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OSCILLATIONS OF EVEN ORDER LINEAR

IMPULSIVE DELAY DIFFERENTIAL EQUATIONS

LIJUN PAN AND JINDE CAO

(Communicated by L. Berezansky)

Abstract. In this paper, we devote to investigation of even order impulsive delay differential
equations, new oscillation criteria for every solution of equations are established.

1. Introduction

In this paper we study the oscillatory behavior of even order linear impulsive delay
differential equations of the form⎧⎪⎪⎨

⎪⎪⎩
x(n)(t)+ p(t)x(t− τ) = 0, t � t0, t �= tk,

x(i)(t+k ) = a(i)
k x(i)(tk), i = 0,1, · · ·n−1, k = 1,2 · · ·

x(i)(t+0 ) = x(i)
0 ,

(1)

where x(0)(t) = x(t) ,τ > 0, n is even, 0 � t0 < t1 < t2 < · · ·< tk < · · · such that tk →∞
as k → ∞ , p(t) is positive and contionuous in [t0,+∞) and for k = 1,2, . . . ,a(i)

k are
positive numbers. We also adopt the definitions that

x(i)(tk) = lim
h→−0

x(i−1)(tk +h)− x(i−1)(tk)
h

and

x(i)(t+k ) = lim
h→+0

x(i−1)(tk +h)− x(i−1)(t+k )
h

.

Let ϕ(t) : [t0 − τ,t0] → R .Both ϕ and ϕ ′
have at most finite number of the

first class discontinuous points on [t0 − τ,t0] . By a solution x = x(t) , we mean a

real function on [t0 − τ,∞) such that x(i)(t+0 ) = x(i)
0 for i = 0,1, · · · ,n− 1 and for

t ∈ [t0 − τ, t0] ,x(t) = ϕ(t) ,and x(t) satisfies x(n)(t) + p(t)x(t − τ) = 0 at each point
t ∈ [t0 − τ,∞) with the possible exception of the points t �= tk,tk + τ and x(i)(t+k ) =
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a(i)
k x(i)(tk) for any tk . A solution of (1) is said to be nonoscillatory if this solution is

eventually positive or eventually negative. Otherwise, it is said to be oscillatory.
Impulsive differential equations are mathematical apparatus for simulation of pro-

cess and phenomena observed in control theory, physics, chemistry, population dynam-
ics, biotechnologies, industrial robotics, economics, etc. So there have been quite a few
results on properties of their solutions in recent years [8]-[13]. For example, in [5],
K. Gopalsamy and B. G. Zhang investigated oscillation of first order delay differential
equations with impulses. [14] generalized the results of [5]. In [13] J. R. Yan estab-
lished Oscillation criteria for nonlinear several delays impulsive differential equations.
The oscillatory property of second order ordinary differential equations with impulses
had been studied in [4]-[9]. In [3], L. Berezansky and E. Braverman obtained explicit
conditions of oscillation and nonoscillation for sufficiently general class of second or-
der impulsive linear delay differential equation. These results were base on the core-
sponding equations without impulses in [2]. In [10], even order nonlinear differential
equations with impulses were studied. But papers devoted to study of the oscillations
of even order impulsive delay differential equations are quite rare.

In this paper, appling some known Lemmas and some new Lemmas, we investi-
gate the oscillatory property of (1). We will also provide examples to show that although
even order delay differential equations without impulses may have nonoscillatory solu-
tions,adding impulses may lead to oscillatory solutions. That is, impulses may change
the oscillatory behavior of an equation. Finally, we also point out that our results may
be generalized to even order several delays differential equations with impulses⎧⎨

⎩
x(n)(t)+

m
∑
j=1

p j(t)x(t − τ j) = 0, t � t0, t �= tk,

x(i)(t+k ) = a(i)
k x(i)(tk), i = 0,1, · · ·n−1, k = 1,2 · · ·

where n is even, τ j > 0.
For background material on oscillation of high order differential equations without

impulses, we may see the references [7]-[12].

2. Main results

We will establish oscillatory results based on combinations of the following con-
ditions:

(i) lim
t→+∞

∫ t
t0 ∏

t0<tk<s

a
(i)
k

a
(i−1)
k

ds = +∞, i = 1,2, . . . ,n−1;

(ii) there exists a positive integer k0 such that for k � k0 and for natural number any
l ∈ {1,3, · · · ,n−1}

a( j)
k � c(l)

k ( j = 0,1, · · · , l−1),

where c(l)
k = max{a(l)

k ,a(l+1)
k , · · · ,a(n−1)

k } ;

(iii) lim
t→+∞

sup ∏
t−2τ<tk<t

ak < +∞ , where ak = max{a(n−1)
k ,1} ;

(iv) c = lim
t→+∞

inf
∫ t
t−τ(s− τ)n−1p(s)ds > 0.
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The main results of the paper are as follows.

THEOREM 1. Assume that the conditions (i),(ii) hold. If

lim
t→+∞

sup
∫ t+τ

t
∏

s−τ�tk<s

1

a(n−1)
k

(s− τ)n−1p(s)ds > (n−1)!, (2)

then every solution of (1) is oscillatory.

THEOREM 2. Assume that the conditions (i),(ii),(iii) and (iv) hold. If

lim
t→+∞

inf
∫ t

t−τ ∏
s−τ�tk<s

1

a(n−1)
k

(s− τ)n−1p(s)ds >
(n−1)!

e
, (3)

then every solution of (1) is oscillatory.

To prove Theorem 1 and 2, we need the following Lemmas.

LEMMA 1. (Lakshmikantham et al. [8]) Assume that:

(A0) m ∈ PC1(R+,R) and m(t) is left-continuous at tk, k = 1,2, . . . ,
(A1) k = 1,2, . . . , t � t0 ,

m′(t) � p(t)m(t)+q(t), t �= tk, (4)

m(t+k ) � dkm(tk)+bk, (5)

where p,q ∈ PC1(R+,R),dk � 0 and bk are real constants. Then for t � t0

m(t) � m(t0) ∏
t0�tk<t

dkexp(
∫ t

t0
p(s)ds)+ ∑

t0<tk<t
( ∏
t0<t j<t

d jexp(
∫ t

tk
p(s)ds))bk

+
∫ t

t0
∏

s<tk<t
dkexp(

∫ t

s
p(σ)dσ)q(s)ds. (6)

REMARK 1. If inequalities (4) and (5) are reversed, then as an conclution, in-
equality (6) is also reversed.

LEMMA 2. [10] Let x(t) be a solution of (1) . Suppose there exists some T � t0
such that x(t) > 0 for t � T . If condition (i) holds, then there exist T

′ � T and an
integer l ∈ {1,3, · · · ,n−1} such that for t � T

′
:

x(i)(t) > 0, i = 0,1, · · · , l,
(−1)i−1x(i)(t) > 0, i = l +1, l +2, · · · ,n−1.

LEMMA 3. Let x(t) be a solution of (1) . Suppose there exists some T � t0 such
that x(t) > 0 for t � T . If conditions (i),(ii) hold, then for any 0 < θ < 1 , there exists
some T

′ � T such that for t � T
′
, x(t) � θ

(n−1)! t
n−1x(n−1)(t).
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Proof. Without loss of generality, we may assume that k0 = 1. Since x(t) > 0(t �
T ) , by Lemma 2 there exists some T1 � T such that for t � T1 ,

x
′
(t) > 0 · · ·x(l)(t) > 0, (−1)i−1x(i)(t) > 0, i = l +1, · · · ,n−1.

In order to finish our proof, we consider two cases as follows.

Case 1 : l = 1. Let u(t) = − x(n−2)(t)
x(n−1)(t)

. Then u(t) > 0, t � T1 ,

u
′
(t) =

−(x(n−1)(t))2 + x(n−2)(t)x(n)(t)
(x(n−1)(t))2

=
x(n)(t)

x(n−1)(t)
u(t)−1 < −1 (7)

and u(t+k ) = a(n−2)
k

a
(n−1)
k

u(tk),tk � T1 . By Lemma 1, we get

u(s) < u(t) ∏
t�tk<s

a(n−2)
k

a(n−1)
k

−
∫ s

t
∏

u�tk<s

a(n−2)
k

a(n−1)
k

du,s > t � T1. (8)

Since u(s) > 0, we have

u(t) >

∫ s

t
∏

t�tk<u

a(n−1)
k

a(n−2)
k

du. (9)

So

x(n−2)(t) < −x(n−1)(t)
∫ s

t
∏

t�tk<u

a(n−1)
k

a(n−2)
k

du. (10)

It follows from (1) that

x(n)(t) = −p(t)x(t− τ) < 0, t � T1 + τ,

x(n−1)(t+k ) = a(n−1)
k x(n−1)(tk), tk � T1 + τ.

Set v(t) = x(n−1)(t) . Then

v
′
(t) < 0, t � T1 + τ, v(t+k ) = a(n−1)

k v(tk), tk � T1 + τ.

Applying Lemma 1, we obtain

v(u) < v(t) ∏
t�tk<u

a(n−1)
k ,u > t � T1 + τ.

That is
x(n−1)(u) < x(n−1)(t) ∏

t�tk<u
a(n−1)

k ,u > t � T1 + τ. (11)

From (10) and (11), we have

x(n−2)(t) < −
∫ s

t
∏

t�tk<u

1

a(n−2)
k

x(n−1)(u)du. (12)
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Let m(t) = x(n−3)(t) . Then:

m(t+k ) = x(n−3)(t+k ) = a(n−3)
k x(n−3)(tk) = a(n−3)

k m(tk),

m
′
(t) < −

∫ s

t
∏

t�tk<u

1

a(n−2)
k

x(n−1)(u)du.

By Lemma 1, we have

m(s) < m(t) ∏
t�tk<s

a(n−3)
k −

∫ s

t
∏

v�tk<s
a(n−3)

k

(∫ s

v
∏

v�tk<u

1

a(n−2)
k

x(n−1)(u)du
)
dv. (13)

From condition (ii) and m(s) > 0, we get

x(n−3)(t) >

∫ s

t
∏

t�tk<u

1

c(n−3)
k

(u− t)x(n−1)(u)du. (14)

By repeating the above argument repeatedly, we may show that

x
′
(t) �

∫ s

t
∏

t�tk<u

1

c(1)
k

(u− t)n−3

(n−3)!
x(n−1)(u)du, s > t � T1 + τ. (15)

Since x(t+k ) = a(0)
k x(tk) , tk � T1 + τ , by Lemma 1 and noting that

x(n−1)(t) < ∏
u�tk<s

a(n−1)
k x(n−1)(u), t > u,

and condition (ii) , we have

x(t) > x(T+
1 ) ∏

T1<tk<t
a(0)

k +
∫ t

T1
∏

v�tk<t
a(0)

k

(∫ s

v
∏

v�tk<u

1

c(1)
k

(u− v)n−3

(n−3)!
x(n−1)(u)du

)
dv

>

∫ t

T1
∏

v�tk<t
a(0)

k

(∫ s

v
∏

v�tk<u

1

c(1)
k

(u− v)n−3

(n−3)!
x(n−1)(u)du

)
dv

>

∫ t

T1
∏

v�tk<v
a(0)

k

(∫ t

v
∏

v�tk<u

1

c(1)
k

(u− v)n−3

(n−3)!
x(n−1)(u)du

)
dv

� x(n−1)(t)
∫ t

T1
∏

v�tk<t
a(0)

k

(∫ t

v
∏

v�tk<u

1

c(1)
k

∏
u�tk<t

1

a(n−1)
k

(u− v)n−3

(n−3)!
du

)
dv

� x(n−1)(t)
∫ t

T1

(∫ t

v

(u− v)n−3

(n−3)!
du

)
dv � x(n−1)(t)

(t −T1)n−1

(n−1)!
. (16)

Thus, for any 0 < θ < 1, there exists some T
′ � T1 + τ such that for t � T

′
,

x(t) � θ
(n−1)!

tn−1x(n−1)(t).
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Case 2 : 2 < l � n−1. From the proof of Lemma 3, we have:

x(l−1)(t) > x(n−1)(t)
(t −T1)n−l

(n− l)!
, t � T1 + τ,

x(l−2)(t+k ) = a(l−2)
k x(l−2)(tk), tk � T1 + τ.

Let w(t) = x(l−2)(t) . Then

w
′
(t) > x(n−1)(t)

(t−T1)n−l

(n− l)!
and w(t+k ) = a(l−2)

k w(tk), tk � T1 + τ. (17)

By Lemma 1 and noting that

x(n−1)(t) < ∏
u�tk<t

a(n−1)
k x(n−1)(u), t > u � T1 + τ

and condition (ii) , we get

w(t) > w(T+
1 ) ∏

T1<tk<t
a(l−2)

k +
∫ t

T1
∏

u�tk<t
a(l−2)

k x(n−1)(u)
(u−T1)n−l

(n− l)!
du

>

∫ t

T1
∏

u�tk<t
a(l−2)

k x(n−1)(u)
(u−T1)n−l

(n− l)!
du

> x(n−1)(t)
∫ t

T1
∏

u�tk<t

a(l−2)
k

a(n−1)
k

(u−T1)n−l

(n− l)!
du

> x(n−1)(t)
∫ t

T1

(u−T1)n−l

(n− l)!
du = x(n−1)(t)

(t −T1)n−l+1

(n− l +1)!
. (18)

That is

x(l−2)(t) > x(n−1)(t)
(t−T1)n−l+1

(n− l +1)!
. (19)

By repeating the above argument,we have

x(t) > x(n−1)(t)
(t −T1)n−1

(n−1)!
. (20)

Thus, for any 0 < θ < 1, there exists some T
′ � T1 + τ � T such that for t � T

′
,

x(t) � θ
(n−1)! t

n−1x(n−1)(t) .

LEMMA 4. Let x(t) be an eventually positive solution of (1) . If conditions (i) ,
(ii) , (iii) and (iv) hold, then for any sufficiently large t , there exists a t∗ ∈ [t − τ,t]
such that

x(n−1)(t∗ − τ)
x(n−1)(t∗)

< +∞.
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Proof. Without loss of generality, we may assume that k0 = 1. Since x(t) is a
eventually positive solution of (1) . We may assume that x(t) > 0(t � T1 � t0) . By
Lemma 2, there exist a T2 � T1 and an integer l ∈ {1,2, . . . ,n−1} such that for t � T2 ,

x
′
(t) > 0 · · ·x(l)(t) > 0, (−1)(i−1)x(i)(t) > 0, i = l +1, · · · ,n−1.

From Lemma 3, there exists θ , 0 < θ < 1 and T3 � T1 such that for t � T3 ,

x(t) � θ
(n−1)!

tn−1x(n−1)(t).

Since condition (iv) holds, so choosing 0 < L � c , then exists T
′
such that for t � T

′

∫ t

t−τ
(s− τ)n−1p(s)ds > L. (21)

Fixing a t � T
′
,then there exists some t∗ ∈ [t− τ,t] such that

∫ t∗

t−τ
(s− τ)n−1p(s)ds >

L
2

and
∫ t

t∗
(s− τ)n−1p(s)ds >

L
2
. (22)

We suppose that T is sufficiently large and (22) holds for t � T and

x(n−1)(t− τ) > 0 x(t − τ) � θ
(n−1)!

(t− τ)n−1x(n−1)(t− τ). (23)

In view of (1) and (23), we have

x(n)(t)+
θ

(n−1)!
(t − τ)n−1p(t)x(n−1)(t − τ) � 0,t � T (24)

Integrating the both sides of (24) on [t− τ,t∗] , we have

x(n−1)(t∗)− x(n−1)((t− τ)+)− ∑
t−τ<tk<t∗

(a(n−1)
k −1)x(n−1)(tk)

+
θ

(n−1)!

∫ t∗

t−τ
(s− τ)n−1p(s)x(n−1)(s− τ)ds � 0. (25)

From (25) , it follows that

x(n−1)((t − τ)+)+ ∑
t−τ<tk<t∗

(a(n−1)
k −1)x(n−1)(tk)

� θ
(n−1)!

∫ t∗

t−τ
(s− τ)n−1p(s)x(n−1)(s− τ)ds. (26)

Since
x(n)(t) < 0, t � T and x(n−1)(t+k ) = a(n−1)

k x(n−1)(tk), tk > T,
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by Lemma 1, it is easy to see that

x(n−1)(s− τ) > ∏
s−τ�tk<t∗−τ

1

a(n−1)
k

x(n−1)(t∗ − τ),t− τ � s � t∗. (27)

We claim

x(n−1)((t − τ)+)+ ∑
t−τ<tk<t∗

(a(n−1)
k −1)x(n−1)(tk)

� ∏
t−τ<tk<t∗

akx
(n−1)((t − τ)+). (28)

Indeed, we assume that tp+1 < tp+2 < · · ·< tp+m are m impulsive points on (t−τ, t∗) .
Note that for tk > t− τ ,

x(n−1)(tk) < ∏
t−τ<t j<tk

a(n−1)
k x(n−1)((t − τ)+) � ∏

t−τ<t j<tk

a(n−1)
k x(n−1)((t− τ)+).

Thus

x(n−1)((t − τ)+)+ ∑
t−τ<tk<t∗

(a(n−1)
k −1)x(n−1)(tk)

� x(n−1)((t− τ)+)+ [(a(n−1)
p+1 −1)x(n−1)(tp+1)+ (a(n−1)

p+2 −1)x(n−1)(tp+2)+ · · ·
+(a(n−1)

p+m −1)x(n−1)(tp+m)]

= x(n−1)((t− τ)+)+ (a(n−1)
p+1 x(n−1)(tp+1)+a(n−1)

p+2 x(n−1)(tp+2)+ · · ·
+a(n−1)

p+m x(n−1)(tp+m))− (x(n−1)(tp+1)+ x(n−1)(tp+2)+ · · ·+ x(n−1)(tp+m))

� x(n−1)((t− τ)+)+ ∑
t−τ<tk<t∗

(ak −1) ∏
t−τ<t j<tk

akx
(n−1)((t − τ)+)

= x(n−1)((t− τ)+)[1+ ∑
t−τ<tk<t∗

(ak −1) ∏
t−τ<t j<tk

ak]

= x(n−1)((t− τ)+)[1+(ap+1−1)+ (ap+2−1)ap+1

+ · · ·+(ap+m−1)ap+1ap+2 · · ·ap+m−1]

= x(n−1)((t− τ)+)ap+1ap+2 · · ·ap+m = ∏
t−τ<tk<t∗

akx
(n−1)((t − τ)+). (29)

From (22), (25), (27) and (28), we have

∏
t−τ<tk<t∗

akx
(n−1)((t− τ)+) � θ

(n−1)!

∫ t∗

t−τ
(s− τ)n−1p(s)x(n−1)(s− τ)ds

>
θ

(n−1)!
x(n−1)(t∗ − τ)

∫ t∗

t−τ ∏
s−τ�tk<t∗−τ

1

a(n−1)
k

(s− τ)n−1p(s)ds

� Lθ
2(n−1)! ∏

t−2τ<tk<t∗−τ

1
ak

x(n−1)(t∗ − τ),t− τ < s < t∗. (30)
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So

x(n−1)(t∗ − τ) <
2(n−1)!

Lθ ∏
t−τ<tk<t∗

ak ∏
t−2τ<tk<t∗−τ

akx
(n−1)((t − τ)+). (31)

Similar to (31) , we get

x(n−1)((t− τ)+) <
2(n−1)!

Lθ ∏
t∗�tk<t

ak ∏
t∗−τ�tk<t−τ

akx
(n−1)(t∗). (32)

So

x(n−1)(t∗ − τ) < (
2(n−1)!

Lθ
)2 ∏

t−τ<tk<t
ak ∏

t−2τ<tk<t−τ
akx

(n−1)(t∗) (33)

Thus, from condition (iii) , we have x(n−1)(t∗−τ)
x(n−1)(t∗) < +∞ .

REMARK 2. x(t) is a eventually negative solution of (1),we also have conclusions
similar to Lemmas 2-4.

LEMMA 5. [1] Definite a sequence {hn(1)}∞n=1 satisfing

h1(1) = h(1), h2(1) = eθLh1(1), · · · , hn(1) = eθLhn−1(1),

where h(s) = eθLs . If θL > 1
e , then sequence {hn(1)}∞n=1 is monotonically increasing

and tends to +∞ .

We now turn to the proof of theorems 1 and 2.

Proof of Theorem 1. Without loss of generality, we may assume that k0 = 1. If
(1) has a nonoscillation x(t) , we may assume that x(t) > 0(t � T � t0) . By Lemma 2,
there exist T1 � T and an integer l ∈ {1,3, · · · ,n−1} such that for t � T1 ,

x
′
(t) > 0 · · ·x(l)(t) > 0, (−1)(i−1)x(i)(t) > 0, i = l +1, · · · ,n−1.

Let

c1 = lim
t→+∞

sup
1

(n−1)!

∫ t+τ

t
∏

s−τ�tk<s

1

a(n−1)
k

(s− τ)n−1p(s)ds.

From (2) we have c1 > 1. Taking L , 1 < L � c1 , by Lemma 3 there exist a constant
θ , 2/(L+1) < θ < 1 and t∗ � T1 such that for t � t∗ + τ,

x(t − τ) � θ
(n−1)!

(t − τ)n−1x(n−1)(t− τ). (34)

From (1) and (34), we have

x(n)(t)+
θ

(n−1)!
(t− τ)n−1p(t)x(n−1)(t − τ) � 0, t � t∗ + τ, t �= tk, tk � t∗ + τ. (35)
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Set v(t) = x(n−1)(t) . From above formula, it follows that

{
v
′
(t) � − θ

(n−1)!(t− τ)n−1p(t)x(n−1)(t− τ), t � t∗ + τ, t �= tk,

v(t+k ) = a(n−1)
k v(tk), tk � t∗ + τ.

(36)

Applying Lemma 1, we obtain

v(t + τ) � v(t+) ∏
t<tk<t+τ

a(n−1)
k

− θ
(n−1)!

∫ t+τ

t
∏

s�tk<t+τ
a(n−1)

k (s− τ)n−1p(s)x(n−1)(s− τ)ds.

That is

x(n−1)(t + τ) � x(n−1)(t+) ∏
t<tk<t+τ

a(n−1)
k

− θ
(n−1)!

∫ t+τ

t
∏

s�tk<t+τ
a(n−1)

k (s− τ)n−1p(s)x(n−1)(s− τ)ds. (37)

Since

x(n)(t) < 0, t � t∗ + τ and x(n−1)(t+k ) = a(n−1)
k x(n−1)(tk), tk > t∗ + τ,

by Lemma 1, we have:

x(n−1)(s− τ) � x(n−1)(t+) ∏
s−τ�tk�t

1

a(n−1)
k

. (38)

From the inequalites (37) and (38), it follows that

x(n−1)(t + τ) � x(n−1)(t+) ∏
t<tk<t+τ

a(n−1)
k

[
1−

θ
(n−1)!

∫ t+τ

t
∏

s−τ�tk<s

1

a(n−1)
k

(s− τ)n−1p(s)ds
]
, t � t∗ + τ. (39)

In view of (2). Then for ε = L−1
2 > 0, there exists Tλ > t∗ + τ such that

1
(n−1)!

∫ Tλ+τ

Tλ
∏

s−τ�tk<s

1

a(n−1)
k

(s− τ)n−1p(s)ds > L− ε =
L+1

2
. (40)

From (39), (40) and 2
L+1 < θ < 1, we have

x(n−1)(Tλ + τ) � x(n−1)(T+
λ )

[
1−
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θ
(n−1)!

∫ Tλ+τ

Tλ
∏

s−τ�tk<s

1

a(n−1)
k

(s− τ)n−1p(s)ds
]

< 0. (41)

This is a contrary to the fact that x(n−1)(t) > 0, t � T1 . Thus every solution of (1) is
oscillatory.

Proof of Theorem 2. Without loss of generality, we may assume that k0 = 1. If
(1) has a nonoscillation x(t) , we may assume that x(t) > 0(t � T � t0) . By Lemma 2,
there exist T1 � T and an integer l ∈ {1,3, · · · ,n−1} such that for t � T1 ,

x
′
(t) > 0 · · ·x(l)(t) > 0, (−1)(i−1)x(i)(t) > 0, i = l +1, · · · ,n−1.

Let

c2 = lim
t→+∞

inf
1

(n−1)!

∫ t

t−τ ∏
s−τ�tk�s

1

a(n−1)
k

(s− τ)n−1p(s)ds,

(3) yields c2 > 1/e . Taking L such that 1/e < L � c , by Lemma 3 there exist a constant
θ , 2/(Le+1) < θ < 1 and t∗ � T1 such that for t � t∗ + τ ,

x(t − τ) � θ
(n−1)!

(t − τ)n−1x(n−1)(t− τ). (42)

From Lemma 4, for any sufficiently large t , there exists T2 ∈ [t− τ,t]such that

x(n−1)(T2 − τ)
x(n−1)(T2)

< +∞ (43)

From (3), it follows that for sufficiently large t

1
(n−1)!

∫ t

t−τ ∏
s−τ�tk<s

1

a(n−1)
k

(s− τ)n−1p(s)ds > L. (44)

We suppose that (42), (43) and (44) hold for t � t∗ + τ . On the other hand, noting that

x(n−1)(t− τ) � ∏
t−τ�tk<t

1

a(n−1)
k

x(n−1)(t). (45)

From (1) , (42) and (45), we have

x(n)(t)+
θ

(n−1)! ∏
t−τ�tk<t

1

a(n−1)
k

(t− τ)n−1p(t)x(n−1)(t) � 0, t � t∗ + τ. (46)

Set v(t) = x(n−1)(t) , then v(t+k ) = a(n−1)
k v(tk) and

v
′
(t) � − θ

(n−1)! ∏
t−τ�tk<t

1

a(n−1)
k

(t− τ)n−1p(t)v(t), t � t∗ + τ, t �= tk. (47)
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Applying Lemma 1, we obtain

x(n−1)(t) � x(n−1)(t− τ) ∏
t−τ�tk<t

a(n−1)
k exp

[

− θ
(n−1)!

∫ t

t−τ ∏
s−τ�tk<s

1

a(n−1)
k

(s− τ)n−1p(s)ds
]
. (48)

That is

x(n−1)(t − τ)
x(n−1)(t)

� ∏
t−τ�tk<t

1

a(n−1)
k

exp
[ θ
(n−1)!

∫ t

t−τ ∏
s−τ�tk<s

1

a(n−1)
k

(s− τ)n−1p(s)ds
]

� ∏
t−τ�tk<t

1

a(n−1)
k

eθL = ∏
t−τ�tk<t

1

a(n−1)
k

h1(1) (49)

where h(s) = eθLs , θL > 1/e . Thus, from (1), (42), (45) and (49), we have

x(n)(t)+
θ

(n−1)!
h1(1) ∏

t−τ�tk<t

1

a(n−1)
k

(t− τ)n−1p(t)x(n−1)(t) � 0, t � t∗ + τ. (50)

Applying the above method, by Lemma 1 we have

x(n−1)(t− τ)
x(n−1)(t)

� ∏
t−τ�tk<t

1

a(n−1)
k

eθLh1(1) = ∏
t−τ�tk<t

1

a(n−1)
k

h2(1), t � t∗ +2τ. (51)

By repeating the above method repeatedly, we get

x(n−1)(t− τ)
x(n−1)(t)

� ∏
t−τ�tk<t

1

a(n−1)
k

hn(1), t � t∗ +nτ,n = 1,2, . . . . . (52)

From Lemma 5, we have hn(1) → ∞ . That is x(n−1)(t−τ)
x(n−1)(t)

→ ∞ . This is a contrary to

(43). Thus every solution of (1) is oscillatory.

REMARK 3. It is easy to see that the above theorems 1 and 2 can be generalized
to the equations of the form

⎧⎨
⎩

x(n)(t)+
m
∑
j=1

p j(t)x(t − τ j) = 0, t � t0, t �= tk,

x(i)(t+k ) = a(i)
k x(i)(tk), i = 0,1, · · ·n−1, k = 1,2 · · ·

where n is even, τ j > 0. Indeed, if we replace the conditions (iii),(iv) , (2) and (3)
with (iii

′
),(iv

′
) , (2

′
) and (3

′
) as follows:

(iii
′
) lim

t→+∞
sup ∏

t−2τ<tk<t
ak < +∞ , where ak = max{a(n−1)

k ,1},τ = max{τ1, . . . ,τm} ,



LINEAR IMPULSIVE DELAY DIFFERENTIAL EQUATIONS 175

(iv
′
) c = lim

t→+∞
inf

∫ t
t−τ ′

m
∑
j=1

(s− τ j)n−1p j(s)ds > 0, where τ ′
= min{τ1, . . . ,τm}

(2
′
)

lim
t→+∞

sup
∫ t+τ
t

m
∑
j=1

∏
s−τ j�tk<s

1

a(n−1)
k

(s− τ j)n−1p j(s)ds > (n−1)!,

(3
′
)

lim
t→+∞

inf
∫ t
t−τ ′

m
∑
j=1

∏
s−τ j�tk<s

1

a
(n−1)
k

(s− τ ′
)n−1p j(s)ds > (n−1)!

e .

Then, we will obtain the similar Theorems of the above equations.

EXAMPLE 1. Consider the Equation{
x(n)(t)+ 1×3×···×(2n−3)

2n t−n+ 1
2 (t − 1

3)−
1
2 x(t − 1

3) = 0, t � 1
2 , t �= k,

x(i)(k+) = ki−2

(k+1)i (x
(i)(k)), i = 0,1,2 · · · ,n−1, k = 1,2, · · · (53)

where n is even, tk = k ,

a(i)
k =

ki−2

(k+1)i , p(t) =
1×3×·· ·× (2n−3)

2n t−n+ 1
2 (t− 1

3
)−

1
2 and τ =

1
3
.

It is easy to see that conditions (i) and (ii) satisfy:

lim
t→+∞

sup
∫ t+τ

t
∏

s−τ�tk<s

1

a(n−1)
k

(s− τ)n−1p(s)ds

= lim
k→+∞

sup
1

a(n−1)
k

∫ tk+τ

tk
(s− τ)n−1p(s)ds = +∞> (n−1)!.

By Theorem 1, every solution of (53) is oscillatory. But the delay differential equation

x(n)(t)+
1×3×·· ·× (2n−3)

2n t−n+ 1
2 (t− 1

3
)−

1
2 x(t− 1

3
) = 0, t � 1

2

has a nonnegative solution x =
√

t . This example shows that impulses play an important
role in the oscillatory behavior of equations under perturbing impulses.
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