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Abstract. In this paper, we obtain sufficient conditions so that every solution of neutral functional
difference equation

Δ2(yn − pnyτ(n))+qnG(yσ(n)) = fn,

oscillates or tends to zero as n →∞ , where the sequence {q n} may change sign. Here Δ is the
forward difference operator given by Δxn = xn+1−xn, {τn} and {σn} are increasing sequences,
which are less than n and approaches ∞ as n approaches ∞ . This paper generalizes and extends
some recent results.

1. Introduction

Consider the higher order neutral functional difference equation

Δm(yn− pnyτ(n))+qnG(yσ(n)) = fn, (1.1)

where Δ is the forward difference operator given by Δxn = xn+1−xn,{pn},{qn} , { fn}
are infinite sequences of real numbers and m is any positive integer. Further, as-
sume that G ∈ C(R,R) , and τ(n) � n,σ(n) � n are monotonic increasing sequences
which are unbounded. Recently, the oscillatory and asymptotic behavior of solutions
of (1.1) with fixed sign qn have been investigated by many authors (see [2], [5]–[9],
[11, 13, 14, 15, 18]). However, it is difficult to study the oscillation of (1.1) for the gen-
eral case, when qn is allowed to change sign, since the difference Δm(yn− pnyτ(n)−Fn)
of any non-oscillatory solution {yn} of (1.1) is oscillatory, where {Fn} is an infinite
sequence such that ΔmFn = fn . Therefore the results on oscillation of (1.1) with os-
cillating qn, are relatively scarce; see [16, 17, 10]. Such result for m = 1 is found in
recently published paper [10], where sufficient conditions are obtained so that every
solution of (1.1) oscillates or tends to zero as n → ∞ . The technique adopted in the
paper, however, fails when applied to (1.1) for m > 1. Hence our objective in this work
is to extend some of these results and study the asymptotic behaviour of solutions of
neutral difference equation

Δ2(yn− pnyτ(n))+qnG(yσ(n)) = fn, (1.2)
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where qn may change sign.
For the purpose, we define q+

n = max(qn,0) . and q−n = max(−qn,0) then the
above equation takes an alternate form

Δ2(yn− pnyτ(n))+q+
n G(yσ(n))−q−n G(yσ(n)) = fn. (1.3)

We would in fact, study the neutral difference equation with positive and negative co-
efficients (1.3) under the following assumptions:

(H0) for any sequence {xn} , if liminfn→∞ |xn| > 0 then liminfn→∞ |G(xn)| > 0;
(H1) xG(x) > 0 for x �= 0;
(H2) G is bounded;
(H3) ∑∞

n=n0
q+

n = ∞ ;
(H4) ∑∞

n=n0
nq−n < ∞ ;

(H5) there exists a bounded sequence {Fn} such that Δ2Fn = fn ;
(H6) the sequence {Fn} in (H5) satisfies limn→∞Fn = 0.

Let n0 be a fixed nonnegative integer. Let ρ = min{τ(n0),σ(n0)} . By a solution
of (1.2) we mean a real sequence {yn} which is defined for all positive integer n � ρ
and satisfies (1.2) for n � n0 . Clearly if the initial condition

yn = an for ρ � n � n0, (1.4)

is given then the equation (1.2) has a unique solution satisfying given initial condition
(1.4). A solution {yn} of (1.2) is said to be oscillatory if for every positive integer n0 >
0, there exists n � n0 such that ynyn+1 � 0, otherwise {yn} is said to be non-oscillatory.
In the sequel, unless otherwise specified, when we write a functional inequality, it will
be assumed to hold for all n sufficiently large.

2. Main Results

To begin with, we state some lemmas from [1, 4, 12] which would be useful for
our work.

LEMMA 2.1. [1] Let { fn},{qn} and {pn} be sequences of real numbers defined
for n � N0 > 0 such that

fn = qn− pnqτ(n), n � N1 � N0,

where {τ(n)} is an increasing unbounded sequence such that τ(n) � n. Suppose that
pn satisfies one of the following three conditions:

−1 < −b1 � pn � 0, −b2 � pn � −b3 < −1, and 0 � pn � b4 < ∞,

∀n∈N , where b1,b2,b3 and b4 are constants. If qn > 0 for n � N0 , liminfn→∞ qn = 0
and limn→∞ fn = L exists, then L = 0 .
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LEMMA 2.2. [4] If ∑un and ∑vn are two positive term series such that

lim
n→∞

(un

vn

)
= l,

where l is a non-zero finite number, then the two series converge or diverge together. If
l = 0 , then ∑vn is convergent implies the convergence of ∑un . If l = ∞ , then ∑vn is
divergent implies the divergence of ∑un .

Before we state and prove our next result, we need the following definition and
further discussion.

DEFINITION 1. Define the factorial function (cf [3, page-20]) by

n(k) := n(n−1). . .(n− k+1),

where k � n and n ∈ Z and k ∈ N . Note that n(k) = 0, if k > n.

Then we have
Δn(k) = kn(k−1), (2.1)

where n ∈ Z , k ∈ N and Δ is the forward difference operator. One can show, by
summing up (2.1) that

n−1

∑
i=m

i(k) =
1

k+1

(
n(k+1)−m(k+1)

)
, (2.2)

holds. Now set

bk (n,m) :=

⎧⎨
⎩

1, k = 0
n
∑

j=m
bk−1 (n, j) , k ∈ N.

(2.3)

Here, we evaluate bk by recursion. Clearly, for k = 1 in (2.3), we have

b1 (n,m) =
n

∑
j=m

b0 (n, j) =
n

∑
j=m

1 = (n+1−m) = (n+1−m)(1) .

By (2.2) and for k = 2 in (2.3), we get

b2 (n,m) =
n

∑
j=m

b1 (n, j) =
n

∑
j=m

(n+1− j)(1)

=
n+1−m

∑
i=1

i(1) =
1
2

(n+2−m)(2)− 1
2
1(2) =

1
2

(n+2−m)(2) .

Note that 1(2) = 0. By (2.2) and for k = 3 in (2.3), we get

b3 (n,m) =
n

∑
j=m

b2 (n, j) =
1
2

n

∑
j=m

(n+2− j)(2)

=
1
2

n+2−m

∑
i=2

i(2) =
1
6

[
(n+3−m)(3)−2(3)

]
=

1
3!

(n+3−m)(3) .
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Using a simple induction, we obtain

bk (n,m) =
1
k!

(n+ k−m)(k) . (2.4)

LEMMA 2.3. [12] Let p ∈ N and x(n) be a nonoscillatory eventually positive
real valued function. If there exists an integer p0 ∈ {0,1, . . . , p−1} such that Δp0w(∞)
exits (finite) and Δiw(∞) = 0 for all i ∈ {p0 +1, . . . , p−1} then

Δpw(n) = −x(n) , (2.5)

implies

Δp0w(n) = Δp0w(∞)+
(−1)p−p0−1

(p− p0−1)!

∞

∑
i=n

(i+ p− p0−1−n)(p−p0−1) x(i) , (2.6)

for all sufficiently large n.

Proof. Summing (2.5) from n to ∞ , we get

Δp−1w(∞)−Δp−1w(n) = −
∞

∑
i=n

x(i) ,

that is

Δp−1w(n) =
∞

∑
i=n

x(i) =
∞

∑
i=n

b0 (i,n)x(i) . (2.7)

Summing (2.7) from n to ∞ , we get

Δp−2w(n) = Δp−2w(∞)−
∞

∑
i=n

∞

∑
j=i

b0 ( j, i)x( j) = −
∞

∑
j=n

j

∑
i=n

b0 ( j, i)x( j)

= −
∞

∑
j=n

b1 ( j,n)x( j) = −
∞

∑
i=n

b1 (i,n)x(i) . (2.8)

Further, summing (2.8) from n to ∞ , we obtain

Δp−3w(n) =
∞

∑
j=n

∞

∑
i= j

b1 (i, j)x(i) =
∞

∑
i=n

i

∑
j=n

b1 (i, j)x(i)

=
∞

∑
i=n

b2 (i,n)x(i) .

By the emerging pattern, we have

Δ jw(n) = (−1)p− j−1
∞

∑
i=n

bp− j−1 (i,n)x(i) , j ∈ {p0 +1, . . . p−1} .
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Letting j = p0 +1, we get

Δp0+1w(n) = (−1)p−p0−2
∞

∑
i=n

bp−p0−2 (i,n)x(i) . (2.9)

Summing (2.9) from n to ∞ we get

Δp0w(n) = Δp0w(∞)+ (−1)p−p0−1
∞

∑
i=n

bp−p0−1 (i,n)x(i) . (2.10)

Clearly, (2.6) follows from (2.4) and (2.10). And the proof of the Lemma is complete.

Now, we state our first main result.

THEOREM 2.4. Suppose that (H0)-(H5) hold. Assume that there exists a positive
constant b1 such that the sequence {pn} satisfies the condition

0 � pn � b1 < 1, or −1 < −b1 � pn � 0. (2.11)

Then every non-oscillatory solution of (1.2) is bounded.

Proof. Let y = {yn} be any non-oscillatory solution of (1.2) for n � N1 , where N1

is a fixed positive integer. Then yn > 0 or yn < 0. Suppose yn > 0 eventually. There
exits positive integer n0 � N1 > 0 such that yn > 0,yτ(n) > 0, and yσ(n) > 0 for n � n0 .
For n � n0 , let

zn = yn − pnyτ(n) . (2.12)

Define for n � n0

Tn =
∞

∑
i=n

(n− i−1)q−i G(yσ(i)). (2.13)

Due to the assumptions (H2) and (H4) , {Tn} is a well defined real sequence which is
convergent. This implies

lim
n→∞

Tn = 0 (2.14)

and
Δ2Tn = −q−n G(yσ(n)). (2.15)

Set,
wn = yn− pnyτ(n) +Tn−Fn. (2.16)

From (1.2), (2.15), and (2.16), it follows due to (H1) that

Δ2wn = −q+
n G(yσ(n)) � 0. (2.17)

Then there exists n1 � n0 such that wn,Δwn, are monotonic and of constant sign for
n � n1 . For the sake of a contradiction assume that yn is not bounded. Then there exists
a sub sequence {ynk} such that

nk → ∞, ynk → ∞ as k → ∞,
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and
y(nk) = max{yn : n1 � n � nk}. (2.18)

Since τ(n) → ∞ and σ(n) → ∞ as n → ∞ , we may choose k large enough so that for
τ(nk) � n1 , and σ(nk) � n1 . For 0 < ε , because of (2.14) and (H5) , we can find a
positive integer n2 and a constant γ such that, for k � n2 � n1 implies |Tnk | < ε and
|Fnk | < γ . If the condition 0 � pn � b1 < 1 holds, then using (2.16) and (2.18) we
obtain

wnk � ynk(1−b1)− ε− γ,

for k � n2 . Similarly, if −1 < −b1 � pn � 0 holds, then for k � n2 , we have

wnk � ynk − ε− γ.

Taking k → ∞ , we find limn→∞wn = ∞ , because of the monotonic nature of wn. Con-
sequently, wn > 0, and Δwn > 0 for n � n2 � n1.

Next we show that yn is bounded below by a positive constant, which will be used
for bounding the G term from below. Using that wn is positive and increasing, and that
τ(n) � n , we have for sufficiently large n : for the case 0 � pn � b1 < 1,

wn � wn + pnwτ(n)

= yn +Tn−Fn + pn[−pτ(n)yτ(τ(n)) +Tτ(n)−Fτ(n)] ,

and for the case −1 < −b1 � pn � 0,

(1−b1)wn � wn−b1wτ(n)

� wn + pnwτ(n)

= yn +Tn−Fn + pn[−pτ(n)yτ(τ(n)) +Tτ(n)−Fτ(n)] .

We may note that pn and pτ(n) have the same sign in each of the two inequalities above,
and 1−b1 � 1 which implies

(1−b1)wn � yn + ε+ γ+b1ε+b1γ, for n � n1.

As limn→∞wn = ∞ , it follows that limn→∞ yn = ∞ . Then there exists n2 � n1 such
that for n � n2 : yn,yσ(n) are bounded below by a positive constant. By (H0) , (H1) ,
for i � n2 , G(yσ(i)) is bounded below by a positive constant α . Summing (2.17) from
n = n2 to n = k−1, we obtain

Δwk = Δwn2 −
k−1

∑
n=n2

q+
n G(yσ(n)) � Δwn2 −α

k−1

∑
n=n2

q+
n .

Note that by (H3) , the right-hand side approaches −∞ , while the left-hand side is
positive. This contradiction implies that the non-oscillatory positive solution yn of
(1.2) is bounded.

if yn is an eventually negative solution of (1.2) for large n then we set xn = −yn

to obtain xn > 0 and then (1.2) reduces to

Δ2(xn− pnxτ(n)
)
+qnG̃(xσ(n)) = f̃n,
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where
f̃n = − fn, and G̃(v) = −G(−v).

Further,
F̃n = −Fn implies Δ2(F̃n) = f̃n.

In view of the above facts, it can be easily verified that G̃ and F̃ satisfy the correspond-
ing conditions satisfied by the functions G and F in the theorem. Proceeding as in the
proof for the case yn > 0, we may complete the proof of the theorem.

The following result follows immediately from the above theorem.

COROLLARY 2.5. Suppose that the hypotheses (H0)-(H5) and (2.11) hold. Then
every unbounded solution of (1.2), (if exists) is oscillatory.

Also note that by setting pn = 0, Theorems 2.4 can be applied to the equation

Δ2(yn)+qnG(yσ(n)) = fn,

with oscillating qn .

2.1. Results for bounded solutions

In this subsection, we study the behaviour of bounded solutions of (1.2) and we do
not require the assumption (H2) . However, we need a condition

∞

∑
n=n0

nq+
n = ∞, (2.19)

which is less restrictive than (H3) .

THEOREM 2.6. Assume that (H0) , (H1) , (H4) , (H6) and (2.19) hold. Then ev-
ery bounded solution of (1.2) is oscillatory or tends to zero as n → ∞ , for each one of
the following cases:

0 � pn � b1 < 1, ∀n ∈ N, (2.20)

−1 < −b1 � pn � 0, ∀n ∈ N, (2.21)

b2 � pn � b3 < −1, ∀n ∈ N, (2.22)

1 < b4 � pn � b5, ∀n ∈ N, (2.23)

where b1,b2,b3,b4,b5 are constants.

Proof. Let y = yn be a bounded solution of (1.2) for n � N1. If it oscillates then
there is nothing to prove. If it does not oscillate then yn > 0 or yn < 0 eventually.
Suppose yn > 0 for large n. There exits positive integer n0 � N1 > 0 such that yn >
0,yτ(n) > 0, and yσ(n) > 0 for n � n0 . Set zn,Tn and wn as in (2.12), (2.13) and
(2.16) respectively, to obtain (2.17). Tn is well defined due to the boundedness of yn
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and note that it satisfies (2.14). Then wn , and Δwn are monotonic and single sign for
n � n1 � n0. Boundedness of yn implies that of zn and wn . Using (2.14), (H6) and
monotonic nature of wn, we obtain limn→∞ zn = limn→∞wn = λ , which exists finitely.
Then applying Lemma 2.3 to (2.17) for p = 2 and p0 = 0 we obtain for n � n1,

wn = λ −
∞

∑
i=n

(i−n+1)q+
i G(yσ(i)). (2.24)

As limn→∞wn exists, from (2.24) it follows that

∞

∑
i=n

(i−n+1)q+
i G(yσ(i)) < ∞, n � n1. (2.25)

Using Lemma 2.2 in (2.25), we obtain

∞

∑
i=n

iq+
i G(yσ(i)) < ∞, n � n1. (2.26)

From (2.26), it follows due to (2.19) that liminfn→∞G(yσ(n))= 0. When limn→∞σ(n)=
∞ , we have liminfn→∞G(yn) = 0. This implies due to (H0) that liminfn→∞ yn = 0.
Then using Lemma 2.1, we may obtain limn→∞ zn = 0. If (2.20) holds then

0 = lim
n→∞

zn = limsup
n→∞

(yn− pnyτ(n))

� limsup
n→∞

yn + liminf
n→∞

(−pnyτ(n))

� (1−b1) limsup
n→∞

yn.

This implies limsupn→∞ yn = 0 and consequently yn → 0 as n →∞ . If (2.21) or (2.22)
holds then, since yn � zn , it follows that yn → 0 as n → ∞ . If pn satisfies (2.23), then
zn � yn −b4yτ(n) , and it follows that

0 = liminf
n→∞

zn � liminf
n→∞

[yn−b4yτ(n)]

� limsup
n→∞

yn + liminf
n→∞

[−b4yτ(n)]

= (1−b4) limsup
n→∞

yn.

Then limsupn→∞ yn = 0, which implies limn→∞ yn = 0.
If yn is eventually negative for large n, then we may proceed with xn = −yn .

2.2. Results for bounded or unbounded solutions

Clearly, the condition (H3) implies (2.19), so we combine the results Corollary
2.5 and Theorem 2.6 to state the following result.

THEOREM 2.7. Suppose that either (2.20) holds or (2.21) holds. Further assume
(H0)-(H6) to hold. Then every solution of (1.2) is oscillatory or tends to zero as
n → ∞ .
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For our results in this paper, we need G to be bounded, continuous, and to satisfy
(H0) and (H1) . The proto type of such a function G(x) is x2n

1+x2n sgnx .

To emphasize the need for the condition (H4) or that of (H2) , for our results we
present the following example.

EXAMPLE 1. Consider the equation

Δ2yn +qnyn−m = 0, (2.27)

where m is any positive and even integer and

qn =

{
−1, n is even,

2, n is odd.

Then, qn is oscillatory but, does not satisfy (H4) . Moreover, G(u) = u , does not satisfy
(H2) . Note that (H0) , (H1) , (H3) , (H5) and (H6) hold, but we cannot apply Theorem
2.4, 2.6 or Theorem 2.7 to the equation (2.27). In fact,

yn =

{
1, n is odd,

2, n is even,

is a solution of the above delay equation which neither oscillates nor tends to zero as
n → ∞.

We present some examples to illustrate, our main results.

EXAMPLE 2. Consider the delay equation

Δ2(yn)+qnyn−m = (5/4)2−n, (2.28)

where m is any positive and odd integer and qn is as given by

qn =

{
(9/4)2−m, n is even,

−2−n, n is odd.

It is easily verified that equation(2.28) satisfies all the conditions of Theorem2.6. Hence
every solution (2.28) oscillates or tends to zero as n →∞ . As a result one may find that
this equation admits a nonnegative solution given by

yn =

{
2−n, n is odd,

0, n is even,

which tends to zero as n → ∞ .
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EXAMPLE 3. Consider the delay equation

Δ2(yn)+qnG(yn−m) = fn, (2.29)

where m is any positive and odd integer, G(u) = u2

(1+u2)sgnu , qn and fn are as given

below:

qn =

{
(9/4)(1+22n−2m)2−n, n is odd,

−(9/4)2−n−2m(1+2−2n+2m), n is even.
(2.30)

fn =

{
0, n is odd,

(9/4)(8−n +2−n), n is even.

It is easily verified that eq. (2.29) satisfies all the conditions of Theorem 2.7. As such,
every solution of (2.29) oscillates or tends to zero as n → ∞ and in fact, this equation
admits a oscillatory solution given by

yn =

{
−2−n, n is odd,

2−n, n is even,

which tends to zero as n → ∞ .

EXAMPLE 4. Consider the non-linear neutral equation (2.29) with qn as in (2.30);
G(u) and m as defined in the above example. Define

fn =

{
(13/4)2−n, n is odd,

(−9/4)8−n +(1/4)2−n, n is even.

Then the non-linear neutral equation (2.29) satisfies all the conditions of Theorem 2.4.
Hence every non-oscillatory solution of this difference equation is bounded as per the
conclusion of the theorem. One may verify that yn = 2−n is a non-oscillatory solution
of (2.29), which is clearly bounded.

Remark

The authors in [12] assumed the conditions:

liminf
|u|→∞

G(u)/u > 0, (2.31)

G is non-decreasing, (2.32)

and
H is bounded,

in order to study the oscillatory behaviour of solutions of the neutral equation

Δm(yn − pnyτ(n))+ vnG(yσ(n))−unH(yα(n)) = fn.
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Since both the conditions (2.31) and (2.32) are incompatible to the condition (H2) ,
we removed these conditions and thus, could generalize, improve the work in [12] and
apply it to study (1.2) with oscillating qn . Further, we may add that no result in the
cited papers in the reference can be applied to the equations (2.28) or (2.29) due to the
reason that either the conditions on G are not satisfied or because qn is not of constant
sign.

Before we close this article, we would like to give our final comments, which
might be helpful for further research.

Final Comments

Our results (see Theorems 2.4 and 2.7) of this paper do not hold for G(u) ≡ u
because of our assumption (H2) . Hence, it would be interesting to study the oscilla-
tion of solutions of (1.2) either by relaxing the condition (H2) or by considering the
corresponding linear equation.

Acknowledgements. The authors are thankful and obliged to the referees for their
various suggestions to improve the presentation of this paper.
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