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ANISOTROPIC PARABOLIC PROBLEMS WITH MEASURES DATA

FARES MOKHTARI

(Communicated by J. -M. Rakotoson)

Abstract. In this work, we prove the existence of a weak solution of an anisotropic parabolic
problem with measure data u; +Au+ F(u,Du) = u and u(0) = pp with p and po two Radon
bounded measures. The operator A is a Leray-Lions operator with anisotropic growth condi-
tions. Our approach is based on the anisotropic Sobolev inequality, a regularity result, a com-
pactness result, and an integration by parts formula.

1. Introduction
Let us consider the following anisotropic parabolic problem:

du+Au+F(t,x,u,Du) = u in Q=Qx(0,7),
(P) u(0,x) = pip(x) in Q,
u=0 on (0,7)x0Q,

where € is a smooth bounded open set of RN (N>2), T >0 areal number, u is a
Radon’s bounded measure on Q, up a Radon’s bounded measure on Q, and A is the
operator given by Au = —div (a(x,z,u,Du)). Here, we suppose that a(x,z,u,&) and
F(t,x,u,&) are functions verifying the following conditions.

a.1) There exist two constants o > 0 and 3 > 0 such that for a.e. (f,x) € Q, all
u€R and £ € RV, the function @: Q x R x RY — RN satisfies the following growths:

?l(t,x,u,é a2|€l‘p’ tx u é) = (al(t7x7u7€)7"‘7aN(t7xvuvé))a

. 1-L
ai(r,x,u, ) < B (g +ul+ X 1177) 7, g€ L}(Q), i=1,....N.

j=1
Here p; are real positive numbers so that:
P(N+1) 1 1Y

N
Vg m< Dyl = i—1,....N.
Nyl PiSTN ,zlpz
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@.2) The mapping a is a Carathéodory function, that is to say, the function (¢,x,u,&) —
a(t,x,u,&) is measurable in (z,x) forall (u,&) € R x RV and continuous in (1, &) for
ae. (t,x) € Q.

a.3) Fora.e. (t,x) € Q,forall u € R and forall & # &’, we have

(Zi(t’xﬂ't?&) _Zl\(trx’u’é/))(é - 5/) >0

We shall assume the following growth for F = ¥V | F;
F) for each i = 1,...,N the function F; is a Carathéodory function and satisfies the
properties:

uF (t,x,u,E) >0, ae. (1,x)€Q, YucR,E&cRY,

_ XN 1
IFi(t,x,u,8)| < C(h| + [ulP + X |&[7) 7 he LY(Q), i=1,...,N,
=1

where C is a nonnegative constant.

This work is a generalization of some results on isotropic or anisotropic problems
given in [2], [3], [6], [9], and [16]. None of them treat the fully parabolic anisotropic
quasilinear case as we are dealing here. If @ is a non-uniformly elliptic operator, the
existence of solution for isotropic parabolic equation that involved measure data is stud-
ied in [11]. If @ does not depend on (z,x) and u, namely a(t,x,u,&) = a(&), a(&) is
the vector field whose components are |&[Pi~2;, i=1,...,N, p; > 1, then it has been
proved in [5] that there exists a weak solution u € X01’7(£2), 7 = (r1,r2,...,rn), for
an anisotropic elliptic problem with (one) Radon’s bounded measure data on € with

€1,k ;7(( 7 11)) ). Fengquan Li in [12] introduced a definition of relaxed solutions de-
ﬁned by J. M. Rakotoson in [17] and new type of the functional sets for anisotropic
parabolic equations. In this paper we treated the anisotropic parabolic case within a
different framework of that of [10] for the formulation but we remain in the framework
of Sobolev’s space. A major difficulty in the parabolic case is the regularity of the
time derivative. With the anisotropic conditions, We also deal with two Radon bounded
measures W and Lo as an initial data and 1+ N o7 < Pi < P (NH) . We think that our
estimates on the gradients are new compared to the isotropic case To describe briefly
the tools we use, first we have the anisotropic Sobolev inequality to overcome the diffi-
culties of getting the regularity in the Lemmas 2.4, secondly we introduce two Lemmas
2.2 and 2.14 to facilitate the control of the term dyu, of the regularized problem. Nev-
ertheless, to show that the assumptions of these Lemmas are verified, we prove some
regularity results derived from [4] and [20]. In this paper, we adopt mainly Rakotoson’s
method [16] for proving the existence of the weak solution.

Notations.

Let1+—<pl<p(

N+l .
NT1 si=1,.

,....,N and P = (p1,p2,...,pn), and
p—=min{p;, 1 <i<N}, pi=max{p;, 1 <i<N},

L7 (Q) = l_N[Lpi(Q), X'7(Q)={vel’(Q)|DveL? (Q)},
i=1
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. il dv
with the norm \v\xl‘?(g) =Y <|v|Lp,- + \Div\Lp,), Djy=—-
i—1 8x,~

Let 2(Q) be the space of real indefinitely differentiable functions of compact
support in Q. We introduce the closure of 2(Q) with respect to the above norm:

7@ =X (@) ={vex'"T(@)|v=0 on 0} cW " (@),

N 1/pi
The norm on this space is \v\xéj(g) =) </Q |Dyv|Pi dx) and its dual is denoted by
i=1

— !/
(Xé’ P (Q)) . The overline on a space shall denote the closure with respect to a given
norm. We define also

X= L7(O,T;X&’?(Q)) = {v :[0,T] — Xéj(Q) measurable and
N T 1/pi
D (/ / \D,-v\””dxdt) ! <<>0}.
0 Ja

i=1

N T ) 1/pi
The norm on this space is |[v|x = 2 (/ / |Djv|Pi dxdt) .
i=1 +/0 JQ
‘We note that

L7 (0,7:X7 (Q)) € L~ (0, T; WP~ (Q)).

The above norms |- |y 7, |- \XL? are equivalent on Xé”’ (Q). Next we define the
0

following norm on 2(Q), for i,
[l = vl ) + [Div]rig),

we set | .
WXi:g'(Q) =7(Q)!M,

Then one has the following lemma.
LEMMA 1.1. There is ¢; > 0 such that:

|@|ri < cil Di@|ri, Yo € le,.jS"(Q)
Proof. Indeed, let ¢ € 2(Q) and x € supp(@), then

Xi
<P(x)=/ Di@(x1,X2, ..., Xi—1,t,Xig1,.... XN )dt.
Let £i(¢) = (X1,%2, .., Xi_1,¢,Xi11,---,X) , and a > 0 be such that supp(¢) C [~a,aN =

R, we have
X,

o) = [ Dip(ai(r))dr,

—a
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then

o)< [ DioGoldr < [ IDig(a)ar

_ 1 a ) >
<) 7 ([ ipgto)ran) ™,
so that .
o@I" <G [ IDig(i(e) ar.

We integrate on R, to get

[ lowrar<e [ i ar,
R4 Rq

so that
/Q ()i dx < ci/Q Dig|Pidx, Yo € 2(Q).

With the density of Z(Q) in W, 5 (). we have

. . 1p:
/Q lo(x)|Pidx < ci/Q |D;i@|Pidx, Yo € Wx;;g (Q),
from which we derive
/Q|(p(x)\p"dx<ci/Q|Diq)\p"dx, Yo e W), (1)

Such inequality has been already used in a frame of elliptic anisotropic problem
(see for instance [13]). We shall denote by C or c; various constants depending only
on the structure of @, W, o, Q and T, for j € IN. If necessary, the index might specify
the dependence with respect to a variable.

COROLLARY 1.1. There hold true:

N
L7(0,T:Xy " (Q)) = (L0, T: W, (),
i=1

2. Thecasel—I—NLJrl <pi<WandF:O

In this section we precise the notion of weak solution of problem (P). We use a
sequence of problems (P,) and we show the existence of solutions (u,) of (P,).



ANISOTROPIC PARABOLIC PROBLEMS 127

2.1. Notations and hypotheses

Let T be a real positive number, Q an open bounded set of R, and let the cylin-
der 0 =(0,T) x Q. We denote by .#(Q) the set of bounded Radon measures on Q,
and .Z (Q) the space of bounded Radon measures on Q. We suppose that gy € .#(Q),
u € #(Q), and the real numbers p; satisfy

P(N+1) 1 :
PNt so- 1 i—1,...N.
AR o L

We define the sign function as:

1, ifo>0,
sign(o) =1 0, ifo=0,
~1,if6 <O0.

Putting K = ((0,7) x dQ) U (Q x {T}), we denote 2(RV*! K) the set of functions
defined by

PRV K) = {p € 2(RVT!) | 3 a neighborhood V of K's. t. g =0in V}.

For convenience for the reader, we start with the case F = 0.
DEFINITION 2.1. A function u is a weak solution of problem (P) if:
ue L'(0,T;W, ' (Q)), alt,x,u,Du) € (L'(Q))" and
- /Qua,(pdxdt - /Q(p(O,x) duy+ /Qii(t,x,u,Du)D(pdxdt

= / o(t,x)du, Yoe 2R K).
Q
Our main result is the following.

THEOREM 2.1. Let

N pIN+1) .
I+ ——<pi<—— i=1,...,N,
+N+l<p< N 1

with p < N + NLH, and @ an operator which veri]Zes (a.1)-(a.3). Then the problem
(P) his) at least one weak solution u € L4 (0, T;XOI’ 7(Q)) forall g; € [1, %(ﬁ— NLH)),
with ¢ = (q1,92,---,9n)-

Notice that the regularity of u given in the previous Theorem 2.1 guarantees that
a(t,x,u,Du) € (L'(Q))N.

The proof of this Theorem needs several steps: First, we approximate the problem
(P) with sequence of problems (P,) having smooth solutions (u,). Then, after deriving
uniform estimates on u,,, we pass to the limit using a compactness results as in [16].
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2.2. Approximation of (P)

Let (to,) (resp. (un)) be a sequence of Z(Q) (resp. Z(Q)) which converges to
Uo (resp. w)in 2'(Q) (resp. 2'(Q)) and which verifies the inequalities

)
| 0nll @) < llMolla(@)  and  [tall o) < Ikllaro)s  Vn =1,
We define the problems (P,) by:

Oyuy — div (a(t,x,u,,Duy,)) = W, in Q,
(Py) 1, (0,x) = Hop(x) in Q,
u, =0 on (0,7)xQ

The existence of a solution u,, in X NL™(0,T;L*(Q)) of the problem (P,) is classical,
see for instance [4] and [14]. The regularity of u € C([0,T];L?()) can be justified
using approximation argument as below in Lemma 2.2.
Remarks.
. N
1. Since p; > 1+ N—H,then
N 2N 3N+2

1 — - >0,
TNFL NT 2T NED)(N )

which implies WOI"p"(Q) C L*(Q),Vic {1,2,...,N}. With the definition of Xé’?(Q),
we also have - |
X, P (Q) c W, " (Q) C L*(Q),

with continuous and dense imbedding.
2. The solution u, of problem (B,) is in LP(Q), this because, there exists j €
{I,..,N} sothat p; > p. Then u, € LT’(Q)

3. The operator A maps X into E LPi(0,T; (Wlp’(Q)) ), Pi=pi/(pi—1). In

i=1

fact, if for u € X, we put
Au = —div(a(x,t,u,Du)),

we get

|Au||x = sup ‘Z/ a;(t,x,u,Du)D; (pdxdt)

HmH<1

1-
<B sup 2 ,( \g|+|u\ﬂ+2|D i)' 7 Dl dsa.
H<PH<1

And, by using Holder’s inequality we obtain

N N . 1
Aull < B sup ¥ ( /Q (gl +1ul7+ 3, 1Djul"”) dd)
j=1

PEX j—]
lloll<1

/

( /Q \Di(p|pfdxdt>l/p'
< ﬁﬁi (/Q (\gl + Iuﬂﬁ,1 |Dju\pj>dxdt>l/p£.
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We deduce, in particular, that the solution u, € X of (PB,) satisfies
N / 1 .
dun € Y, LP(0,T; (W, 51(Q))) +L(0Q),
i=1
where L (07T; (lel_jg"(Q))/> denotes the dual of LPi (07T;lel_’g"(52)).
LEMMA 2.1. We have:
N | ,
Aue Y LV (O,T; (le,fg"(Q)) )for ueX.
i=1 :

We shall use the following integration by parts to derive uniform estimates on u,,.

N
LEMMA 2.2. Let v € X with dyv € ZLpi(O,T;(leijgi(Q))/) +LYQ) and v €
i=1 ’
C([0,T};LY(Q)). Let ¢ : R — R a Lipschitz bounded function, with ¢(0) = 0. Then,
we have in 2'(0,T)

/0’<v’(a),¢(v(a))>da= /Q dx /0 " o(0)do
_/Q dx/ov(o’x)ma)da, v1 e 0.7],

where the brackets (-,-) denote a duality product between (XOI"? (Q)) +LY(Q) and
L7 - .
Xy P (Q)NL™(Q), pj=pi/(pi—1). i=1,....N.
Before giving the proof of this Lemma, we note that it extends a result given in
[16] and recall that if f is a function in LY(0,T;LY(Q)) for y > 1, the sequence (f;)
defined by

r+1

1
Su(t,x)=n f(s,x)ds, t€ [07T— ;]

t
verifies, forall 0 <1y <1, < T — %, the inequality

t T
| Lo asar< [ [ e s, vr> 1,
fh JQ fh JQ

which implies strong convergence of the sequence (f,) in LY(0,T —n;LY(Q)) to f for
aly>1landn>1.

Proof. [Proof of Lemma 2.2] Fix ¢’ € [0, T]. Since the function

0,7] 51— /t/t<v’(0')7tl)(v(0))>d0 eR
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isin WH1(0,7) € C(0,T), itis enough to show that forall ) >0, we have in 2/(0,T —

n,
"Wioromondo = [ ax [ oo [ ax [ ot
t Q 0 Q 0

For a function v € X such that v/ € L'(0,T;L'(Q)) the result is classical. Let v €
xXnc([o,T];LY(Q)), with

/

with, w e LP0,T;(Whh(Q))), and heL'(Q).

'MZ

i=1

Consider the sequence (v,) defined by

t+1/n N 1 p:
vn(t) = n/ vis)ds, ve (LM, T —n,Wiri(Q)), n >
t . '

S| =

We see that the sequence (v,) converges to v in ﬂ Lri(0,T —n,W, Lp 0 (€2)) strongly,

i=1

v, € LY0,T —n,L}(Q)) with

N t+1/n | t+1/n
2 ! B, W n/ w'(s)ds and hy(t) zn/ h(s)ds.
i=1 t t

Moreover, forall i =1,...,N we have:

wi —w  stronglyin LPi(0,T —n;(W ’p’(Q))),
h, —h stronglyin L'(0,T —n,L'(Q)).

In fact, we have
t+1/n
Diva(t) — Div(1)] < / IDiv(s) — Div(1)|ds,
t
then, with the Holder inequality, we get
_ s1\pi—1 fitl/n )
|Divy(t) — Div() |71 < n?" (—) / |Div(s) — Div(t)|P ds.
n t

Integrating first on Q and after on the interval [0,T — 1], we obtain

T-n
/ / IDivi(1) — Div(t)|” dxdt
0 Q
T-n rt+l/n
< n/ / </ |Div(s) —D,-v(t)|p"dx> dsdt.
0 t Q
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Remark that the sequence of functions

0,T—n]>t+— n/ttH/n (/Q |Div(s) — Div(¢)|P dx) ds

arein L'(0,T —n) and converges strongly in this space to O forall i =1,...,N. There-
fore, we have

lva—v|lx =0 as n— oo

For the convergence of w', in L¥(0,T — n; (W llg’(Q))’ ), we write

) =W Ol gy g = S0 [(,0) = W (0),00)
PEW, 0 ()
lloll<t
tHl/n .
<noosup [(W'(s) —w' (1), 0(2))|ds

1, t
e @)

HwH,<1

t+1/n . . p
< ! - ! t sPj / .
n [ W) =0 0 g g

Since wi € L¥i(0,T —1; (lel_jg"(Q))’), arguing as before, we deduce that

wi — w stronglyin L(0,T —n; (W, ’p’(Q)))izl,...,N.

For the convergence of (h,) to h, we use the following inequality and conclude as

before
T-n T-n t+1/n
/ / (1) — h(t)| dxdi < / / / Ih(s) — h(r)| dxdsdt.

To end, writing for all 7,/ € [0,T — 7],
2/ d0'—|—/ dc/h 0,x)®(v,(0,x))dx
=1 v

Vn tx Vn t x
= <v;( ), ® ))do = /dx/ o)do — /dx/ o,
t/

for subsequence of (v, ), denoted in the same way, which converges to v a.e. in (0,7 —
n) x Q, and using a standard argument, we get the desired result using the fact that
veC([0,T],LY(Q)).

2.3. Uniform estimates

LEMMA 2.3. If pi> 1+ NLH i=1,...,N, the sequence (u,) of solutions of prob-
lems (P,) remains in a bounded set of L=(0,T;L'(Q)).
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Proof. For fixed v > 0, we define the function S, for all 0 € R by

_ [ signo, if o] > v,
Sv(")—{% if|o] < v.

Taking S (uy) as a test functionin (P,) and integrating over the interval [0,7] C [0,T],
we find:

t t
/ (Ot Sy (1)) it + / / Q(t, %, 1y, Dit) DitnS,y (1) dxdt
0 0 JQ

t
z//unsv(un)dxdt.
0JQ

Using Lemma 2.2, the fact that S’v >0 and |Sy| < 1, we obtain, after dropping the
nonnegative term,

unOx
// o) dodx < |1l +// o)dodx

< el ) + ||mn||L1<g>~ @)

To go further, we notice that for any o € R

2 f a
/ Sy(0)do = ol <V and tim [ Sy(0)do = |al.
—5+|al, 1f|oc|>v v—0Jo
Now, letting v goes to 0 in relation (2) and using the Lebesgue’s dominated conver-
gence theorem, we have Vz € [0, 7],

/Q\un(t,X)ldx < [l ttnll r + tt0nll 1 < N1l (o) + 0]l (@2) = co-

This finishes the proof of the Lemma.
In the sequel, if 7 = (r{,72,...,rn), we write 7 > 1 to mean that r; > 1, i =
1,...,N.

LEMMA 2.4. Let p; and q; be such that

N P(N+1) pi,_ N .
1 — <pi< ———— d i € la: 3. 1/) :17"'7N7
TNFL <P N ad i€ 5P v
wzthp<N+N+l,where— NZ, 11, Then:
o (u,) remains in a bounded set of L1(Q), where =13V, q
o (Diu,) remains in a bounded set of LY (Q).
Proof. We can assume that Z’ = q - If not, we set 6 = max{l 4 i=1,...,N} and

replace g; by Op;. Observe that, smce Op; > qi, the fact that (D Up) remains in a
bounded set of LO7i(Q) implies the result.
—0p. =21 l(_ N
From now on, we set g; = Op;, 6 = 5 and 0 € [p ,p(p—N—H)).
To carry on the proof, we need the following Lemmas 2.5, 2.6...., 2.10.
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LEMMA 2.5. Let q be the harmonic of q;, i.e., %

1. g< Nprovzdedthat PN+ 7 N+1 ,
there exists a constant C > 0 such that

2. setting q* = Ng_
d ! 7
/Q\un(x,t)| dxdtgc/o a7y g
where d = %

Proof. [Proof of Lemma 2.5] First, note that g* ﬂz] > 1. Second, using the

interpolation inequality and the Lemma 2.3, we have
< (DI ol D

1-d g
S QD@ =12 3)

l[n (-, 0) || (@)

Choosing d =g, we see that

N g'(l1—d
=——<1 and ( )26
N+1 1-g*

Now, integrating (3) on [0,7], we obtain

T
/\un(x7t)|ddxdt <C/ a1 14
9] 0

LEMMA 2.6. There exists a constant C > 0 depending only ¢ and N such that

forall ve L9 (0, T;Xé’7(9)) there holds true:
LN
wmmﬁmsqI//mmM@.
=

Proof. [Proof of Lemma 2.6] The proof needs the following anisotropic Sobolev

T _
— q
(Q)dt = C/o Hu,,(.7t)Hm*(Q)dt. 4)

inequality.

LEMMA 2.7. (see [21]).) Let O = (cu,...,a) > 1 and u € X' *(RQ). Then

s (wam)?

where s =0 = % if & <N with ® given by sz 10% The constant C
depends on N and o;, i=1,...,N. Furthermore, if @ Oc > N, the inequality (5) is true
forall s > 1 and C depends on s and |Q|.

&)
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Let us apply this last Lemma with o =¢q.We get

/—* T N l
/ / |7 dx " <C/ H(/ \D,-v|’“dx> W dr.

The fact that E lzv q% EN: 1 % =1 and the generalized Holder inequality, lead to

1

qiN
[ — cr[ / [ aar) ™.

This finishes the proof of Lemma 2.6.

LEMMA 2.8. There exists a constant C > 0 (independent of n) such that
_ J 1-6
i = / |Diutp|Udxdt < c<1 +/ it dxdt) :
0 0

with d =g, 6 =

SIS

Proof. [Proof of Lemma 2.8] Since p > g+ NLH, we have n = d(%) > 1. Let
us choose as a test function in (P,):

Un do
@, (u :/ 4.
") = J T ol
Then, using Lemma 2.3 and the fact that
Feo do
® u o0 </ T N <+°°7
‘ 17( n)|L Q) e (1+‘O-Dn

we deduce

Diuy |Pi .
/ ﬁdxdt ¢pn, cn = constant independent of n. (6)
0 U

Next, writing
| Dijtty | 0
J— N il —a | n
Yni /Q(l—l-\un\)”e( +‘1/ln|)
and using Holder inequality, the inequality (6) gives

<O ([ +lme)

Since n % =d, we get the Lemma.
N 1
Next, we set T,, = H y;’; . Then from Lemma 2.5 and Lemma 2.6, we have

i=1
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LEMMA 2.9. There exists a constant C > 0 (independent of n) such that

/ lup|“dxdt < CT} |
o

Proof. [Proof of Lemma 2.9] From Lemma 2.5,

/\un|ddxdt Clnll o ) 7

and Lemma 2.6, we get that

e "HLqOTLq (Q))<C’]I‘ )

Szl

®)

The combination of these two relations, it gives the result.

LEMMA 2.10. There exists a constant C > 0 (independent of n) such that

T,<C, Vn>1

Proof. [Proof of Lemma 2.10] From Lemma 2.8, we have

N 1 a-ow

T, =% <c? <1+/unddxdt> o )

i=1
Using Lemma 2.9, we have from (9)
7 (=0
Tn<c(1+1rnﬁ) T <e(14T0). (10)
Since 1 — 0 < 1, Lemma 2.10 follows from (10).

COROLLARY 2.1. (of Lemma 2.10) There exists a constant C > 0 (independent
of n) such that

H”n”m(o,r;m* @) SC Vnzl

Now, Lemmas 2.8, 2.9, 2.10 and its corollary imply the proof of Lemma 2.4.

Next we show that («],) is in a bounded set of L'~ (0,T; (Xé’7/(§2))’) +LY(Q) for
some 7 > 1.

LEMMA 2.11. Let

1 pi _ N
ri € , —(p— , i=1,...,N
A= N+1>>
We can choose r; > 1, for
N P(N+1)
l - .
NPT N

The sequence (u;,) remains in a bounded set of L'~ (0, T, (Xéjl Q) + 1! (0), 71—
(P15, .sry), 1) is the conjugate r;.
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Proof. For all n we have
ul, = div (@(t,x,u,, Duy)) + Uy,
knowing that (u,) is in a bounded set of L' (Q), we have to show that
v, = div (a(t, x,u,,Duy,))

belongs to a bounded set of L™~ (0,T; (Xé ’7/(9))’ ), with 7 > 1. Indeed, setting for
€ (0,T), vy(r) = vn, we have for r; > 1 (given as in Lemma 2.11),

N
HVHH(XI‘?/(Q))’: sup )/Zai(t,x,un,Dun)D,-(pdx‘

0 wexé"?/(ﬂ) Qi1

loll<t
1-
< w X |g\+\un\f’+2|0un\m) Dl

pexy " (@) =1

loli<1

By using Holder inequality, we have

vl g0

(@)

N p 1/7} N . (1_’%’_)” 1/ri
<p s 3 ([iort) ([ (4l X 0g0)

Jj=1
o<t

1

u (1=5-)ri /m
<8 ([t B o) )
i=1

j=1

then

r N . (1= )i i
Il o, SEX L (lel+ a4 X iDalr) ™ ax) L an
i=1

" (@) =1

We set
1

. N (=5
Git.r) = (lgl +lual”+ 3, 1Djua] ) 7 (1),
j=1

Let o be such that

M<G<l_:—<
Di pPN+1
This is possible since we have
ri . N
I<r< -
S -0p N
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Then
opi € [1,%@—]\711)) , (p"a_p:)r" <1 and 6<1,
we integrate relation (11) on [0, 7] and we apply Holder inequality to derive
T N =
/0 HVn”}(;(;j/(Q))/ dt < ci; </QG,-(x,t)dxdt> . (12)

Using the inequality that
o
(Za,-) <Yaf for 6 €[0,1]

and writing G; = G? , from (12) and the Holder inequality we deduce

(pi—Dr—

N N
/II vl r<CZ(/Q(\gl"+\un|”“+2\D;unl"”-f)dxdt) R CE)
i=1

j=1

Using the inequality (13) and Lemma 2.4, we have

T
vall =, dt <C.
/0 ol

LEMMA 2.12. There exists a subsequence (still denoted by (u,)) which con-
verges a.e. to a function u € L'(Q), and weakly in 1.7 (0, T;Xé’ 7(Q)).

Proof. Let q =(q1,92,-..,qn) , the sequence (u,,) is in a bounded set of the space
LY(0,T; X1 a (Q)) forall g; € [1, %(p NZL)) and (u,) remains in a bounded set of

the space L™ (O,T;(XO" (Q))/) +L'(Q). As

1,7

W, (Q) C Xé’7/(§2)7 (¥ the Holder conjugate of r— and 7' = (r},...,ry))
and the fact that the imbedding is continuous and dense, we see that
L(0,T:(Xy " (Q))) +LY(Q) € L' (0,T:W (@) +L1(Q), r— > 1.

As (u,) remains in a bounded set of L7 (O,T;Xé 77(9)) and the sequence (du,) re-
mains in a bounded set of L'~ (0,7;W 1"~ (Q)) + L' (Q), a result given in [19] shows
that the sequence (u,) converges strongly to a function u in L'(Q), it shows the exis-
tence of a subsequence (u,) converging a.e. to u in Q.

Now we consider the following family of functions (®y)go:

e O is a twice differentiable function, @, @} are bounded on R.

e Oy(0)=o0if |o| <k,and @;(0) =0 if |o| > k+(1/k), 0 <D} < 1 onthe
interval (k,k+ (1/k)) U (—(k+(1/k)),—k).
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The construction of this family (D)~ can be made explicitly. For example we have:
o for o € [0,k], ®y(0) = 0;
o for 0 € (k,k+1/(2k)), ®y(0) =11(0) + (o) +13(0), with

l1(0) = 1/2(k+1/(2k) — 0) = 2 (k+ 1 /k) (0 — k) — 1/ (2k),
(o) = 2k*(k+ 1/k)[(0 4 1/(2k))* — (k+ 1/(2k))*] + k[(k+ 1/(2k))* — 6],
I3(0) = —2k*/3[(o + 1/(2k))® — (k+ 1/(2k))*];

o for o € [k+ 1/(2k),k+1/k), ®x(0) =Li(0) + L2(0) + L3(0), with

Li(0) = 2k(k+1/k) (0 —k—1/(2k)) = 2k3(k+ 1/k) (k+ 1 /k— &) — 1/ (2k),
Ly(0) =2k (k+ 1/k)[(k+ 1/k)* — 67,
Ly(0) = =2k /3[(k+1/k)* — 07

o for 0 € [k+1/k,+o0),
Dy(0) =k+1(2k);
o for 0 <0, we take @y (0) = —D(—0). Another construction of ®; can be also

made by using a suitable convolution (personal communication by J. M. Rakotoson).
Taking uf = ®; (u,) and u* = ®;(u), we obtain the following result.

LEMMA 2.13. (uX) remains in a bounded set of X and (uf) converges a.e. to u*
as n — +oo, and weakly in X.

Proof. Consider as a test function ¥ (u, (¢,x)) = ZIJV 1 "" ) \q:’( )|Pido. Using
the Lemma 2.2, and the coercivity of A, we obtain

a Z / | Diten] | (107 dxclt
i,j=1

N +oo
< (bl + Ionllr) 3, [ @hlo)do <.
i=177%=

k

So that the sequence (u;) is in a bounded set of X, because

N
Z/ |D;i (D (un))|P dxdr < %];7 (cx = constant depending of k).
=1/0

Since the space X is reflexive (? > 1 and finite), and u,, converges to u a.e. thus
uk converges to u a.e. and weakly in X . In particular we have

N
lim Du! =Du* weakly in [17 0

n——-o0 i—1
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LEMMA 2.14. Let ® € C*(R) with ®, ® and ®" are bounded on R, and let
v EX sothat v e YN LP(0,T; (lelg’(Q))/) +LY(Q). Then
(0@ (v),9) 91(0),2(0) = (Ov, @®@'(v)), Ve 2(Q),

where the last bracket of duality is between YN | LPi(0,T; (Wxt:g"(gl))’) +LY(Q) and
X.

The proof of this Lemma can be like the proof of Lemma 2.2, or see [16]. As an
application of the preceding Lemma 2.14, we have:
L'(Q) and we have the following equality in 7'(Q),

() = div (P (wn)alt,x, tn, Dutn)))
—a(t,x,uy, Duy) Du, @ (uy) + @ (). (14)

LEMMA 2.15. For all k>0, all n, (u})' is in S, LPi(0,T: (W, 5 (Q))) +

Proof. Let ¢ € 2(Q). With Lemma 2.14 for (&) and u, we have

(0 @i (), ) 51(0),2(0) = (Orttn; PP (un))-

So we take v = @@/ (u,) as test function in (B,), we get

)

(D (100), 0) 7(02(0) = — /Q (1%, tn, Dt DD, (10,) dxclt
—/Zi(t,x,un,Du,,)Dun(pdDZ(un)dxdt—|—/ Un @D () dxdt
0 0

this is a relation with (14). We deduce from (14), the regularity of (uX)’.

LEMMA 2.16. For all k > 0, there exists a function O such that for all € > 0,
we have

limsup a(t,x, uy, Duy, ) (Du, — Du*) dxdr < 6;(¢)

n {lun—uk| < e}

with 1im 6, (¢) = 0.

e—0

Proof. Let € > 0 fixed. For € > 0, let T; be the truncation at level —¢ and &.
This Lipschitz function satisfies 7, (0) = 0 and

/ o 1,|O'|<£,
Ie(o) = {o, o] > ¢.

For all m, n, we choose vﬁm = T (u, — k) as a test function in (PB,), we have

T
It Tl i)
0

+/‘ L (1%, Duty) (Duty — D) dxdt < €|ty (15)
up—up,| <€
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‘We write,

T T
|t Tl =)y e = [ = ) T — )
0 0
T
+/0 (), Te (un — i)y dt = I + I (16)
The fact that u,, isin XNC ([0 T);LY(Q)) implies that the function uk, is in the same

space. From Lemma 2.15, («f)" isin 3N Lpz (0,T; (W1 P1(Q)))+ LY(Q), with use of
Lemma 2.2, we obtain

(n—1a,)(T'x) (= 163,) (0,%)
L :/ dx/ Tg(c)dc—/ dx/ T:(o)do.
Q 0 Q 0

As (uy) is bounded in L=(0,T,L' (Q)), we have
L] < €/Q(|un(0,x)|+|u],§1(07x)|)dx+£/Q(|un(T7x)|+|u],‘n(T7x)|)dx<c£. 17)
For I, using (14) we can write: I, = J{, —J5. — J' , where
1= [ @)~ ) .
/CI)k U ) (1, X, Uy, D) Dty T (1, — i) dixdt,

_ / O, (1 )(1 %, t, Dity ) D(Te (1t — 1tk,) ) dxdit
0]

] o For estimating J?", we use the fact that the sequence (i) is bounded in L!(Q),
CD’ is bounded on R and |T;| < €, so that we have

] < cre. (18)

e For Jy', taking b = k+ 1 /k. With the definition of ®; and u¥,, we can write
2/ O (u)ai(t,x,u’,, Dub ) Db, Ty (u, — ul,) dxdr
. -
<aepy [ (il 1P+ 3 D)) Dudy s
=170 j=1

N 1 1
< ey (/Q|D,-uﬁ1\p"dxdt) n (/ (\g|+|um|p+ 2 \Dju |p1>dxdt> i
i=1

Jj=1

With Lemma 2.13, we get
o] < cre. (19)



ANISOTROPIC PARABOLIC PROBLEMS 141

e For J3) , we consider the following sets:

Epe = {(t,%) | [un — | # €}, Efe ={(t,x) | Jun—u| =€},
Eum = {(t,x) | \un—uﬁq\ <e}, E,={(t,x) | \un—uk| <e}.

We write J3! like J5 = J3l + J92 | where
s = / @, (4, )a(t X, ttyy, Dityy ) (Dt — Duk,) dxdt,
EnmmEn‘E
2 — / @, (4, )a@(t X, ttyy, Dityy ) (Dt — Duk)) dxdr.
EnnESe
We begin with J%'!, that we write as J5'! = JyH — jml2  where:
Jplt — / @) (um)al(t,x, ty, Dity,) Duy, dxdlt
EnmmEnE
and
J2 — / @, (4, )a@(t, %, thyy, Dity) DUk, dxdr
EnmmEnE
By using the properties of the functions @, we see that
Jyit / @, (up)a(t,x,ul,, Dub)Du, X, . (t, %) dxdt,

where Yr denotes the characteristic function of a set £. With the Lemma 2.13, the
U
sequence (a(ub, Dub)),, remains in a bounded set of the space [T, L”i(Q).

We can extract a subsequence, still denoted (a(u’,, Du?,)),, which converges weakly
to a limit denoted My and (a;(u,, Dub,)),, converges weakly to Mi in LPi(Q), My =
(M},....MY). The sequence (u,) converges a.e. to u, we deduce that the sequence
(D}, (thm) XEymnEne )m converges a.e on Q to D, (u)xe,. S0, (Duy®) (ttm)XEmnEne)m
converges strongly in [T, Li(Q) as m — 4-oo. So we can write

lim 21— / &, (1) My Duy dxdr. 20)
En

m—r—+oo

e For J7'12, we need the following lemma.
LEMMA 2.17. We have:

limsup @ (up)?a(t, x,u’,, Dub)Dub, dxdt
m EnmmEne

@, (u)*MyDudxdt.
E)'l
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Proof. Consider the following non-negative quantity:

Al ub) = ® () @, x,ul,, Dub) — a(t,x,ub,, Du®))(Dul, — Du®).

m

This term is in L'(Q), because u?, and u® are in X, (for that we use Young’s inequal-
ity). We develop A(u?,,u’), we see that

CD;(um)zc?(t,xmb Duf;)Duf; > ®§C(um)2{ﬁ(t,x,uf’n,Duf’n)Dub

m»
+a(t,x,u’, Dub\Dub, —a(t, x, ufq,Dub)Dub}.

By integrating over E,;, N E,e and taking the limsup as m goes to infinity, we derive
easily

limsup @, (u)?a(t, x,u’, Dul \Dul, dxdr
m EpymNEng

> [ @ (u)*MyDu’ dxdr.
E,

We have used the convergence a.e. of (u,) to u in Q, the weak convergence of
(a(t,x,ul,,Dub)), to My in ﬁvle’;(Q) and the weak convergence of (Du?)) to Du”
in TTY., L1(Q). So we have the result.

For J%!2, we can remark that Du¥, = @/ (u,,)Dub,, J31? can be written as

2 / O, ()21, 3,8, Dul,) Dulb, .
EﬂmﬁEng
With Lemma 2.17, we have

limsupJ3it? > / @ (u)*MyDudxdt.
E’l

m
As liminf(—-) = —limsup(-), the equality (20) and the last inequality give
lim infJ3! = lim) inf(Jpt — gai2y

mll

<liminf /53" —lim supJot2

m

< | @ (u)MyDu, dxdt — | @) (u)>MyDudxdt. 1)
En En

e For J52, we write
2 ~ k
Jr = / . @ () al(t,x, ty, Dutyy ) (Duy, — Duty,) dxdt
EpmNES;

= @, (u)a(t,x,u’,, Dub,) Du,, dxdr
E"lmmE’Ll‘S

- / q);{(um)zzl\(t,x,Mm’Dum)Dumdxd[_
E,mNE;,
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We drop the non negative term and as Du,, = Du* a.e. on the set E€, , we obtain

ne>’
2 / a(t,x,u’,, Dul ) ®} (1) Dur dxdt.
E’lmmEILl‘S
Since the sequence (a;(7,x,u’,, Dub,)),, is in a bounded set of L (Q), and E,,, NES, C
E;. , the Holder inequality yields

m2 < ! Di k|pi 1/pi
J5 SckZ[ . D ()P | Dint" | Idxdt] .
i=1 ne

As the function @;C is bounded, the pointwise convergence of (u,,) to u on Q and the
Lebesgue’s dominated convergence theorem imply

N 1/pi
timinf /42 < o 3, | / @ )| i P x|
m i—1 Eﬁg

Now we can split J3' as J7' = J5!l +J§’f, so we have from (21) and the last inequality
liminf /5, < Sty sz (22)
where
s = /E @, ()M Du, dxdt — /E @, (u)> M Dudxdt,

2 ul / Di k|pi 1/pi
S :ckZ{ . D, (u)P|Diu”| Idxdt] .
i=1 ne

We want show that limsup(liminfJ3},) < 6;(€) with lin(l) 0r(€) = 0. For that we write
n m E—

s;:/{‘ - My(Dun — Du V) dxdr
u|<k}NE,

+ / D) (u)MyDuy dxdt — / @, (u)> M Dub dxt,
{lu|>k}NEn {|u|>k}NE,

since @, =1 on the interval [—k,k], ®,(c) =0 for |o| > b. So we have

sl — / My(Duy — DY) dxdr
{lul<k}NE,
+/ @, (u)My(Duy, — Du™1) dxdr
(ul>k}nE,

+ / MeDU (1= @) (1)) D) (1) .
{u|>k}NEn

As u, converges a.e. to u on Q and Duﬁ“, (u, = ufj“ on E,, € < 1), converge
weakly to Dub*! in [I¥ | LPi(Q), the two first integrals in the expression of S} con-
verge to 0 when n — +eo. While for the third integral we note that

St = MDub (1 — @) (u)) D, (u) dxdt, with b=k+1/k.
{k<|u|<b}NE,
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Using Lemma 2.13 and Holder inequality we get

IS,£1<§(/

i—1 N {k<|u|<b}NE,

N ., 1/p! 1/pi
<> ( / mphanar) " / D Pravar)
i=1 {k<\u\<h}ﬁEﬂ [0}
N ., 1/p}
< ckz </ \M,’<|pidxdt> !
{k<|u|<b}NE,

i=1

P 1/: . l/i
v lanar) / Dy i)
{k<|u|<b}NE,

so we have

N
limsup|S)'| < ¢ Y, (

P 1/1’"
MiPidxdr) =0} (e). 23
n P /{k<|u|<b}m{\u—uk\<e}‘ g ) ee) 2

Since one has
k< |ul <byN{ju—u|<e}| -0 when &—0,
then
lim 6} () = 0.
e—0
For the term Sﬁ, we have
N
S% = Ck Z
i=

1/pi
1 I

[/ @, (u)Pi| Duk |Pidxdt
{lun—uk|=€}
Since u, converge to u a.e. in Q, we get
limS2 = !%(¢) and lim 02(e) = 0. (24)
n £—s
We combine the inequalities (20) to ( 24), we obtain

limsupliminfJ? < 68'(e) + 6{2(e), (25)

n

where 0/!(¢) and 0}(¢) are given by relation (23) and (24) respectively.
End of the proof of Lemma 2.16. By using (15) and (16), (17), (18), and (19), we find

~ ok
/{Iun—uf,}\@} a(t,x,uy, Duy)(Duy — Du,,) dxdt

<ellullgo—h—h<c-e+J5,.  (26)

Let us begin the computation of the limit with respect to m on the left hand side of this
last inequality. We recall that on the set |u, — uf§1| <e<1,wehave u, = u,’j“ and then

/{‘u k<) a(t,x,un, Du, ) (Du, — Du)) dxdt

_ / alt,x, ™ DUl YD (T (un — ) dixcdr.
o
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The sequence (7;(u, — uX,))m is strongly convergent in LP(Q) for all i = 1,...,N
to Te(u, — u¥) (we use Lebesgue’s dominated convergence theorem). The function
T.(u, —u*) is in X. To see that, we consider the sequences (D;(T(u, — k), for
i=1,...,N, where

b+1 k k
_ kv _ J Dy = Dittyy, uy —up| < €< 1,
DZ(TS(MVZ um)) - {07 ‘un _u§1| > €,

which remains bounded with the Lemma 2.13, in the reflexive set L”/(Q) so that it ex-
ists a weakly convergent subsequence in LPi(Q) whose limit is necessarily D;(T; (u, —
uk)), i=1,...,N so that

lim a(t,x, un, Duy)(Du, — Duf;) dxdt

=0 S {Jun—uf, | <e}

= 1in+1 a(t,x,u’™ ! DUt D(T; (u, — uk))) dxdt
m—+e [0

= a(t,x, un, Du, ) (Du,, — Du)dxdt.
{lun—u¥|<e}

With the inequalities (25) and (26), we obtain

limsup lim inf a(t,x, uy, Duy, ) (Du,, — Duk,) dxdr < 6;(e),

n me Mg —uf,|<e}
where 6;(¢) = cxe + 6! (€) + 6% (¢) and lim 0k(€) = 0. So that we have the proof of
E—
Lemma 2.16.

2.4. An important Lemma of compactness

LEMMA 2.18. Let (u,) a sequence of X with following properties.

(i) There exists G = (q1,q92,--,qn), qi € [1, %(1_9— 1%)) such that (uy) remains
in a bounded set of L9 (0, T;Xol"7 (Q)), (un) converges weakly and pointwise to u.

(ii) Forall k > ko >0, (uf) = (®i(un)) remains in a bounded set of X as n goes
to infinity.

(iii) Forall k> ko > 0, there exists a function 6 so that for all € €]0,¢&), & >0,
we have

limsup a(t,x, uy, Duy, ) (Du,, — Du*) dxdr < 6;(g),

n o J{u—uk|<e)
with 1im 6 (£) = 0.
Then, there exists a subsequence (still denoted (u,)) so that
Du, — Du a.e.onQ,

and for all sequence, we have:

if— N
Dju, — Diu  strongly in L*(Q), Vs € [1,qi), Vqi € [1,%< - _>>
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Proof. The proof of this Lemma can be make like the proof of Lemma 3 in [16].
Remark. The compactness results on anisotropic problem can be found in [8].
2.5. Passage to the limit for the approximate problems

Let g € [1,5 Li(p— N+1)) i=1,...,N. On one hand, with Lemma 2.4, the se-

quence (u,) is in a bounded set of LY (O,T;Xé77(£2)) and we have u, — u a.e. in

0 and weakly to « in L7 (0, T;XOI"? (Q)). On the other hand, with Lemma 2.13, u*
remains in a bounded of X and with Lemma 2.16, we have for all £ > 0,

limsup a(t,x, un, Duy, ) (Duy, — Du*) dxdt < 6;(¢), Ve > 0.

n {|un—uk|<e}

This shows that we have all the hypotheses of Lemma 2.18 for (u,) and u. We can
have a subsequence (u,) such that

u, —u and Du, — Du a..inQ.

Now, let ¢ € Z(RV*! K). We have
—/ u,,Bt(pdxdt—/ (p(07x),u0ndx—|—/c?(t7x,u,,7Dun)D(pdxdt
9 Q Qo
:/ 0t x)dxd.  (27)
Qo

As Du, — Du a.e.in Q, u, — u a.e. in Q and by the assumption (a.2), we have
ai(t,x,up,Du,) — ai(t,x,u,Du) ae.inQ,i=1,...,N. (28)

By the assumption (a.1), from (28), Lemma 2.4 and the Vitali’s theorem, we derive
foralli=1,...,N,

Di _ N
a;(t,x,u,,Duy,) — a;(t,x,u,Du), Vr; € [1, _( - )),
( )= o ) (pi-p\" N+ 1

strongly in L'i(Q). We can easily pass to the limit in (27). The Theorem 2.1 is so
proved.

3. ThecaseH—NLJrl <pi<WandF7éO

In this section, we add the nonlinear term F and we consider the following prob-
lem

Ou—div (a(x,t,u,Du)) + F(t,x,u,Du) = u in Q,
(P") u(0, ) Ho(x) in Q,
=0 on (0,T) x 0Q,

where u isin .#(Q) and py € 4 (Q).
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DEFINITION 3.1. A function u is a weak solution of problem (P') if:
ue L0, T;W, " (Q)), a(t,x,u,Du) € (L'(Q))" and
—/ ud, @ dxdt —/ ©(0,x)duo +/ a(t,x,u,Du)Do dxdt
0 Q Q

—|—/ F(t,x,u,Du)@ dxdt :/ o(t,x)du, Yoe 2RV K).
0 0
The proof is similar to the preceding case so we sketch it.

3.1. Approximation of problem (P’)

Let (to,) (resp. (un)) be a sequence of Z(Q) (resp. Z(Q)) which converges to
Uo (resp. 1) in 2'(Q) (resp. 2'(Q)) and which verifies the inequality

[tonll @) < Mol and  [[tallprg) < L@, Yn =1
We approach the problem (P’) by the sequence of problems (P,):
Oyun — div (a(x,t,u,,Duy)) + F(t,x,uy, Du,) = W, in Q,

un(Ox) H() Q,
0 on (0,T) x 9.

For the existence of the solution u, € X NC([0,T];L*(Q)) of problem (P}) is classical,
see [14] for instance.

We can establish all the estimations that we have done for the sequence of solutions
of problems (P,), using the following remark.

REMARK 3.1. Let ¢ is a non-decreasing function from R into R, and ¢(0) =0.
Then we have ¢ (u)F (t,x,u,&) > 0.

A consequence of this remark, is that the following Lemmas can be proved exactly
as before

LEMMA 3.1. Let p; and q; be such that:

N PIN+1) _ N
I+ ——<pi<—F—, wh <N+ —,
+N—|—l<p N where p +N—|—1
N
I ——) i=1,....N.
[ ]_)(p N1

Then the sequence (u,) remains in a bounded set of LY(Q) and in a bounded set of
L9(0,T:X, 7 (Q)) NL=(0,T:L(Q)), with G = (q1,42,-,qn).-
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Thanks to Lemma 3.1, we have that F;(u,,Du,) remains in a bounded set of
L'i(Q), for some 7 > 1 (given as in Lemma 2.11). We may also assume that u,
converges weakly to some function u in IL,7(07T;XO1 1(Q)), for all g; € [1, %(ﬁ—
#17))- The sequence u], remains in a bounded set of L'~ (0, T;W~""~(Q))+L'(Q).
Using a result given in [19] (see also [18]), we can see u, converges strongly to u
in L'(Q), so that we have the existence of a sequence (u,) converges to u almost
everywhere.

Now we consider the following family of functions (®y)g>o:

e @, is a twice differentiable function, @, @} are bounded on R,
e Oy(0)=o0if |o| <k,and @)(0) =0 if |o| > k+(1/k), 0 <D} < 1 onthe
set (k,k+ (1/k)) U (—(k+ (1/k)),—k).

Let uf = ®;(u,) and u* = ®;(u). So, with Lemma 2.13, we have the following
result.

LEMMA 3.2. (uk) remains in a bounded set of X, and if (uk) converges to u,

we have uk € X . Furthermore, (uk)' is in Zﬁileﬁ(QT;(WXl’_:g"(Q))/) +LY(Q) , forall
k >0, and we have the following equality in 2'(Q):

()" = div (D} (un)alt %, tn, Ditn))) — alt X, tn, Dt Duty Y ()
—F(t,%,uy, Duy ) D) () + @) (u).

Using Lemmas 2.4 to 2.15, the following result can be proved exactly as before.

LEMMA 3.3. Forall k > 0, there exists a function 0y such that for all € >0, we
have

limsup/ . a(t,x, un, Duy, ) (Du,, — Du*) dxdr < 6 (€),
no Slun—uk|<e}

with 1im 6y (¢) = 0.

e—0

Using the compactness result we deduce that u, converges strongly to u in the
space L7(O,T;X&’q (Q)), for all g; € [1, %([_)— NLH)), so a(t,x,u,, Duy,) converges
to a(t,x,u,Du) strongly in L' (Q)N.

With the growth condition on F;, F;(u,,Du,) remains in a bounded set of L' (Q),
for some 7 >0, and it converges a.e to F;(u, Du), we derive from Vitali’s theorem that
F;(uy,Duy,) converges strongly to F;(u,Du) in L'(Q) fori=1,...,N.

Since u, satisfies the condition for any ¢ € 2(RV*! K), we have

—/unatq)dxdt—/ (p(O,x),uondx—l—/c?(t,x7un,Du,,)Dq)dxdt
9] Q o
—l—/F(t,x,un,Dun)(pdxdt:/(p(t,x),undxdt,
0] 0]

we can easily pass to the limit in this relation. That shows the following theorem.
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THEOREM 3.1. Let p; be such that

PIN+1)

wnere p x 4+
N ’

N
l+——<pi< Nl

N+1

Let @ be an operator satisfying (a.1)-(a.3) and let F satisfy (F). Then the prob-

lem (P') has at least one weak solution u € L9 (0, T;Xol’ 1(Q)) forall g; € [1, %(]_) -

), i=1,... N, with G = (q1,92,-.-,qn).
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