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SOLUTIONS FOR SINGULAR ELLIPTIC SYSTEMS

INVOLVING HARDY–SOBOLEV CRITICAL NONLINEARITY

LING DING AND SHI-WU XIAO

(Communicated by D. Kang)

Abstract. In this paper, we deal with a class of singular elliptic system with Hardy-Sobolev
critical nonlinearity. The existence and multiplicity of solutions for this system are obtained by
the variational methods and some analysis techniques.

1. Introduction and main results

Elliptic systems have extensive practical backgrounds. They can be used to de-
scribe the multiplicative chemical reaction catalyzed by the catalyst grains under con-
stant or variate temperature, a correspondence of the stable station of dynamical system
determined by the reaction-diffusion system. In recent years, much attention has been
payed to the existence of nontrivial solutions for nonvariational systems, potential sys-
tems and hamiltonian systems, see, for instance, [1, 7, 9, 10, 12] and their references. In
particular, some elliptic systems with critical exponents have been studied in [7, 9, 12]
and the references therein.

In this paper, we consider the following elliptic systems,⎧⎪⎪⎨⎪⎪⎩
−Δu− μ u

|x|2 = 2α
α+β

|u|α−2u|v|β
|x|s +λ ∂

∂uF(x,u,v), x ∈Ω\ {0},
−Δv− μ v

|x|2 = 2β
α+β

|u|α |v|β−2v
|x|s +λ ∂

∂vF(x,u,v), x ∈Ω\ {0},
u = v = 0, x ∈ ∂Ω,

(1)

where Ω is an open bounded domain in R
N(N � 3) with smooth boundary ∂Ω and

0 ∈ Ω , 0 � μ < μ �
= ((N−2)/2)2 , λ > 0, α, β > 1 satisfy α +β = 2∗(s) = 2(N −

s)/(N−2)(0 � s < 2), which is the critical Hardy-Sobolev exponent and 2∗ = 2∗(0) =
2N/(N − 2) is the Sobolev critical exponent. F is a real function satisfying some
assumptions.

We shall work with the space (H1
0 )2 := H1

0 (Ω)×H1
0 (Ω) endowed with the norm

‖(u,v)‖(H1
0 )2 =

(
‖u‖2

H1
0 (Ω) +‖v‖2

H1
0 (Ω)

) 1
2
,
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where the norm

‖u‖H1
0 (Ω) =

(∫
Ω

(
|∇u|2− μ

u2

|x|2
)

dx

)1/2

,

which is equivalent to the usual norm of H1
0 (Ω) . Denote

Ãμ,s(Ω) = inf
(u,v)∈(H1

0 )2\{0}

‖(u,v)‖2
(H1

0 )2(∫
Ω

|u|α |v|β
|x|s dx

) 2
α+β

. (2)

Modifying the proof of Theorem 5 in [2], we can easily deduce that

Ãμ,s(Ω) =

⎡⎣(α
β

) β
α+β

+
(
α
β

) −α
α+β

⎤⎦Aμ,s(Ω), (3)

where

Aμ,s(Ω) = inf
u∈H1

0 (Ω)\{0}

‖u‖2
H1

0 (Ω)(∫
Ω

|u|2∗(s)

|x|s dx
) 2

2∗(s)
.

From Lemma 2.2 in [8], we know that Aμ,s(Ω) is attained when Ω= R
N by the func-

tions

yε(x) =

[
2ε(N−s)(μ−μ)√

μ

]√μ
2−s

|x|
√

μ−
√

μ−μ

(
ε + |x|

(2−s)
√
μ−μ√
μ

) N−2
2−s

for all ε > 0 and Aμ,s(Ω) is independent of Ω , so we denote Aμ,s instead of Aμ,s(Ω) .
The statement (3) implies that the constant Ãμ,s(Ω) is achieved and independent of Ω
when α+β = 2∗(s) , so we denote Ãμ,s instead of Ãμ,s(Ω) .

In recent years, the existence of solutions of the problem (1) with μ = 0 and s = 0
has been payed much attention. Alves, Filho and Souto in [2] proved the existence of
least energy solutions for any λ ∈ (0,λ1) and generalized the corresponding results [3]
with μ = s = 0, ∂

∂uF(x,u,v) = u and ∂
∂vF(x,u,v) = v . Subsequently, in this case, Han

in [5, 6] studied the existence of multiple positive solutions for the problem (1) . The
existence of a positive solution for the problem (1) is studied by Liu and Han in [9]
with s = 0, ∂

∂uF(x,u,v) = u and ∂
∂vF(x,u,v) = v for λ ∈ (0,λ1) and μ ∈ (0,μ−1) .

However, as far as we know, there are few results on the problem (1) with Hardy
terms, critical Hardy-Sobolev exponents and general form F . Due to the lack of com-
pactness of embedding of H1

0 (Ω) ↪→ L2∗(Ω) , H1
0 (Ω) ↪→ L2(Ω, |x|−2dx) and H1

0 (Ω) ↪→
L2∗(s)(Ω, |x|−sdx) , we can not use the standard variational argument directly. The cor-
responding energy functional fails to satisfy the classical Palais-Smale ((PS) in short)
condition in H1

0 (Ω) . However, we use argument of Brezis and Nirenberg [3] to verify
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that the associated functional satisfies the Palais-Smale condition on a given interval
of the real line. Then the existence result is obtained via constructing a minimax level
within this range and the Mountain Pass Lemma due to Rabinowitz [11].

Here are the main results of this paper.

THEOREM 1. Suppose that N � 3 , 0 � μ < μ , 0 � s < 2 and F satisfies:

(F1) F ∈C1(Ω×R
+×R

+,R) and F(x,0,0) = ∂F(x,0,t)
∂u = ∂F(x,z,0)

∂v = 0;
(F2) there exist 1 < pi < p0 (here p0 ∈ (2,2∗]) , i = 1,2 , R0 > 0 and T > 0 such
that

z
∂
∂u

F(x,z,t)+ t
∂
∂v

F(x,z,t) � T (zp1 + t p2) , if z+ t � R0

for all (z, t) ∈ R
+×R

+ and for almost every x ∈Ω;
(F3) there exist θi ∈ ( 1

2∗(s) ,
1
2)(i = 1,2) such that

0 < F(x,z, t) � θ1z
∂
∂u

F(x,z,t)+θ2t
∂
∂v

F(x,z,t), (z, t) ∈ R
+×R

+ \ (0,0), x ∈Ω;

(F4) let b0 := inf|(z,t)|=1 F(x,z,t) > 0, (z,t) ∈ R
+ ×R

+ \ (0,0), x ∈Ω.

Assume that

η �
=

1
max{θ1,θ2} > max

{
2,

N√
μ +
√
μ− μ

,
N−2

√
μ− μ√
μ

}
�
= r0. (4)

Then there exists λ ∗ > 0 such that the problem (1) possesses one positive solution for
every λ ∈ (0,λ ∗).

COROLLARY 1. Suppose that N � 4 , 0 � μ � μ − 1 and 0 � s < 2 . Assume
that (F1)-(F4) hold. Then the problem (1) has at least a positive solution for every
λ ∈ (0,λ ∗).

THEOREM 2. Suppose that N � 3 , 0 � μ < μ , 0 � s < 2 and F satisfies:

(F1′) F ∈C1(Ω×R
2,R) and F(x,0,0) = ∂F(x,0,v)

∂u = ∂F(x,u,0)
∂v = 0;

(F2′) there exist 1 < pi < p0 (here p0 ∈ (2,2∗]) , i = 1,2 , R0 > 0 and T > 0 such
that ∣∣∣∣z ∂∂u

F(x,z,t)+ t
∂
∂v

F(x,z,t)
∣∣∣∣� T (|z|p1 + |t|p2) , if |z|+ |t|� R0

for all (z, t) ∈ R
2 and for almost every x ∈Ω;

(F3′) there exist θi ∈ ( 1
2∗(s) ,

1
2)(i = 1,2) such that

0 < F(x,z, t) � θ1z
∂
∂u

F(x,z,t)+θ2t
∂
∂v

F(x,z,t), (z,t) ∈ R2 \ (0,0), x ∈Ω;

(F4′) let b0 := inf|(z,t)|=1 F(x,z,t) > 0, (z,t) ∈ R
2 \ (0,0), x ∈Ω.

Assume that (4) holds. Then the problem (1) possesses two distinct nontrivial solutions
for every λ ∈ (0,λ ∗).
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COROLLARY 2. Suppose that N � 4 , 0 � μ � μ−1 and 0 � s < 2 . Assume that
(F1′)-(F4′) hold. Then the problem (1) has at least two distinct nontrivial solutions
for every λ ∈ (0,λ ∗).

REMARK 1. Theorems 1, 2 are supplements to Theorem 1.3 in [9]. The case
of s 	= 0(the critical Hardy-Sobolev exponents) and general nonlinearity perturbation
which is suplinear at zero is not considered in [9], where the authors only studied the
case of s = 0(the Sobolev exponent) and the perturbation of the linear at zero.

In the sequel, we shall give the proof of theorems. |Ω| and Ci(i = 1,2,3, ...) will
denote the measure of Ω and various positive constants, respectively.

2. Proofs of theorems

It is obvious that the values of F(x,z,t) for z or t < 0 are irrelevant in our theorems
and we may define

F(x,z,t) = 0 for x ∈Ω, z � 0 or t � 0.

Let u± = max{±u,0}. The energy functional corresponding to the problem (1) is de-
fined on (H1

0 )2 by

J((u,v)) =
1
2

∫
Ω

(
|∇u|2 + |∇v|2− μ

|u|2
|x|2 − μ

|v|2
|x|2
)

dx−λ
∫
Ω

F(x,u+,v+)dx

− 2
α +β

∫
Ω

(u+)α(v+)β

|x|s dx. (5)

According to the Hardy, Hardy-Sobolev inequalities, J ∈C1((H1
0 )2,R) . Now it is well

known that there exists a one to one correspondence between the nonegative solutions
of the problem (1) and the critical points of J on (H1

0 )2 . More precisely we say that
(u,v) ∈ (H1

0 )2 is a weak solution of the problem (1), if for any (ϕ1,ϕ2) ∈ (H1
0 )2 , there

holds

〈J′((u,v)),(ϕ1,ϕ2)〉 =
∫
Ω

[
∇u∇ϕ1 +∇v∇ϕ2− μ

uϕ1 + vϕ2

|x|2

−λ
∂
∂u

F(x,u+,v+)ϕ1−λ
∂
∂v

F(x,u+,v+)ϕ2
]
dx

− 2α
α +β

∫
Ω

(u+)α−1(v+)β

|x|s ϕ1dx− 2β
α +β

∫
Ω

(u+)α(v+)β−1

|x|s ϕ2dx = 0. (6)

LEMMA 2.1. Suppose that N � 3 , 0 � μ < μ , 0 � s < 2 and λ > 0 . Assume
that (F1)-(F3) and (4 ) hold. Then J satisfies (PS)c condition with

c < c
�
=

2− s
N− s

(
Ãμ,s(Ω)

2

)N−s
2−s

.
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Proof. Suppose that {(u j,v j)} ⊂ (H1
0 )2 satisfies

J((u j,v j)) → c < c and J′((u j,v j)) → 0 as j → ∞.

Together with (5) , (6) and (F3) , we get as j → ∞ the following:

c+1+o(1)‖u j‖H1
0 (Ω) +o(1)‖v j‖H1

0 (Ω)

� J((u j,v j))−〈J′((u j,v j)),(θ1u j,θ2v j)〉

=
(

1
2
−θ1

)
‖u j‖2

H1
0 (Ω) +

(
1
2
−θ2

)
‖v j‖2

H1
0 (Ω)

+λ
∫
Ω

(
θ1u

+
j
∂F
∂u

(x,u+
j ,v+

j )+θ2v
+
j
∂F
∂v

(x,u+
j ,v+

j )−F(x,u+
j ,v+

j )
)

dx

+
2(αθ1 +βθ2−1)

α+β

∫
Ω

(u+
j )α(v+

j )β

|x|s dx

�
(

1
2
−θ1

)
‖u j‖2

H1
0 (Ω) +

(
1
2
−θ2

)
‖v j‖2

H1
0 (Ω)

� min

{
1
2
−θ1,

1
2
−θ2

}
‖(u j,v j)‖2

(H1
0 )2 ,

which implies ‖(u j,v j)‖ is bounded in (H1
0 )2 . Going if necessary to a subsequence,

we can assume that ⎧⎪⎪⎨⎪⎪⎩
(u j,v j) → (u,v) weakly in (H1

0 )2,
u j → u, in Lγ (Ω), 1 < γ < 2∗(s),
v j → v, in Lγ (Ω), 1 < γ < 2∗(s),
(u j,v j) → (u,v) a.e. in Ω

as j → ∞ . By (F1) and (F2) , there exists a positive constant M > 0 such that

F(x,u+
j ,v+

j ) � T
2

(
(u+

j )p1 +(v+
j )p2

)
+M. (7)

According to the absolutely continuity of integral, for any ε > 0, there exists δ = ε
2M >

0, when E ⊂Ω , mes(E) < δ , we have∫
E

(
(u+

j )p1 +(v+
j )p2

)
dx <

ε
T

.

Together with (7) , we deduce that∫
E

F(x,u+
j ,v+

j )dx � T
2

∫
E

(
(u+

j )p1 +(v+
j )p2

)
dx+Mmes(E)

� T
2
ε
T

+Mδ =
ε
2

+
ε
2

= ε.

Hence
{∫

ΩF(x,u+
j ,v+

j )dx, j ∈ N
}

is equi-absolutely-continuous. It follows easily from

the Vitali Convergence Theorem, we deduce that∫
Ω

F(x,u+
j ,v+

j )dx →
∫
Ω

F(x,u+,v+)dx.
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By the same method, we have∫
Ω

∂F(x,u+
j ,v+

j )

∂u
u+

j dx →
∫
Ω

∂F(x,u+,v+)
∂u

u+dx,

∫
Ω

∂F(x,u+
j ,v+

j )

∂v
v+

j dx →
∫
Ω

∂F(x,u+,v+)
∂v

v+dx,

as j → ∞ .
Let ũ j = u j −u , ṽ j = v j − v . Then, we have

‖(ũ j, ṽ j)‖2
(H1

0 )2 = ‖(u j,v j)‖2
(H1

0 )2 −‖(u,v)‖2
(H1

0 )2 +o(1).

Using the similar method of Lemma 2.1 in [6], one gets∫
Ω

(ũ+
j )α(ṽ+

j )β

|x|s dx =
∫
Ω

(u+
j )α(v+

j )β

|x|s dx−
∫
Ω

(u+)α(v+)β

|x|s dx+o(1).

Since

o(1) = 〈J′((u j,v j)),(u j,v j)〉

= ‖(u j,v j)‖2
(H1

0 )2 −2
∫
Ω

(u+
j )α(v+

j )β

|x|s dx

−λ
∫
Ω

(
u+

j
∂
∂u

F(x,u+
j ,v+

j )+ v+
j
∂
∂v

F(x,u+
j ,v+

j )
)

dx,

we deduce

‖(ũ j, ṽ j)‖2
(H1

0 )2 +‖(u,v)‖2
(H1

0 )2

−2
∫
Ω

(ũ+
j )α (ṽ+

j )β

|x|s dx−2
∫
Ω

(u+)α(v+)β

|x|s dx

−λ
∫
Ω

(
u+ ∂

∂u
F(x,u+,v+)+ v+ ∂

∂v
F(x,u+,v+)

)
dx = o(1). (8)

Furthermore, we have

lim
j→∞

〈J′(u j,v j),(u,v)〉

= ‖(u,v)‖2
(H1

0 )2 −2
∫
Ω

(u+)α (v+)β

|x|s dx

−λ
∫
Ω

(
u+ ∂

∂u
F(x,u+,v+)+ v+ ∂

∂v
F(x,u+,v+)

)
dx = 0. (9)

It yields

J((u,v)) =
(

1− 2
α +β

)∫
Ω

(u+)α (v+)β

|x|s dx

+λ
∫
Ω

[
1
2

(
u+ ∂

∂u
F(x,u+,v+)+ v+ ∂

∂v
F(x,u+,v+)

)
−F(x,u+,v+)

]
dx.
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Together with (F3), we conclude that

J((u,v)) � 0. (10)

Since J((u,v)) → c ( j → ∞) , we obtain

J((u j,v j)) =
1
2
‖(ũ j, ṽ j)‖2

(H1
0 )2 +

1
2
‖(u,v)‖2

(H1
0 )2 −

2
α+β

∫
Ω

(ũ+
j )α(ṽ+

j )β

|x|s dx

− 2
α +β

∫
Ω

(u+)α(v+)β

|x|s dx−λ
∫
Ω

F(x,u+,v+)dx+o(1)

= J((u,v))+
1
2
‖(ũ j, ṽ j)‖2

(H1
0 )2 −

2
α +β

∫
Ω

(ũ+
j )α(ṽ+

j )β

|x|s dx+o(1)

= c+o(1).

Therefore, one gets

J((u,v))+
1
2
‖(ũ j, ṽ j)‖2

(H1
0 )2 −

2
α +β

∫
Ω

(ũ+
j )α (ṽ+

j )β

|x|s dx = c+o(1). (11)

From (8) and (9), we have

‖(ũ j, ṽ j)‖2
(H1

0 )2 −2
∫
Ω

(ũ+
j )α (ṽ+

j )β

|x|s dx = o(1),

then ‖(ũ j, ṽ j)‖2 → 0 as j →∞ . Otherwise, there exists a subsequence (still denoted by
(ũ j, ṽ j)) such that

lim
j→∞

‖(ũ j, ṽ j)‖2
(H1

0 )2 = k, lim
j→∞

2
∫
Ω

(ũ+
j )α(ṽ+

j )β

|x|s dx = k, (12)

where k is a positive constant. By (2), we deduce that

‖(ũ j, ṽ j)‖2
(H1

0 )2 � Ãμ,s

(∫
Ω

(ũ+
j )α(ṽ+

j )β

|x|s
) 2

α+β

for all j ∈ N,

then k � Ãμ,s( k
2 )

2
2∗(s) , i.e., k � 2( Ãμ ,s

2 )
N−s
2−s , which, together with (11) (12), shows that

J((u,v)) = c− 1
2
k+

1
2∗(s)

k � c− 2− s
N− s

(
Ãμ,s

2

)N−s
2−s

< 0,

which contradicts (10). Therefore, we get

‖(ũ j, ṽ j)‖2 → 0 as j → ∞.

This proves (u j,v j) → (u,v) in (H1
0 )2 as j → ∞ .
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From the discussion above, J satisfies (PS)c condition. �

Let

Cε =

(
2ε(N− s)(μ− μ)√

μ

) N−2
2(2−s)

and Uε(x) =
yε (x)
Cε

.

Define a cut-off function ϕ ∈ C∞
0 (Ω) such that ϕ(x) = 1 for |x| � r , ϕ(x) = 0 for

|x| � 2r , 0 � ϕ(x) � 1, where B2r(0) ⊂Ω . Set uε(x) = ϕ(x)Uε(x) and

vε(x) = uε(x)/
(∫

Ω
|uε |2∗(s)|x|−sdx

)1/2∗(s)
,

so that
∫
Ω |vε |2

∗(s)|x|−sdx = 1. Then we can get the following results by the methods
used in [4]:

Aμ,s +C1ε
N−2
2−s � ‖vε‖2

H1
0 (Ω) � Aμ,s +C2ε

N−2
2−s , (13)

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C3ε
√
μ

2−s q �
∫
Ω |vε |qdx � C4ε

√
μ

2−s q, 1 � q < N√
μ+

√
μ−μ

,

C3ε
√
μ

2−s q| lnε| � ∫Ω |vε |qdx � C4ε
√
μ

2−s q| lnε|, q = N√
μ+

√
μ−μ

,

C3ε

√
μ(N−q

√
μ)

(2−s)
√
μ−μ �

∫
Ω |vε |qdx � C4ε

√
μ(N−q

√
μ)

(2−s)
√
μ−μ , N√

μ+
√

μ−μ
< q < 2∗.

(14)

LEMMA 2.2. Suppose that N � 3 , 0 � μ < μ , 0 � s < 2 . Assume that (F1)-
(F4) hold. Then there exist (u0,v0) ∈ (H1

0 )2 , (u0,v0) 	≡ 0 and λ ∗
1 > 0 such that

sup
t�0

J((tu0,tv0)) <
2− s
N− s

(
Ãμ,s

2

)N−s
2−s

,

for every λ ∈ (0,λ ∗
1 ) .

Proof. Let u =
√
αvε , v =

√
βvε , then we have

h(t) := J((tu, tv)) = J((t
√
αvε ,t

√
βvε))

=
t2

2
(α +β )‖vε‖2

H1
0 (Ω) −

2tα+β

α +β
α

α
2 β

β
2 −λ

∫
Ω

F(x,t
√
αvε , t

√
βvε)dx.

Let

h̃(t) :=
t2

2
(α +β )‖vε‖2

H1
0 (Ω) −

2tα+β

α +β
α

α
2 β

β
2 .
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Note that lim
t→+∞

h(t) = −∞ , h(0) = 0, h(t) > 0 for t → 0+ , so sup
t�0

h(t) is attained for

some tε > 0. Since (F3) and

0 =h′(tε ) = tε (α +β )‖vε‖2
H1

0 (Ω)

−λ
∫
Ω

(
∂F(x,tε

√
αvε ,tε

√
βvε)

∂u

√
αvε +

∂F(x,tε
√
αvε ,tε

√
βvε )

∂v

√
βvε

)
dx

−2tα+β−1
ε α

α
2 β

β
2 ,

we have

‖vε‖2
H1

0 (Ω) =
2α

α
2 β

β
2

α+β
tα+β−2
ε

+
λ

tε (α +β )

∫
Ω

(∂F(x,tε
√
αvε ,tε

√
βvε)

∂u

√
αvε

+
∂F(x,tε

√
αvε ,tε

√
βvε)

∂v

√
βvε
)
dx � 2α

α
2 β

β
2

α+β
tα+β−2
ε .

Therefore, one has

tε �

⎡⎣ (α +β )‖vε‖2
H1

0 (Ω)

2α
α
2 β

β
2

⎤⎦
1

α+β−2

�
= t0ε . (15)

By (13) and (14) , we get

‖vε‖2
H1

0 (Ω) → Aμ,s,

∫
Ω

vp1
ε dx → 0 and

∫
Ω

vp2
ε dx → 0 (16)

as ε → 0. From (F1) and (F2), we deduce that

∂F(x, tε
√
αvε , tε

√
βvε)

∂u

√
αvε +

∂F(x,tε
√
αvε ,tε

√
βvε)

∂v

√
βvε

� T
(
t p1−1
ε α

p1
2 vp1

ε + t p2−1
ε α

p2
2 vp2

ε

)
+C5tε
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for some constant C5 > 0. According to (15) , (16) and the Hölder inequality, we
obtain

‖vε‖2
H1

0 (Ω) =
2α

α
2 β

β
2

α +β
tα+β−2
ε

+
λ

tε(α +β )

∫
Ω

(∂F(x,tε
√
αvε ,tε

√
βvε )

∂u

√
αvε

+
∂F(x,tε

√
αvε ,tε

√
βvε)

∂v

√
βvε
)
dx

� 2α
α
2 β

β
2

α +β
tα+β−2
ε +

λ
(α +β )

T
(
(t0ε )

p1−2α
p1
2

∫
Ω

vp1
ε dx

+(t0ε )
p2−2β

p2
2

∫
Ω

vp2
ε dx

)
+

λC5|Ω|
(α +β )

=
2α

α
2 β

β
2

α +β
tα+β−2
ε +

λ
(α +β )

(T +C5|Ω|)+o(1)

as ε → 0. So there exists λ ∗
1 = α+β

2(T+C5|Ω|)Aμ,s > 0 such that

tε �
(

Aμ,s

2
α +β

2α α
2 β

β
2

) 1
α+β−2

Δ= T0 (17)

for every λ ∈ (0,λ ∗
1 ) .

On the first hand, from (13), we get

‖vε‖
2(N−s)

2−s

H1
0 (Ω)

� A
N−s
2−s
μ,s +C6ε

N−2
2−s . (18)

Furthermore, from (F3), we get

F(x,u,v) � θ1u
∂
∂u

F(x,u,v)+θ2v
∂
∂v

F(x,u,v)

� max{θ1,θ2}〈∇F(x,u,v),(u,v)〉
=

1
η
〈∇F(x,u,v),(u,v)〉. (19)

Consider the function h : [1,∞) −→ R defined by

h(t) = F(x,t−1u,t−1v)tη ,

clearly, this function is nonincreasing by (19). Thus for any |(u,v)| � 1, we have
h(1) � h(|(u,v)|) . Together with (F4), it yields

F(x,u,v) � F(x,(u,v)/|(u,v)|)|(u,v)|η
� inf

|(u,v)|=1
F(x,u,v)|(u,v)|η = b0|(u,v)|η . (20)
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If |(u,v)| � 1, by the continuity of F , one has,

F(x,u,v) � b0|(u,v)|η −C7,

where C7 � max{0,b0−min|(u,v)|�1 F(x,u,v)}. Together with (20), we deduce that

F(x,u,v) � b0|(u,v)|η −C7 (21)

for all (u,v) ∈ R
+×R

+ .
On the other hand, the function h̃(t) attains it’s maximum at t0ε and is increasing

in the interval [0, t0ε ] , together with (14), (17), (18) and (21), we deduce that

h(tε) � h̃(t0ε )−λ
∫
Ω

F(x,tε
√
αvε ,tε

√
βvε)dx

�
(

1
2
− 1
α+β

)⎡⎣(α +β )‖vε‖2
H1

0 (Ω)

2α α
2 β

β
2

⎤⎦
2

α+β−2

(α +β )‖vε‖2
H1

0 (Ω)

−λb0(α +β )η/2tηε

∫
Ω

vηε dx−λC7|Ω|

� 2

(
1
2
− 1
α +β

)⎡⎣ (α +β )

2α
α

α+β β
β

α+β

⎤⎦
α+β

α+β−2

(α +β )‖vε‖
2(N−s)

2−s

H1
0 (Ω)

−λC7|Ω|

−λb0(α +β )η/2Tη
0 C3ε

√
μ(N−η√μ)

(2−s)
√
μ−μ

� 2− s
N− s

⎡⎣⎛⎝(α
β

) β
α+β

+
(
α
β

) −α
α+β

⎞⎠ Aμ,s(Ω)
2

⎤⎦
N−s
2−s

+C8ε
N−2
2−s

−C9ε

√
μ(N−η√μ)

(2−s)
√
μ−μ −λC7|Ω|, (22)

where

C8 =
2− s
N− s

⎡⎣1
2

⎛⎝(α
β

) β
α+β

+
(
α
β

) −α
α+β

⎞⎠⎤⎦
N−s
2−s

C6 and C9 = λb0(α +β )η/2Tη
0 C3.

By (4), we obtain that

N−2
2− s

>

√
μ(N−η

√
μ)

(2− s)
√
μ− μ

.

Choosing ε small enough, by (3) and (22) , we have

sup
t�0

J((tu,tv)) = h(tε) <
2− s
N− s

(
Ãμ,s(Ω)

2

)N−s
2−s

. �
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Proof of Theorem 1. For any ε > 0, fix λ ∗
2 ∈ (0,ε) . If λ ∈ (0,λ ∗

2 ) , from (2) ,
(F3) , (7) and the continuity of embedding, for any(u,v) ∈ (H1

0 )2 , we have

J((u,v))

� 1
2
‖(u,v)‖2

(H1
0 )2 −

2
α +β

(Ãμ,s(Ω))−
2∗(s)

2 ‖(u,v)‖2∗(s)
(H1

0 )2

−λ
∫
Ω

F(x,u+,v+)dx

� 1
2
‖(u,v)‖2

(H1
0 )2 −

2
α +β

(Ãμ,s(Ω))−
2∗(s)

2 ‖(u,v)‖2∗(s)
(H1

0 )2

−λ
∫
Ω

(
θ1
∂F(x,u+,v+)

∂u
u+θ2

∂F(x,u+,v+)
∂v

v

)
dx

� 1
2
‖(u,v)‖2

(H1
0 )2 −

2
α +β

(Ãμ,s(Ω))−
2∗(s)

2 ‖(u,v)‖2∗(s)
(H1

0 )2

− λT
2

∫
Ω

(
(u+)p1 +(v+)p2

)
dx−λM|Ω|

� 1
2
‖(u,v)‖2

(H1
0 )2 −

2
α +β

(Ãμ,s(Ω))−
2∗(s)

2 ‖(u,v)‖2∗(s)
(H1

0 )2

− λT
2

C10

(
‖u+‖p1

H1
0 (Ω)

+‖v+‖p2
H1

0 (Ω)

)
−λM|Ω|

� 1
2
‖(u,v)‖2

(H1
0 )2 −

2
α +β

(Ãμ,s(Ω))−
2∗(s)

2 ‖(u,v)‖2∗(s)
(H1

0 )2

− λ ∗
2 T
2

C10

(
‖(u,v)‖p1

(H1
0 )2

+‖(u,v)‖p2
(H1

0 )2

)
−λ ∗

2 M|Ω|

� 1
2
‖(u,v)‖2

(H1
0 )2 −

2
α +β

(Ãμ,s(Ω))−
2∗(s)

2 ‖(u,v)‖2∗(s)
(H1

0 )2

− εT
2

C10

(
‖(u,v)‖p1

(H1
0 )2

+‖(u,v)‖p2
(H1

0 )2

)
− εM|Ω|.

As ε small enough, there exists β ′ > 0 such that J((u,v)) � β ′ for all J((u,v)) ∈
∂Bρ = {(u,v) ∈ (H1

0 )2,‖(u,v)‖(H1
0 )2 = ρ} , where ρ > 0 small enough. Let λ ∗ =

min{λ ∗
1 ,λ ∗

2 } . By Lemma 2.2, for λ ∈ (0,λ ∗) , there exists (u0,v0) ∈ (H1
0 )2 , (u0,v0) 	≡

0, such that

sup
t�0

J((tu0,tv0)) <
2− s
N− s

(
Ãμ,s(Ω)

2

)N−s
2−s

.

In addition, by the nonegativity of F , we get

J((tu0, tv0)) =
1
2
t2‖(u0,v0)‖2

(H1
0 )2 −λ

∫
Ω

F(x,tu0,tv0)dx− 2tα+β

α +β

∫
Ω

(u+
0 )α(u+

0 )β

|x|s dx

� 1
2
t2‖(u0,v0)‖2

(H1
0 )2 −

2tα+β

α +β

∫
Ω

(u+
0 )α(u+

0 )β

|x|s dx,
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which implies that lim
t→+∞

J((tu0,tv0)) →−∞ . Hence we can choose t0 > 0 such that

‖(t0u0, t0v0)‖ > ρ and J((tu0,tv0)) � 0. Applying the Mountain Pass Lemma in [11],
there is a sequence {(un,vn)}⊂ (H1

0 )2 satisfying J(un,vn)→ c� β ′ and J′(un,vn)→ 0,
where

c = inf
η∈τ max

t∈[0,1]
J(η(t)),

τ = {η ∈ ([0,1],(H1
0 )2)|η(0) = (0,0),η(1) = (t0u0,t0v0)}.

Note that

0 < β ′ � c = inf
η∈τ max

t∈[0,1]
J(η(t)) � max

t∈[0,1]
J((tt0u0,tt0v0))

� csup
t�0

J((tu0,tv0)) <
2− s
N− s

(
Ãμ,s(Ω)

2

)N−s
2−s

.

Now Lemma 2.1 suggests {(un,vn)} ⊂ (H1
0 )2 has a convergent subsequence, still de-

noted by {(un,vn)} . Assume that {(un,vn)} converges to (u,v) ⊂ (H1
0 )2 . From the

continuity of J′ we know that (u,v) is a solution of the problem (1). Then

〈J′((u,v)),(u−,v−)〉 = 0,

where u− = min{u,0} and v− = min{v,0} . It yields ‖(u−,v−)‖ = 0 together with
(F1) . So (u,v) is a nonnegative solution of the problem (1). Then (u,v) > 0 in Ω by
the Strong Maximum Principle. �

Proof of Theorem 2. First, let us consider the following truncated problem:⎧⎪⎪⎨⎪⎪⎩
−Δu− μ u

|x|2 = 2α
α+β

|u|α−2u|v|β
|x|s +λ ∂F1(x,u,v)

∂u , x ∈Ω\ {0},
−Δv− μ v

|x|2 = 2β
α+β

|u|α |v|β−2v
|x|s +λ ∂F1(x,u,v)

∂v , x ∈Ω\ {0},
u = v = 0, x ∈ ∂Ω,

(23)

where F1(x,z, t) = F(x,z,t)|(z,t)�0 . For this problem, it is easy to see that F1(x,z,t)
satisfies the conditions of Theorem 1. Therefore, by Theorem 1, there exists λ ∗ > 0
such that the problem (23) has a positive solution (u1,v1) for each λ ∈ (0,λ ∗) and it
is also a positive solution of the problem (1) by the definition of F1(x,z, t) . Next we
consider the following truncated problem:⎧⎪⎪⎨⎪⎪⎩

−Δu− μ u
|x|2 = 2α

α+β
|u|α−2u|v|β

|x|s +λ ∂F2(x,u,v)
∂u , x ∈Ω\ {0},

−Δv− μ v
|x|2 = 2β

α+β
|u|α |v|β−2v

|x|s +λ ∂F2(x,u,v)
∂v , x ∈Ω\ {0},

u = v = 0, x ∈ ∂Ω,

(24)

where F2(x,z, t) = F(x,z,t)|(z,t)�0 . Set G(x,u,v) = −F2(x,−u,−v) for (u,v) ∈ R
2 .

Then the problem (24) is equivalent to the following problem:⎧⎪⎪⎨⎪⎪⎩
−Δu− μ u

|x|2 = 2α
α+β

|u|α−2u|v|β
|x|s +λ ∂G(x,u,v)

∂u , x ∈Ω\ {0},
−Δv− μ v

|x|2 = 2β
α+β

|u|α |v|β−2v
|x|s +λ ∂G(x,u,v)

∂v , x ∈Ω\ {0},
u = v = 0, x ∈ ∂Ω,

(25)
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it is easy to see that G(x,z,t) satisfies the conditions of Theorem 1. Hence, there exists
λ ′∗ > 0 such that the problem (25) has a positive solution (u,v) for each λ ∈ (0,λ ′∗) .
Let (u2,v2) = −(u,v) , then (u2,v2) is a solution of (24) and it is also a solution of the
problem (1). Set λ = min{λ ∗,λ ′∗} . It is obvious that (u1,v1) 	= (0,0),(u2,v2) 	= (0,0)
and (u1,v1) 	= (u2,v2) . So the equation (1) has at least two distinct nontrivial solutions
for every λ ∈ (0,λ ) . Therefore, Theorem 2 holds. �
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