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OSCILLATIONS OF EVEN ORDER LINEAR
IMPULSIVE DELAY DIFFERENTIAL EQUATIONS

L1JUN PAN AND JINDE CAO

(Communicated by L. Berezansky)

Abstract. In this paper, we devote to investigation of even order impulsive delay differential
equations, new oscillation criteria for every solution of equations are established.

1. Introduction

In this paper we study the oscillatory behavior of even order linear impulsive delay
differential equations of the form

X +pxt—1) =0, t>10,1#1,

W) =a)xO(@w),  i=01,n—1 k=12 (1)
x (ts) :x(()i),

where x(O) (1) = x(t),7 >0, niseven, 0 <ty <t; <ty < --- < <--- such that f — oo
as k — oo, p(t) is positive and contionuous in [fg,+e°) and for k = 1,2,... ,a,@ are
positive numbers. We also adopt the definitions that

D (1 4+ h) — x5

X (t) = hIiHJO

and

Let ¢(r) : [to— 7,19)] — R.Both @ and ¢ have at most finite number of the
first class discontinuous points on [fg — T,7y]. By a solution x = x(t), we mean a
real function on [fy — T,°°) such that x) (ty) = x(()i) for i=0,1,---,n—1 and for
1 € [to—1,10],x(r) = @(t),and x(t) satisfies x")(r) + p(¢)x(t —T) = 0 at each point
t € [to — T,0) with the possible exception of the points ¢ # #,# + 7 and x (1) =
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a,({l)x(") (t;) for any #;. A solution of (1) is said to be nonoscillatory if this solution is
eventually positive or eventually negative. Otherwise, it is said to be oscillatory.

Impulsive differential equations are mathematical apparatus for simulation of pro-
cess and phenomena observed in control theory, physics, chemistry, population dynam-
ics, biotechnologies, industrial robotics, economics, etc. So there have been quite a few
results on properties of their solutions in recent years [8]-[13]. For example, in [5],
K. Gopalsamy and B. G. Zhang investigated oscillation of first order delay differential
equations with impulses. [14] generalized the results of [5]. In [13] J. R. Yan estab-
lished Oscillation criteria for nonlinear several delays impulsive differential equations.
The oscillatory property of second order ordinary differential equations with impulses
had been studied in [4]-[9]. In [3], L. Berezansky and E. Braverman obtained explicit
conditions of oscillation and nonoscillation for sufficiently general class of second or-
der impulsive linear delay differential equation. These results were base on the core-
sponding equations without impulses in [2]. In [10], even order nonlinear differential
equations with impulses were studied. But papers devoted to study of the oscillations
of even order impulsive delay differential equations are quite rare.

In this paper, appling some known Lemmas and some new Lemmas, we investi-
gate the oscillatory property of (1). We will also provide examples to show that although
even order delay differential equations without impulses may have nonoscillatory solu-
tions,adding impulses may lead to oscillatory solutions. That is, impulses may change
the oscillatory behavior of an equation. Finally, we also point out that our results may
be generalized to even order several delays differential equations with impulses

X (1) + glp,-(t)x(t—rj) =0, t =19, 1 1,
J=
X0y =axD(4),i=0,1,--n—1, k=1,2---

where 7 is even, 7; > 0.
For background material on oscillation of high order differential equations without
impulses, we may see the references [7]-[12].

2. Main results

We will establish oscillatory results based on combinations of the following con-
ditions:
N g gt a) . ,
(i) tgglwﬁot0<];£<sﬁds_ +oo,i=1,2,...,n—1;
(if) there exists a positive integer ko such that for k > k¢ and for natural number any
le{l,3,---,n—1}
a? > cV(j=0,1,,1-1),

where c,(f) = max{a,ﬂl),a,({lﬂ), e ,a,(:hl)};

e . 71
(iii) lim sup [  ai < +oo, where a; = max{a,({" ), 1};
I=tee <<t

(iv) c= ;ETminffft*T(s — 1) p(s)ds > 0.
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The main results of the paper are as follows.

THEOREM 1. Assume that the conditions (i), (ii) hold. If
1
lim sup/ =D (s—1)" 'p(s)ds > (n—1)!, (2)
1ot s— 7:<tk<s ak

then every solution of (1) is oscillatory.

THEOREM 2. Assume that the conditions (i), (ii), (iii) and (iv) hold. If

N 1 _ (n—1)!
lim inf ———(s—1)" ' p(s)ds > , 3)
fmfee [775‘7‘[1;!/(<s a,(cn_l) e

then every solution of (1) is oscillatory.

To prove Theorem 1 and 2, we need the following Lemmas.

LEMMA 1. (Lakshmikantham et al. [8]) Assume that:
(Ag) m € PCY(R,R) and m(t) is left-continuous at t, k=1,2,...,
(A1) k=1,2,...,t =19,
m'(t) < p(t)m(t) +q(t), t # 1y )
m(t") < dum(t) + by, (5)

where p,q € PC'(Ry,R),dy > 0 and by, are real constants. Then for t > to

m(t) <m(to) ] dkexp(/ s)ds)+ Y, (1 dexp/p )ds))

to <t <t o<y <t l()<lj<t

"I dexn / p(0)do)q(s)ds. (6)

0 s<tp<t

REMARK 1. If inequalities (4) and (5) are reversed, then as an conclution, in-
equality (6) is also reversed.

LEMMA 2. [10] Let x(t) be a solution of (1). Suppose there exists some T > &
such that x(t) > 0 for t > T. If condition (i) holds, then there exist T > T and an
integer 1 € {1,3,--- . n—1} suchthatfort/T/:

xXD@) >0, i=0,1,---,1,
(=) %0 @) >0, i=1+1,014+2,---.n—1.
LEMMA 3. Let x(t) be a solution of (1). Suppose there exists some T >ty such

that x(t ) >0fort>T. Ifconditions (i), (it) hold, then for any 0 < 6 < 1, there exists
some T' > T such that fort > T', x(t) > @ fl)!t"_lx("_l)(t).
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Proof. Without loss of generality, we may assume that ko = 1. Since x(z) > 0(
), by Lemma 2 there exists some 77 > T such that for ¢ > T},

x(@)>0 - xD1)>0, (=)D @) >0, i=1+1,---,n—1.

In order to finish our proof, we consider two cases as follows

n—2
Case 1:1=1. Let u(z):—jn,—ligg. Then u(r) >0, 1> T

u (1)

—Y)? 4D 0x0) _ 2)
()2 :xW*Udeﬂ_J<<_l @)

(n—2)

and u(1)) = % u(ty),tx > Ty . By Lemma 1, we get
k

u(s) <u(t) T a'

=y / du s>t =T (8)
1<t <s ak I uy<s a

Since u(s) > 0, we have
/ du.
T i<y<u ak

() <~ () / '
t

It follows from (1) that

9
So

1)

(n—
a
= )du.
k

(10)

<y<u a

X(1) = —p()x(t—1) <0, 1 > T+,
) = a0, 1> Tt
Set v(t) = x"=D(¢). Then

V() <0, t =T+, vt) =" (), > T +1.
Applying Lemma 1, we obtain

Ha u>t T+ .

1<t <u

That is

£ () NIl & Vusi>1+r an
1<t <u
From (10) and (11), we have

</ I

( “V(w)du. (12)
1<t <u ak
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Let m(r) = x"=3)(¢). Then:

By Lemma 1, we have

m(s) < m(t) ;<; L / H a /v

= 1>(u)du)dv. (13)

V< <s V< <u ak
From condition (if) and m(s) > 0, we get
/ (e —1)x" =V (w)du. (14)
t t<tk<uC

By repeating the above argument repeatedly, we may show that

xl(t)>/x = 0" 0D (e, s> 1> Ty 11 (15)
= N T ANy 1
! t<tA<uC(1) (n—3)!

Since x(1;") = a,EO)x(tk), tr > T + 7, by Lemma 1 and noting that

x"l <Ha "1 (u), t > u,
Ut <s

and condition (i), we have

) ’4—")" ’ (n—1)
)>x(17) ] ak —|—/ 11 ak / —3 — X (u)du)dv
Ty <<t T <<t v v<tk<uC
Lo(=v)""
a —————x""(u)du )dv
/Tl v<1;[<t ¢ /V v<tl:[<uc](€1) (n—3)! )
(=" )
a 7)6” (u)du )dv
Al v<t1_k[<v ¢ /‘" v<t1:[<uc I’l— ' )
1 (u—v)3
>x / a / ———————du)dv
1v<1;[<t ¢ v v<tl:[<uck u<lt_k[<ta](€n_l) (n—3)! )
t _ y\n—3 _T)n—l
S ) / /wd PSSV GtV 16
¥) n( . (n—3)! ”) v T (16)

Thus, for any 0 < 6 < 1, there exists some T > Ti + 7 such that for ¢ > T/,

0
(n—1)!

x(t) > e ()
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Case 2: 2 <1< n—1.From the proof of Lemma 3, we have:

(Z‘—Tl)nil
(n—=10)!
) = D), w> Tt

X0 @) > XD (1) L t>T+T,

Let w(z) =x"“~2)(r). Then

!

w (1) >x(”*1)(t)w

(n—1)!

By Lemma 1 and noting that

and w(t')=d! Pw), u=>Ti+1. (17

Vo< I] 4 D), t>u>T+1

un <t

and condition (i), we get

_T n—l
w(e) >w(r) I &2+ / I1 < )%du
T1<tk<t T y<hp<t (n - l)-
— T\l
/ n 1)(14) (u 1) du
T u<tA<t (” -
K1) ak -n)"!
————du
h u<1t_A[<t ak n-1) _l)
B t _T)n l B (Z_T)nflJrl
<n1)t/(”71d:<n1>,17. 18
>0 |y = O (18)
That is -
(1-2) (1) (= T1)"
X)) > x (1) TR (19)
By repeating the above argument,we have
- t— Tl n—1
x(t) > xt %)ﬁ (20)

Thus, for any 0 < 0 < 1, there exists some T > Ti +7 > T such that for t > T/,
x(t) > e 0 (@),

LEMMA 4. Let x(t) be an eventually positive solution of (1). If conditions (i),

(ii), (iii) and (iv) hold, then for any sufficiently large t, there exists a t* € [t — 7,1]
such that

XD — 1)

< o0,
x(n=1) (l‘*) +
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Proof. Without loss of generality, we may assume that kg = 1. Since x() is a
eventually positive solution of (1). We may assume that x( )>0t>T >1). By
Lemma 2, there exista 7> > T and an integer! € {1,2,...,n— 1} such that for 7 > 15,

x@)>0--xV@)>0, (=DFEVD@) >0, i=14+1,---,n—1.
From Lemma 3, there exists 6, 0 < 6 < 1 and 73 > T; such that for ¢t > T3,

0
(n—1)!

Since condition (iv) holds, so choosing 0 < L < ¢, then exists T' such thatfort > T

x(1) > = (0,

/t (s—1)" 'p(s)ds > L. Q1)
-7

Fixinga t > T then there exists some 1* € [ — 7,] such that

/tt (s—1)" 'p(s)ds > % and /t:(s— )" p(s)ds > % (22)

-7

We suppose that T is sufficiently large and (22) holds for t > T and

(n—=1)7, _ _ n—=1_(n—1)7,
X (t—1)>0x(t—17)> (n—l)!(t )" x (t—1). (23)
In view of (1) and (23), we have
X0 (1) + ﬁ(z e (7)< 0,4 > T 24)

Integrating the both sides of (24) on [t — 7,#*], we have

G e (R R Y e (Y

t—T<tp<t*

+ ﬁ /i (s= 1) 'p(s)a" (s~ 7)ds 0. (25)

From (25), it follows that

-+ Y (@Y = DD ()

I—T<tp<t*

0 i
g m/t_f( =) (s V(s —7)ds. 26)

Since
(@) <0, t>T and x"VH) =a" s D), 4> T,
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by Lemma 1, it is easy to see that

V(s —1) > (n_l)x("_l)(t*—T),t—rését*. (27)
ST <t*—T ak

We claim

-+ Y (@Y = DD ()

t—T<ty<t*

< 1 ax™(-1%). @8

t—T<ty<t*

Indeed, we assume that 7, <?fp42 < --- <1pip are m impulsive points on (1 —7,1*).
Note that for t; >t — 7,

V@< T @< T el -,

1—T<t;<ty 1—=T<t;<ty
Thus
DD -1)+ Y (@Y= D)
t—T<t<t*

<=0+ (@) = DX D (100 + (@l = DX D (100) 4

+ (@'’ = D3 iy )]
== ) + @ D 1) + a5 (1)
@ % (pm)) = (D (1) + 20D (1 0) -+ D (1 4m))

ptm
<V@E-o0NH+ Y (w1 ] ax™ V(-1
t—T<tk<t* I*T<[j<lk
=x (=) ")[1+ Y (-1 J]
(—T<tp<t* 1—T<t;<ty

=x((t =) )1+ (aps1— 1) + (@pr2— Dapa
4.4 (ap+m — l)ap+1ap+2- . 'aermfl]
=x( =) apriapia-aprm= [ ax" V(@ -2)%). (29)

=Tt <t*

From (22), (25), (27) and (28), we have

M a0 —

1—T<t <t* (n—1)!

0 (1) a 1 .
= [T =0 (s

/ (s — 2" p(s)r® (s — )ds

-7

>
(l’l—l)' Ts— ‘L'<tk<l*7‘fak
LO 1
>——— ] " Ve-r)r-r<s<rm (30)
2(n—1)! 1—2t<ti<t*—1 Yk
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So
2(n—1)!
AV —1) < (n—1) a ] ax"Y@-o%. @D
Lo =T<H<t*  172T<(<t*—7
Similar to (31), we get
(-0 < 1‘[ a [  ax" V). 32)

<t =Ty <t—T

So 2 D1
XD — 1) < ( ("_

21 &« I ax™ V) (33)

—T<f <t 1-2T<t;<t—7T

(1) (t*—1)

Thus, from condition (iii), we have *————~
(n l)(t*)

< oo,

REMARK 2. x(¢) is a eventually negative solution of (1),we also have conclusions
similar to Lemmas 2-4.

LEMMA 5. [1] Definite a sequence {h"(1)};_, satisfing
hl(l) = h(l), hz(l) _ e@Lh1(1)7..., hn(l) _ eeLhn—1(1)7

where h(s) = %% If OL > L, then sequence {h"(1)}7_, is monotonically increasing
and tends to +oo.

We now turn to the proof of theorems 1 and 2.

Proof of Theorem 1. Without loss of generality, we may assume that kg = 1. If
(1) has a nonoscillation x(¢), we may assume that x(¢) > 0(t > T >1y). By Lemma 2,
there exist 7} > T and an integer [ € {1,3,---,n— 1} such that for > T},

x(@)>0--xD@)>0, (=)D () >0, i=1+1,---,n—1.

Let 1 1+T 1 N1
cl1 = lim Supm/t H TU(S_T) p(S)dS

f=fee S—TSH<s A4,

From (2) we have ¢; > 1. Taking L, 1 < L < ¢, by Lemma 3 there exist a constant
0,2/(L+1)<6 <1 andt* > T such that for r > t*+,

x(t—1) > (t—1)" XD —1). (34)

(n—1)!
From (1) and (34), we have

x (1) + =1 px" V(1 —1) <0, t ="+ 1, t £, i 21 +T. (35)

0
(n—1)!
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Set v(t) = x"~1(r). From above formula, it follows that

{V@)g—@fm@—ry”pwﬂ““@—rxt;tﬁ+nt¢Q,

Applying Lemma 1, we obtain

i+ <) [T o

1<ty <t+7
(-1
That is

V) <ty T o

1<t <t+7T

(-1

S<U<t+T
Since
X(6) <0, t =+ and x"V(eF) =a" VD (1), 4> 141

by Lemma 1, we have:

1
(n=1)"

s—TYST @y,

x(nfl)(s_,c) Zx(nfl)(fr)

From the inequalites (37) and (38), it follows that

D41 <0ty T e [1_

1<ty <t+T

0 t+1 1 . .
7)'/1‘ Il —G—7""pls)ds|, t>1"+7

(n—1)

(n -1 s—T<t;<s Ay,
In view of (2). Then for € = % > 0, there exists T, > t*+ 7 such that

| he 1 - L+1
m/ W(S—T) p(S)dS>L—£—T

T, s—TSH<s 4,

From (39), (40) and 2 < 6 < 1, we have

(T 4 1) < x0T [1—

14T
0 )'/ H al({nfl)(s_T)nflp(s)x(nfl)(s_r)ds'
v/

(36)

0 t+1 - . .
7 /t I1 a,(c )(s — )" p(s)x" V(s — 1)ds.
: s<H <+t

(37)

(38)

(39)

(40)
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0 T+t 1
//1 H —_l)(s—’c)"flp(s)ds}<0. 41

(n_ l)' T, ST <S ak"

This is a contrary to the fact that x("‘l)(t) >0, t > T. Thus every solution of (1) is
oscillatory.

Proof of Theorem 2. Without loss of generality, we may assume that kg = 1. If
(1) has a nonoscillation x(7), we may assume that x(z) > 0(r > T >1y). By Lemma 2,
there exist 7 > T and an integer [ € {1,3,---,n— 1} such that for > T},

x@)>0--xD@)>0, (=)@ >0, i=1+1,--n—1.

Let

¢y = lim inf (s—1)" p(s)ds,

1 ! 1
t—teo (n—l)!/; I1 (n—1)

—Ts—1<<s a;

(3) yields ¢, > 1/e. Taking L such that 1/e < L < ¢, by Lemma 3 there exist a constant
0,2/(Le+1)< 0 <1 and* >T; suchthatfors>t*+7,

x(t—1) > (t— 1) XD — 7). (42)

(n—1)!
From Lemma 4, for any sufficiently large ¢, there exists 7> € [t — 7,¢]such that

x=(D — 1)

x(=1)(1) < Ao 43)
From (3), it follows that for sufficiently large ¢
71 ' 1 n—1
(n_l)l/ [ 560" "p(s)ds>L. (44)

=T s—t<n<s ay
We suppose that (42), (43) and (44) hold for ¢ > t* + 7. On the other hand, noting that
n— 1 n—
A Ve-1> T1 H)x< D). (45)

=Tt <t a,({

From (1), (42) and (45), we have

oD I %(t—r)"—lp(z)x@—l)(t)<o7z>z*+r. (46)

Tt <t 4

Set v(t) = x=1(r), then v(r) = a\" v(z) and

[1 - 0""peye) i > +11#0. @)

(n—1)! t—T<t<t Ay,
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Applying Lemma 1, we obtain

x("—l)(t) < x("‘l)(t —7) H a]({”*UeXp [

=Tt <t

0 /t I1 n%l)(s - T)”_lp(s)ds} . (48)

(l’l - 1)' I=T s t<ny<s a;
That is
w > 1 ! exp[ 0 /[ I1 ;(S— r)"’lp(s)ds}
x(n_l)(t) - =Tty <t a}({n—l) (n - 1)! =T s—1<ly<s a}({n—l)
I oo [
1=t <t Qy, 1—T<t<t Ay,

where h(s) = %%, OL > 1/e. Thus, from (1), (42), (45) and (49), we have

1
x<">(t)+Lh1(1) I n—_l)(t—r)"*lp(z)x@*l)(t)<o,z>z*+r. (50)

(n—1)! =<ty <t 4,

Applying the above method, by Lemma 1 we have

(=D (¢ — 1 1
x(_i(l)r)/ H —l)eBth(l): H ( _l)hz(l),t2t*+2t 1)
xn=D () 1—T<t <t akn 1— 1<ty <t akn
By repeating the above method repeatedly, we get
(n=1)(r — 1
)6(77(1)1:)/ ﬁhn(lLt}t*+nr,n:l727..... (52)
x=U() —t<n <t a;
x=D(—1)

From Lemma 5, we have h"(1) — oo. That is — oo, This is a contrary to

x("*l)(t)
(43). Thus every solution of (1) is oscillatory.

REMARK 3. It is easy to see that the above theorems 1 and 2 can be generalized
to the equations of the form

m
XM+ 3 pilt)x(t —1;) =0, t =19, t # 11,
j=1
Xy =al'xD(g), i=0,1,--n—1,k=1,2---
where n is even, 7; > 0. Indeed, if we replace the conditions (iii), (iv), (2) and (3)

with (iii' ), (iv'), (2") and (3") as follows:

(ii) lim sup [ @ < +oo, where a; = max{a,(c"_l), 1}, 7 =max{7y,...,Tn},
I=Fe 2ty <t
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’ m ’
(iv) c= ,ETwinfftt—r' ;l(s —1;)" !pj(s)ds >0, where T =min{7y,..., Ty}

!

(2)

m
IETwsupj;’” Y 1 ﬁ(s— )" pi(s)ds > (n—1)!,

J=ls—Ti<t<s 9

!

(3)

PP S 1 '\n— —1)!
Jim inff' Y I (=)' pi(s)ds > ("e) .
—Te J=Ls— T <s 9

Then, we will obtain the similar Theorems of the above equations.

EXAMPLE 1. Consider the Equation

-(x(i)(k)), i=0,1,2---n—1,k=1,2,---

where n is even, t; =k,

o K2 Ix3x-x(2n=3) 1, 1
=— 1) = (-
ak (k"‘l)“ p() 2}1

It is easy to see that conditions (i) and (ii) satisfy:

= lim su 1 thrT( —7)" p(s)ds = 4o —1)!
= Py s—1)" 'p(s)ds = +eo> (n— 1)\
koo a; Ik

By Theorem 1, every solution of (53) is oscillatory. But the delay differential equation

1><3><~~~><(2n—3)t7n+%( 1, 1 1

X (1) + > =) 2x(t—5)=0,1>

has a nonnegative solution x = /¢. This example shows that impulses play an important
role in the oscillatory behavior of equations under perturbing impulses.
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