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ON DEGENERATE NON–UNIFORMLY ELLIPTIC PROBLEMS

KAOUTHER AMMAR

Abstract. We are interested in the degenerate problem: b(v)−divA(v,∇g(v)) = f in Ω with the
boundary condition v = a , where a : ∂Ω→ R is measurable such that g(a) = 0 . We suppose
that the vector field A satisfies the Leray-Lions conditions, that b,g are continuous, nondecreas-
ing with lim

r→±∞ |b + g|(r) < +∞ , that g hat a flat region [A1,A2] and is strictly increasing on

R \ [A1,A2] for some A1 � 0 � A2 . Using monotonicity methods, we prove the existence and
uniqueness of a renormalized entropy solution (with possibly infinite values).
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