lemma 2.4.

Next we show that (u′n) is in a bounded set of Lr−(0,T ;(X1,−→r ′
0 (Ω))′)+L1(Q) for

some −→r > 1.

LEMMA 2.11. Let

ri ∈
[

1
pi−1

,
pi

(pi −1)p
(p− N

N +1
)
)

, i = 1, . . . ,N.

We can choose ri > 1 , for

1+
N

N +1
< pi <

p(N +1)
N

·

The sequence (u′n) remains in a bounded set of Lr−(0,T ;(X1,−→r ′
0 (Ω))′)+L1(Q) , −→r ′ =

(r′1,r
′
2, ...,r

′
N) , r′i is the conjugate ri .
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Proof. For all n we have

u′n = div(â(t,x,un,Dun))+ μn,

knowing that (μn) is in a bounded set of L1(Q) , we have to show that

vn = div(â(t,x,un,Dun))

belongs to a bounded set of Lr−(0,T ;(X1,−→r ′
0 (Ω))′), with −→r > 1. Indeed, setting for

t ∈ (0,T ) , vn(t) = vn , we have for ri > 1 (given as in Lemma 2.11),

‖vn‖(X1,−→r ′
0 (Ω))′

= sup
ϕ∈X1,−→r ′

0 (Ω)
‖ϕ‖�1

∣∣∣∫
Ω

N

∑
i=1

ai(t,x,un,Dun)Diϕdx
∣∣∣

� β sup
ϕ∈X1,−→r ′

0 (Ω)
‖ϕ‖�1

N

∑
i=1

∫
Ω

(
|g|+ |un|p +

N

∑
j=1

|Djun|p j

)1− 1
pi |Diϕ |dx.

By using Hölder inequality, we have

‖vn‖(X1,−→r ′
0 (Ω))′

� β sup
ϕ∈X1,−→r ′

0 (Ω)
‖ϕ‖�1

N

∑
i=1

(∫
Ω
|Diϕ |r′i

)1/r′i
(∫

Ω

(
|g|+ |un|p +

N

∑
j=1

|Djun|p j

)(1− 1
pi

)ri
)1/ri

� β
N

∑
i=1

(∫
Ω

(
|g|+ |un|p +

N

∑
j=1

|Djun|p j

)(1− 1
pi

)ri
dx

)1/ri

,

then

‖vn‖r−
(X1,−→r ′

0 (Ω))′
� C

N

∑
i=1

(∫
Ω

(
|g|+ |un|p +

N

∑
j=1

|Djun|p j

)(1− 1
pi

)ri
dx

)r−/ri

. (11)

We set

Gi(x,t) =
(
|g|+ |un|p +

N

∑
j=1

|Djun|p j

)(1− 1
pi

)ri
(x,t).

Let σ be such that
ri(pi −1)

pi
< σ < 1− 1

p
N

N +1
< 1.

This is possible since we have

1 < ri <
pi

(pi−1)p
(p− N

N +1
)·
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Then

σ pi ∈
[
1,

pi

p
(p− N

N +1
)
)

,
(pi −1)ri

σ pi
< 1 and σ < 1,

we integrate relation (11) on [0,T ] and we apply Hölder inequality to derive

∫ T

0
‖vn‖r−

(X1,−→r ′
0 (Ω))′

dt � C
N

∑
i=1

(∫
Q

Gi(x,t)dxdt

) r−
ri

. (12)

Using the inequality that (
∑ai

)σ
�∑aσi for σ ∈ [0,1]

and writing Gi = G
σ
σ
i , from (12) and the Hölder inequality we deduce

∫ T

0
‖vn‖r−

(X1,−→r ′
0 (Ω))′

dt � C
N

∑
i=1

(∫
Q

(|g|σ + |un|pσ +
N

∑
j=1

|Djun|σ p j
)
dxdt

) (pi−1)r−
σ pi . (13)

Using the inequality (13) and Lemma 2.4, we have∫ T

0
‖vn‖r−

(X1,−→r ′
0 (Ω))′

dt � C.

LEMMA 2.12. There exists a subsequence (still denoted by (un)) which con-

verges a.e. to a function u ∈ L1(Q) , and weakly in L
−→q (0,T ;X1,−→q

0 (Ω)) .

Proof. Let −→q = (q1,q2, ...,qN) , the sequence (un) is in a bounded set of the space

L
−→q (0,T ;X1,−→q

0 (Ω)) for all qi ∈ [1, pi
p (p− N

N+1 )) and (u′n) remains in a bounded set of

the space Lr−(0,T ;(X1,−→r ′
0 (Ω))′) +L1(Q) . As

W
1,r′−
0 (Ω) ⊂ X1,−→r ′

0 (Ω), (r′− the Hölder conjugate of r− and −→r ′ = (r′1, ...,r
′
N))

and the fact that the imbedding is continuous and dense, we see that

Lr−(0,T ;(X1,−→r ′
0 (Ω))′)+L1(Q) ⊂ Lr−(0,T ;W−1,r−(Ω))+L1(Q), r− > 1.

As (un) remains in a bounded set of L
−→q (0,T ;X1,−→q

0 (Ω)) and the sequence (∂t un) re-
mains in a bounded set of Lr−(0,T ;W−1,r−(Ω))+L1(Q) , a result given in [19] shows
that the sequence (un) converges strongly to a function u in L1(Q) , it shows the exis-
tence of a subsequence (un) converging a.e. to u in Q .

Now we consider the following family of functions (Φk)k>0 :

• Φk is a twice differentiable function, Φ′
k , Φ′′

k are bounded on R .

• Φk(σ) = σ if |σ | � k , and Φ′
k(σ) = 0 if |σ | � k +(1/k) , 0 < Φ′

k < 1 on the
interval (k,k+(1/k)) ∪ (−(k+(1/k)),−k) .
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The construction of this family (Φk)k>0 can be made explicitly. For example we have:

• for σ ∈ [0,k] , Φk(σ) = σ ;

• for σ ∈ (k,k+1/(2k)) , Φk(σ) = l1(σ)+ l2(σ)+ l3(σ) , with

l1(σ) = 1/2(k+1/(2k)−σ)−2k3(k+1/k)(σ − k)−1/(2k),

l2(σ) = 2k2(k+1/k)[(σ +1/(2k))2− (k+1/(2k))2]+ k[(k+1/(2k))2−σ2],

l3(σ) = −2k2/3[(σ +1/(2k))3− (k+1/(2k))3];

• for σ ∈ [k+1/(2k),k+1/k) , Φk(σ) = L1(σ)+L2(σ)+L3(σ) , with

L1(σ) = 2k(k+1/k)(σ− k−1/(2k))−2k3(k+1/k)(k+1/k−σ)−1/(2k),

L2(σ) = 2k2(k+1/k)[(k+1/k)2−σ2],

L3(σ) = −2k2/3[(k+1/k)3−σ3];

• for σ ∈ [k+1/k,+∞) ,
Φk(σ) = k+1(2k) ;
• for σ < 0, we take Φk(σ)=−Φk(−σ) . Another construction of Φk can be also

made by using a suitable convolution (personal communication by J. M. Rakotoson).
Taking uk

n = Φk(un) and uk = Φk(u) , we obtain the following result.

LEMMA 2.13. (uk
n) remains in a bounded set of X and (uk

n) converges a.e. to uk

as n → +∞ , and weakly in X .

Proof. Consider as a test function Ψ(un(t,x)) =∑N
j=1
∫ un(t,x)
0 |Φ′

k(σ)|p j dσ . Using
the Lemma 2.2, and the coercivity of A , we obtain

α
N

∑
i, j=1

∫
Q
|Diun|pi |Φ′

k(un)|p j dxdt

� (‖μn‖L1(Q) +‖μ0n‖L1(Ω))
N

∑
i=1

∫ +∞

−∞
Φ′

k(σ)pidσ � ck.

So that the sequence (uk
n) is in a bounded set of X , because

N

∑
i=1

∫
Q
|Di(Φk(un))|pi dxdt � ck

α
, (ck = constant depending of k).

Since the space X is reflexive (−→p > 1 and finite), and un converges to u a.e. thus
uk

n converges to uk a.e. and weakly in X . In particular we have

lim
n→+∞

Duk
n = Duk weakly in

N

∏
i=1

Lpi(Q).
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LEMMA 2.14. Let Φ ∈ C2(R) with Φ , Φ′ and Φ′′ are bounded on R , and let
v ∈ X so that ∂t v ∈ ∑N

i=1 Lp′i(0,T ;(W 1,pi
xi,0

(Ω))′)+L1(Q) . Then

〈∂tΦ(v),ϕ〉D ′(Q),D(Q) = 〈∂t v,ϕΦ′(v)〉, ∀ ϕ ∈ D(Q),

where the last bracket of duality is between ∑N
i=1 Lp′i(0,T ;(W 1,pi

xi ,0
(Ω))′)+ L1(Q) and

X .

The proof of this Lemma can be like the proof of Lemma 2.2, or see [16]. As an
application of the preceding Lemma 2.14, we have:

LEMMA 2.15. For all k > 0 , all n , (uk
n)

′ is in ∑N
i=1 Lp′i(0,T ;(W 1,pi

xi,0
(Ω))′) +

L1(Q) and we have the following equality in D ′(Q) ,

(uk
n)

′ = div((Φ′
k(un)â(t,x,un,Dun)))

−â(t,x,un,Dun)DunΦ′′
k (un)+ μnΦ′

k(un). (14)

Proof. Let ϕ ∈ D(Q) . With Lemma 2.14 for (Φk) and un we have

〈∂tΦk(un),ϕ〉D ′(Q),D(Q) = 〈∂t un,ϕΦ′
k(un)〉.

So we take v = ϕΦ′
k(un) as test function in (Pn) , we get

〈∂tΦk(un),ϕ〉D ′(Q),D(Q) = −
∫

Q
â(t,x,un,Dun)DϕΦ′

k(un)dxdt

−
∫

Q
â(t,x,un,Dun)DunϕΦ′′

k (un)dxdt +
∫
Q
μnϕΦ′

k(un)dxdt

this is a relation with (14) . We deduce from (14) , the regularity of (uk
n)

′ .

LEMMA 2.16. For all k > 0 , there exists a function θk such that for all ε > 0 ,
we have

limsup
n

∫
{|un−uk|�ε}

â(t,x,un,Dun)(Dun−Duk)dxdt � θk(ε)

with lim
ε→0

θk(ε) = 0 .

Proof. Let ε > 0 fixed. For ε > 0, let Tε be the truncation at level −ε and ε .
This Lipschitz function satisfies Tε (0) = 0 and

T ′
ε (σ) =

{
1, |σ | � ε ,
0, |σ | > ε .

For all m , n , we choose vk
n,m = Tε(un−uk

m) as a test function in (Pn) , we have∫ T

0
〈u′n,Tε(un −uk

m)〉dt

+
∫
|un−uk

m|�ε
â(t,x,un,Dun)(Dun−Duk

m)dxdt � ε‖μ‖M (Q). (15)
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We write, ∫ T

0
〈u′n,Tε (un−uk

m)〉dt =
∫ T

0
〈u′n− (uk

m)′,Tε(un−uk
m)〉dt

+
∫ T

0
〈(uk

m)′,Tε (un−uk
m)〉dt ≡ I1 + I2. (16)

The fact that um is in X ∩C([0,T ];L1(Ω)) implies that the function uk
m is in the same

space. From Lemma 2.15, (uk
m)′ is in ∑N

i=1 Lp′i(0,T ;(W 1,pi
xi,0

(Ω))′)+L1(Q) , with use of
Lemma 2.2, we obtain

I1 =
∫
Ω

dx
∫ (un−uk

m)(T,x)

0
Tε(σ)dσ −

∫
Ω

dx
∫ (un−uk

m)(0,x)

0
Tε(σ)dσ .

As (un) is bounded in L∞(0,T,L1(Ω)) , we have∣∣I1∣∣� ε
∫
Ω
(|un(0,x)|+ |uk

m(0,x)|)dx+ ε
∫
Ω
(|un(T,x)|+ |uk

m(T,x)|)dx � cε. (17)

For I2 , using (14) we can write: I2 ≡ Jm
1n− Jm

2n− Jm
3n , where

Jm
1n =

∫
Q
Φ′

k(um)μmTε(un−uk
m)dxdt,

Jm
2n =

∫
Q
Φ′′

k (um)â(t,x,um,Dum)DumTε(un−uk
m)dxdt,

Jm
3n =

∫
Q
Φ′

k(um)â(t,x,um,Dum)D(Tε(un −uk
m))dxdt.

] • For estimating Jm
1n , we use the fact that the sequence (μm) is bounded in L1(Q) ,

Φ′
k is bounded on R and |Tε | � ε , so that we have

|Jm
1n| � ckε. (18)

• For Jm
2n , taking b = k+1/k . With the definition of Φk and uk

m , we can write

Jm
2n =

N

∑
i=1

∫
Q
Φ′′

k (u
b
m)ai(t,x,ub

m,Dub
m)Diu

b
mTε(un−uk

m)dxdt

� ckεβ
N

∑
i=1

∫
Q

(
|g|+ |ub

m|p +
N

∑
j=1

|Dju
b
m|p j

)1− 1
pi |Diu

b
m|dxdt

� ckε
N

∑
i=1

(∫
Q
|Diu

b
m|pi dxdt

) 1
pi
(∫

Q

(
|g|+ |ub

m|p +
N

∑
j=1

|Dju
b
m|p j

)
dxdt

) 1
p′i .

With Lemma 2.13, we get
|Jm

2n| � ck ε. (19)



ANISOTROPIC PARABOLIC PROBLEMS 141

• For Jm
3n , we consider the following sets:

Enε = {(t,x) | |un−uk| �= ε}, Ec
nε = {(t,x) | |un−uk| = ε},

Enm = {(t,x) | |un−uk
m| < ε}, En = {(t,x) | |un−uk| < ε}.

We write Jm
3n like Jm

3n = Jm1
3n + Jm2

3n , where

Jm1
3n =

∫
Enm∩Enε

Φ′
k(um)â(t,x,um,Dum)(Dun−Duk

m)dxdt,

Jm2
3n =

∫
Enm∩Ec

nε
Φ′

k(um)â(t,x,um,Dum)(Dun−Duk
m)dxdt.

We begin with Jm1
3n , that we write as Jm1

3n = Jm11
3n − Jm12

3n , where:

Jm11
3n =

∫
Enm∩Enε

Φ′
k(um)â(t,x,um,Dum)Dun dxdt

and

Jm12
3n =

∫
Enm∩Enε

Φ′
k(um)â(t,x,um,Dum)Duk

m dxdt.

By using the properties of the functions Φk , we see that

Jm11
3n =

∫
Q
Φ′

k(um)â(t,x,ub
m,Dub

m)DunχEnm∩Enε (t,x)dxdt,

where χE denotes the characteristic function of a set E . With the Lemma 2.13, the
sequence (â(ub

m,Dub
m))m remains in a bounded set of the space ∏N

i=1 Lp′i(Q) .
We can extract a subsequence, still denoted (â(ub

m,Dub
m))m which convergesweakly

to a limit denoted Mk and (ai(ub
m,Dub

m))m converges weakly to Mi
k in Lp′i(Q) , Mk =

(M1
k , ...,MN

k ) . The sequence (um) converges a.e. to u , we deduce that the sequence
(Φ′

k(um)χEnm∩Enε )m converges a.e on Q to Φ′
k(u)χEn . So, (DunΦ′

k(um)χEnm∩Enε )m

converges strongly in ∏N
i=1 Lpi(Q) as m → +∞ . So we can write

lim
m→+∞

Jm11
3n =

∫
En

Φ′
k(u)MkDun dxdt. (20)

• For Jm12
3n , we need the following lemma.

LEMMA 2.17. We have:

limsup
m

∫
Enm∩Enε

Φ′
k(um)2â(t,x,ub

m,Dub
m)Dub

m dxdt

�
∫

En

Φ′
k(u)2MkDudxdt.
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Proof. Consider the following non-negative quantity:

Δ(ub
m,ub) = Φ′

k(um)2(â(t,x,ub
m,Dub

m)− â(t,x,ub
m,Dub))(Dub

m −Dub).

This term is in L1(Q) , because ub
m and ub are in X , (for that we use Young’s inequal-

ity). We develop Δ(ub
m,ub) , we see that

Φ′
k(um)2â(t,x,ub

m,Dub
m)Dub

m � Φ′
k(um)2

{
â(t,x,ub

m,Dub
m)Dub

+â(t,x,ub
m,Dub)Dub

m− â(t,x,ub
m,Dub)Dub

}
.

By integrating over Enm ∩Enε and taking the limsup as m goes to infinity, we derive
easily

limsup
m

∫
Enm∩Enε

Φ′
k(um)2â(t,x,ub

m,Dub
m)Dub

m dxdt

�
∫

En

Φ′
k(u)2MkDub dxdt.

We have used the convergence a.e. of (um) to u in Q , the weak convergence of
(â(t,x,ub

m,Dub
m))m to Mk in ∏N

i=1 Lp′i(Q) and the weak convergence of (Dub
m) to Dub

in ∏N
i=1 Lpi(Q) . So we have the result.
For Jm12

3n , we can remark that Duk
m = Φ′

k(um)Dub
m , Jm12

3n can be written as

Jm12
3n =

∫
Enm∩Enε

Φ′
k(um)2â(t,x,ub

m,Dub
m)Dub

m dxdt.

With Lemma 2.17, we have

limsup
m

Jm12
3n �

∫
En

Φ′
k(u)2MkDudxdt.

As liminf(−·) = − limsup(·) , the equality (20) and the last inequality give

liminf
m

Jm1
3n = liminf

m
(Jm11

3n − Jm12
3n )

� liminf
m

Jm11
3n − limsup

m
Jm12
3n

�
∫

En

Φ′
k(u)MkDun dxdt−

∫
En

Φ′
k(u)2MkDudxdt. (21)

• For Jm2
3n , we write

Jm2
3n =

∫
Enm∩Ec

nε
Φ′

k(um)â(t,x,um,Dum)(Dun−Duk
m)dxdt

=
∫

Enm∩Ec
nε
Φ′

k(um)â(t,x,ub
m,Dub

m)Dun dxdt

−
∫
Enm∩Ec

nε
Φ′

k(um)2â(t,x,um,Dum)Dum dxdt.
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We drop the non negative term and as Dun = Duk a.e. on the set Ec
nε , we obtain

Jm2
3n �

∫
Enm∩Ec

nε
â(t,x,ub

m,Dub
m)Φ′

k(um)Duk dxdt.

Since the sequence (ai(t,x,ub
m,Dub

m))m is in a bounded set of Lp′i(Q) , and Enm∩Ec
nε ⊆

Ec
nε , the Hölder inequality yields

Jm2
3n � ck

N

∑
i=1

[∫
Ec

nε
Φ′

k(um)pi |Diu
k|pi dxdt

]1/pi
.

As the function Φ′
k is bounded, the pointwise convergence of (um) to u on Q and the

Lebesgue’s dominated convergence theorem imply

liminf
m

Jm2
3n � ck

N

∑
i=1

[∫
Ec

nε
Φ′

k(u)pi |Diu
k|pi dxdt

]1/pi
.

Now we can split Jm
3n as Jm

3n = Jm1
3n + Jm2

3n , so we have from (21) and the last inequality

liminf
m

Jm
3n � S1

n +S2
n, (22)

where

S1
n =

∫
En

Φ′
k(u)MkDun dxdt−

∫
En

Φ′
k(u)2MkDudxdt,

S2
n = ck

N

∑
i=1

[∫
Ec

nε
Φ′

k(u)pi |Diu
k|pi dxdt

]1/pi
.

We want show that limsup
n

(liminf
m

Jm
3n) � θk(ε) with lim

ε→0
θk(ε) = 0. For that we write

S1
n =

∫
{|u|�k}∩En

Mk(Dun−Dub+1)dxdt

+
∫
{|u|>k}∩En

Φ′
k(u)MkDun dxdt−

∫
{|u|>k}∩En

Φ′
k(u)2MkDub+1 dxdt,

since Φ′
k ≡ 1 on the interval [−k,k] , Φ′

k(σ) = 0 for |σ | � b . So we have

S1
n =

∫
{|u|�k}∩En

Mk(Dun−Dub+1)dxdt

+
∫
{|u|>k}∩En

Φ′
k(u)Mk(Dun−Dub+1)dxdt

+
∫
{|u|>k}∩En

MkDub+1(1−Φ′
k(u))Φ′

k(u)dxdt.

As un converges a.e. to u on Q and Dub+1
n , (un = ub+1

n on En , ε � 1), converge
weakly to Dub+1 in ∏N

i=1 Lpi(Q) , the two first integrals in the expression of S1
n con-

verge to 0 when n → +∞ . While for the third integral we note that

S11
n =

∫
{k<|u|<b}∩En

MkDub+1(1−Φ′
k(u))Φ′

k(u)dxdt, with b = k+1/k.
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Using Lemma 2.13 and Hölder inequality we get

|S11
n | �

N

∑
i=1

(∫
{k<|u|<b}∩En

|Mi
k|p

′
idxdt

)1/p′i ·
(∫

{k<|u|<b}∩En

|Diu
b+1|pi dxdt

)1/pi

�
N

∑
i=1

(∫
{k<|u|<b}∩En

|Mi
k|p

′
i dxdt

)1/p′i ·
(∫

Q
|Diu

b+1|pi dxdt
)1/pi

� ck

N

∑
i=1

(∫
{k<|u|<b}∩En

|Mi
k|p

′
i dxdt

)1/p′i

so we have

limsup
n

|S11
n | � ck

N

∑
i=1

(∫
{k<|u|<b}∩{|u−uk|�ε}

|Mi
k|p

′
i dxdt

)1/p′i
= θ 11

k (ε). (23)

Since one has

|{k < |u| < b}∩{|u−uk| � ε}| → 0 when ε → 0,

then
lim
ε→0

θ 11
k (ε) = 0.

For the term S2
n , we have

S2
n = ck

N

∑
i=1

[∫
{|un−uk|=ε}

Φ′
k(u)pi |Diu

k|pidxdt
]1/pi

.

Since un converge to u a.e. in Q , we get

lim
n

S2
n = θ 12

k (ε) and lim
ε→0

θ 12
k (ε) = 0. (24)

We combine the inequalities (20) to ( 24), we obtain

limsup
n

liminf
m

Jm
3n � θ 11

k (ε)+θ 12
k (ε), (25)

where θ 11
k (ε) and θ 12

k (ε) are given by relation (23) and (24) respectively.
End of the proof of Lemma 2.16. By using (15) and (16), (17), (18), and (19), we find∫

{|un−uk
m|�ε}

â(t,x,un,Dun)(Dun−Duk
m)dxdt

� ε‖μ‖M (Q)− I1− I2 � ck · ε+ Jm
3n. (26)

Let us begin the computation of the limit with respect to m on the left hand side of this
last inequality. We recall that on the set |un−uk

m|� ε � 1, we have un = ub+1
n and then∫

{|un−uk
m|�ε}

â(t,x,un,Dun)(Dun−Duk
m)dxdt

=
∫

Q
â(t,x,ub+1

n ,Dub+1
n )D(Tε(un−uk

m))dxdt.
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The sequence (Tε(un − uk
m))m is strongly convergent in Lpi(Q) for all i = 1, ...,N

to Tε(un − uk) (we use Lebesgue’s dominated convergence theorem). The function
Tε(un − uk) is in X . To see that, we consider the sequences (Di(Tε(un − uk

m))m , for
i = 1, ...,N , where

Di(Tε(un−uk
m)) =

{
Diub+1

n −Diuk
m, |un−uk

m| � ε � 1,
0, |un−uk

m| > ε ,

which remains bounded with the Lemma 2.13, in the reflexive set Lpi(Q) so that it ex-
ists a weakly convergent subsequence in Lpi(Q) whose limit is necessarily Di(Tε (un−
uk)) , i = 1, ...,N so that

lim
m→+∞

∫
{|un−uk

m|�ε}
â(t,x,un,Dun)(Dun−Duk

m)dxdt

= lim
m→+∞

∫
Q

â(t,x,ub+1
n ,Dub+1

n )D(Tε (un−uk
m))dxdt

=
∫
{|un−uk|�ε}

â(t,x,un,Dun)(Dun −Duk)dxdt.

With the inequalities (25) and (26) , we obtain

limsup
n

liminf
m

∫
{|un−uk

m|�ε}
â(t,x,un,Dun)(Dun−Duk

m)dxdt � θk(ε),

where θk(ε) = ckε +θ 11
k (ε)+θ 12

k (ε) and lim
ε→0

θk(ε) = 0. So that we have the proof of

Lemma 2.16.

2.4. An important Lemma of compactness

LEMMA 2.18. Let (un) a sequence of X with following properties.

(i) There exists −→q =(q1,q2, ...,qN) , qi ∈ [1, pi
p (p− N

N+1 )) , such that (un) remains

in a bounded set of L
−→q (0,T ;X1,−→q

0 (Ω)) , (un) converges weakly and pointwise to u.

(ii) For all k > k0 � 0 , (uk
n) = (Φk(un)) remains in a bounded set of X as n goes

to infinity.

(iii) For all k > k0 � 0 , there exists a function θk so that for all ε ∈]0,ε0) , ε0 > 0 ,
we have

limsup
n

∫
{|un−uk|�ε}

â(t,x,un,Dun)(Dun−Duk)dxdt � θk(ε),

with lim
ε→0

θk(ε) = 0 .

Then, there exists a subsequence (still denoted (un)) so that

Dun → Du a.e. on Q,

and for all sequence, we have:

Diun → Diu strongly in Ls(Q), ∀s ∈ [1,qi), ∀qi ∈
[
1,

pi

p

(
p− N

N +1

))
.
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Proof. The proof of this Lemma can be make like the proof of Lemma 3 in [16].
Remark. The compactness results on anisotropic problem can be found in [8].

2.5. Passage to the limit for the approximate problems

Let qi ∈ [1, pi
p (p− N

N+1 )) , i = 1, . . . ,N . On one hand, with Lemma 2.4, the se-

quence (un) is in a bounded set of L
−→q (0,T ;X1,−→q

0 (Ω)) and we have un → u a.e. in

Q and weakly to u in L
−→q (0,T ;X1,−→q

0 (Ω)) . On the other hand, with Lemma 2.13, uk
n

remains in a bounded of X and with Lemma 2.16, we have for all k > 0,

limsup
n

∫
{|un−uk|�ε}

â(t,x,un,Dun)(Dun −Duk)dxdt � θk(ε), ∀ε > 0.

This shows that we have all the hypotheses of Lemma 2.18 for (un) and u . We can
have a subsequence (un) such that

un → u and Dun → Du a.e. in Q.

Now, let ϕ ∈ D(RN+1,K) . We have

−
∫

Q
un∂tϕ dxdt−

∫
Ω
ϕ(0,x)μ0n dx+

∫
Q

â(t,x,un,Dun)Dϕ dxdt

=
∫

Q
ϕ(t,x)μn(t,x)dxdt. (27)

As Dun → Du a.e. in Q , un → u a.e. in Q and by the assumption (â.2) , we have

ai(t,x,un,Dun) → ai(t,x,u,Du) a.e. in Q, i = 1, . . . ,N. (28)

By the assumption (â.1) , from (28) , Lemma 2.4 and the Vitali’s theorem, we derive
for all i = 1, . . . ,N ,

ai(t,x,un,Dun) → ai(t,x,u,Du), ∀ri ∈
[
1,

pi

(pi−1)p

(
p− N

N +1

))
,

strongly in Lri(Q) . We can easily pass to the limit in (27) . The Theorem 2.1 is so
proved.

3. The case 1+ N
N+1 < pi <

p(N+1)
N and F �= 0

In this section, we add the nonlinear term F and we consider the following prob-
lem

(P′)

⎧⎨⎩
∂tu−div(â(x,t,u,Du))+F(t,x,u,Du) = μ in Q,

u(0,x) = μ0(x) in Ω,
u = 0 on (0,T )× ∂Ω,

where μ is in M (Q) and μ0 ∈ M (Ω) .
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DEFINITION 3.1. A function u is a weak solution of problem (P′) if:

u ∈ L1(0,T ;W 1,1
0 (Ω)), â(t,x,u,Du) ∈ (L1(Q))N and

−
∫

Q
u∂tϕ dxdt−

∫
Ω
ϕ(0,x)dμ0 +

∫
Q

â(t,x,u,Du)Dϕ dxdt

+
∫

Q
F(t,x,u,Du)ϕ dxdt =

∫
Q
ϕ(t,x)dμ , ∀ϕ ∈ D(RN+1,K).

The proof is similar to the preceding case so we sketch it.

3.1. Approximation of problem (P′)

Let (μ0n) (resp. (μn)) be a sequence of D(Ω) (resp. D(Q)) which converges to
μ0 (resp. μ ) in D ′(Ω) (resp. D ′(Q)) and which verifies the inequality

‖μ0n‖L1(Ω) � ‖μ0‖M (Ω) and ‖μn‖L1(Q) � ‖μ‖M (Q), ∀n � 1.

We approach the problem (P′) by the sequence of problems (P′
n) :⎧⎨⎩

∂t un−div(â(x,t,un,Dun))+F(t,x,un,Dun) = μn in Q,
un(0,x) = μ0n(x) in Ω,

un = 0 on (0,T )× ∂Ω.

For the existence of the solution un ∈ X ∩C
(
[0,T ];L2(Ω)

)
of problem (P′

n) is classical,
see [14] for instance.

We can establish all the estimations that we have done for the sequence of solutions
of problems (Pn) , using the following remark.

REMARK 3.1. Let φ is a non-decreasing function from R into R , and φ(0) = 0.
Then we have φ(u)F(t,x,u,ξ ) � 0.

A consequence of this remark, is that the following Lemmas can be proved exactly
as before

LEMMA 3.1. Let pi and qi be such that:

1+
N

N +1
< pi <

p(N +1)
N

, where p � N +
N

N +1
,

qi ∈
[
1,

pi

p
(p− N

N +1
)
)
, i = 1, . . . ,N.

Then the sequence (un) remains in a bounded set of Lq(Q) and in a bounded set of

L
−→q (0,T ;X1,−→q

0 (Ω))∩L∞(0,T ;L1(Ω)) , with −→q = (q1,q2, ...,qN) .
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Thanks to Lemma 3.1, we have that Fi(un,Dun) remains in a bounded set of
Lri(Q) , for some −→r > 1 (given as in Lemma 2.11). We may also assume that un

converges weakly to some function u in L
−→q (0,T ;X1,−→q

0 (Ω)) , for all qi ∈ [1, pi
p (p−

N
N+1 )) . The sequence u′n remains in a bounded set of Lr−(0,T ;W−1,r−(Ω))+L1(Q) .
Using a result given in [19] (see also [18]), we can see un converges strongly to u
in L1(Q) , so that we have the existence of a sequence (un) converges to u almost
everywhere.

Now we consider the following family of functions (Φk)k>0 :

• Φk is a twice differentiable function, Φ′
k , Φ′′

k are bounded on R ,

• Φk(σ) = σ if |σ | � k , and Φ′
k(σ) = 0 if |σ | � k +(1/k) , 0 < Φ′

k < 1 on the
set (k,k+(1/k)) ∪ (−(k+(1/k)),−k) .

Let uk
n = Φk(un) and uk = Φk(u) . So, with Lemma 2.13, we have the following

result.

LEMMA 3.2. (uk
n) remains in a bounded set of X , and if (uk

n) converges to uk ,
we have uk ∈ X . Furthermore, (uk

n)′ is in ∑N
i=1 Lp′i(0,T ;(W 1,pi

xi,0
(Ω))′)+L1(Q) , for all

k > 0 , and we have the following equality in D ′(Q):

(uk
n)

′ = div((Φ′
k(un)â(t,x,un,Dun)))− â(t,x,un,Dun)DunΦ′′

k (un)
−F(t,x,un,Dun)Φ′

k(un)+ μnΦ′
k(un).

Using Lemmas 2.4 to 2.15, the following result can be proved exactly as before.

LEMMA 3.3. For all k > 0 , there exists a function θk such that for all ε > 0 , we
have

limsup
n

∫
{|un−uk|�ε}

â(t,x,un,Dun)(Dun−Duk)dxdt � θk(ε),

with lim
ε→0

θk(ε) = 0 .

Using the compactness result we deduce that un converges strongly to u in the

space L
−→q (0,T ;X1,−→q

0 (Ω)) , for all qi ∈ [1, pi
p (p− N

N+1 )) , so â(t,x,un,Dun) converges

to â(t,x,u,Du) strongly in L1(Q)N .
With the growth condition on Fi , Fi(un,Dun) remains in a bounded set of Lri(Q) ,

for some −→r > 0, and it converges a.e to Fi(u,Du) , we derive from Vitali’s theorem that
Fi(un,Dun) converges strongly to Fi(u,Du) in L1(Q) for i = 1, . . . ,N .

Since un satisfies the condition for any ϕ ∈ D(RN+1,K) , we have

−
∫

Q
un∂tϕ dxdt−

∫
Ω
ϕ(0,x)μ0n dx+

∫
Q

â(t,x,un,Dun)Dϕ dxdt

+
∫

Q
F(t,x,un,Dun)ϕ dxdt =

∫
Q
ϕ(t,x)μn dxdt,

we can easily pass to the limit in this relation. That shows the following theorem.
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THEOREM 3.1. Let pi be such that

1+
N

N +1
< pi <

p(N +1)
N

, where p � N +
N

N +1
.

Let â be an operator satisfying (â.1)-(â.3) and let F satisfy (F) . Then the prob-

lem (P′) has at least one weak solution u ∈ L
−→q (0,T ;X1,−→q

0 (Ω)) for all qi ∈ [1, pi
p (p−

N
N+1 )) , i = 1, . . . ,N , with −→q = (q1,q2, ...,qN) .
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