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Abstract. We establish the results concerning existence and non-existence of entire positive so-
lutions for the nonlinear elliptic systems⎧⎨

⎩
−Δpu = a(x)um +λc(x)vn, x ∈ R

N ,
−Δqv = b(x)vl +θc(x)un, x ∈ R

N ,
u,v > 0, x ∈ R

N and u → 0,v → 0 as |x| → ∞,

where 1 < p,q < N and λ ,θ � 0 are nonnegative parameters, a,b,c : R
N → [0,∞) are locally

Hölder continuous functions not identically zero, and −∞< m < p−1,−∞< l < q−1,max{p−
1,q−1}< n . The main purpose of this paper is to extend the principal theorem of Xu and Yang
in [23] which concerned single equation.

1. Introduction

In this paper we consider some new results concerning the existence and non-
existence of solutions for quasilinear system of the type⎧⎨

⎩
−Δpu = a(x)um +λc(x)vn, x ∈ R

N ,
−Δqv = b(x)vl +θc(x)un, x ∈ R

N ,
u,v > 0, x ∈ R

N and u → 0,v → 0 as |x| → ∞,
(1.1)

where Δp = div(|∇u|p−2∇u) , denotes the p -Laplacian operator, and Δq has the same
meaning, 1 < p,q < N and λ ,θ � 0 are nonnegative parameters, a,b,c : R

N → [0,∞)
are locally Hölder continuous functions not identically zero, and we assume −∞< m <
p−1,−∞< l < q−1,max{p−1,q−1}< n .

Problem (1.1) appears in many nonlinear phenomena, for instance, in the theory of
quasiregular and quasiconformal mappings, in the generalized reaction-diffusion theory
or in the study of non-Newtonian fluids, see [9], [19], [21]. In the latter case, the
quantity (p,q) is a characteristic of the medium. Media with (p,q) > (2,2) are called
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dilatant fluids and those with (p,q)< (2,2) are called pseudoplastics. If (p,q)= (2,2) ,
they are Newtonian fluids.

Since 1980s, many important results have been obtained for quasilinear elliptic
systems. We will introduce some results in the following. Existence and non-existence
of solutions of the quasilinear elliptic system{

div(|∇u|p−2∇u)+ f (u,v) = 0, x ∈ R
N ,

div(|∇v|q−2∇v)+g(u,v) = 0, x ∈ R
N ,

(1.2)

has gained much attention recently. See, for example, [8], [15], [25] and [26].
When p = q = 2, system (1.2) becomes{

Δu+ f (u,v) = 0, x ∈ R
N ,

Δv+g(u,v) = 0, x ∈ R
N ,

for which the existence and the non-existence of positive solutions and positive bound-
ary blow-up solutions have been investigated extensively. We list here, for example,
[4], [6], [8], [18], [20], [26] and refer to the references therein.

When to single equation, that is for equation

Δu+ f (x,u) = 0, x ∈ R
N ,

there had been many results about the existence or uniqueness of the positive solutions,
see [5], [10] and [11]. Recently A. V. Lair and A. Mohammed in [15] considered the
existence and nonexistence of positive entire large solutions of the semilinear elliptic
equation

Δu = p(x)uα +q(x)uβ , 0 < α � β .

Before their work, Xu and Yang in [23] established the existence for single equation⎧⎨
⎩

−Δpu = a(x)(um +λun), x ∈ R
N ,

u > 0, x ∈ R
N ,

u → 0 as |x| → ∞,
(1.3)

where 0 < m < p− 1 < n , they proved there exists a λ ∗ > 0 such that (1.3) has a
positive solution for 0 < λ < λ ∗ . For more results we refer the reader to the works
[16], [17], [21], [29] and the references therein.

Motivated by the results of the papers [1], [7], [12], [15], [23], and [28]. In this
paper, we consider the quasilinear elliptic system (1.1). The main object of the present
paper is to extend the principal result of [23] and complement results in [1], [7], [12],
[15], and [28] to show that there exists (0,0) < (λ∗,θ∗), (λ ∗,θ ∗) < (∞,∞) such that
when (0,0) � (λ ,θ ) � (λ∗,θ∗) system (1.1) has at least one solution, but no position
solution when (λ ∗,θ ∗) < (λ ,θ ) . We use (λ ,θ ) > (λ ∗,θ ∗) to denote λ > λ ∗ ,θ > θ ∗
and the same meaning for other cases in this paper.

The paper is organized as follows. In section 2, we recall some facts that will be
needed in the paper. In section 3, we give the proofs of the main results in this paper.
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2. Preliminaries

In order to establish our results, we introduce some notations. We denote

M(x) = max{a(x),c(x)}, x ∈ R
N , m̃(x) = min{a(x),c(x)}, x ∈ R

N ,

N(x) = max{b(x),c(x)}, x ∈ R
N , ñ(x) = min{b(x),c(x)}, x ∈ R

N .

A sub-solution of (1.1) is meant as a pair of positive functions (u,v) ∈C1(RN)×
C1(RN) with u → 0,v → 0 as |x| → ∞ and∫

RN
|∇u|p−2∇u∇ϕdx �

∫
RN

(a(x)um +λc(x)vn)ϕdx,

∫
RN

|∇v|q−2∇v∇ϕdx �
∫

RN
(b(x)vl +θc(x)un)ϕdx,

for all ϕ ∈C∞
0 (RN), ϕ � 0 and (u,v) to be the super-solution if it satisfied the inverse

inequality above.
The following lemma is well known.

LEMMA 2.1. (see [3]) Suppose there exist a sub-solution (u,v) and a super-
solution (u,v) of system (1.1) such that (u,v) � (u,v) . Then there exist at least one
solution (u,v) of (1.1) such that (u,v) � (u,v) � (u,v) .

In this paper, we use the following definition.

DEFINITION 2.2. Say that a function ρ(x) ∈ C(RN),ρ(x) � 0 has the property
(Hp) if the problem ⎧⎨

⎩
−Δpu = ρ(x), x ∈ R

N ,
u > 0, x ∈ R

N ,
u → 0 as |x| → ∞,

(2.1)

has an entire bounded positive solution ωρ ∈C1,α
loc (RN) for some α ∈ (0,1) .

In fact, from [28] we know that if ρ(x) satisfies

H∞ =
∫ ∞

0
(s1−N

∫ s

0
tN−1ψ(t)dt)

1
p−1 ds < ∞, (2.2)

where ψ(t) = max|x|=t ρ(x), t > 0, then ρ(x) has the property (Hp) .

REMARK 1. If M(x) has the property (Hp) and m̃(x) �= 0, then m̃(x) also has the
property (Hp) , additionally, we can easy to verify 0 < ωm̃ � ωM .

REMARK 2. If N � 3, p < N , then condition (2.2) can be replaced by

0 <

∫ ∞

1
t

1
p−1ψ(t)

1
p−1 dt < ∞, if 1 < p � 2, (A)

0 <

∫ ∞

1
t

(p−2)N+1
p−1 ψ(t)dt < ∞, if p � 2, (B)
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where ψ(t) = max|x|=t ρ(x) � 0.

For the prove of non-existence of positive solutions for system (1.1), we also con-
sider the eigenvalue problem on a smooth bounded domain Ω⊆ R

N :{−Δpu = λρ(x)|u|p−2u, x ∈Ω,
u(x) = 0 x ∈ ∂Ω,

(2.3)

where ρ(x) ∈Cα(Ω,(0,∞)) for some 0 < α < 1. The first eigenvalue of the problem
(2.3) will be denoted by λΩ(ρ) . It is well known that the following result holds true.

LEMMA 2.3. (see [2]) Suppose that Ω1 ⊂ Ω2 , and Ω1 �= Ω2 . Then λΩ1(ρ) >
λΩ2(ρ) if both exist.

So there exists
λ0(ρ) = lim

k→∞
λBk(0)(ρ) ∈ [0,∞),

where Bk(0) is the ball centered at the origin and radius k = 1,2, · · · .

THEOREM 2.4. ([2, Theorem 2.1, p.821]) Let v ∈ C1 satisfy v > 0 in Ω and
−Δpv � λgvp−1 for some λ > 0 . Then for u � 0 in Xp (the completion of C∞

0 (Ω)),
we have ∫

Ω
|∇u|pdx � λ

∫
Ω

g|u|pdx, (2.4)

and λ � λ1 . The equality in (2.4) holds if and only if λ = λ1,u = kv and v = cu1 (on
each component of Ω if Ω is not connected) for some constants k,c. In particular, the
principal eigenvalue λ1 is simple if Ω is connected.

LEMMA 2.5. Given 0 < λ <∞ , assume that there exists a u ∈C1(RN) such that⎧⎨
⎩

−Δpu � λρ(x)up−1, x ∈ R
N ,

u > 0, x ∈ R
N

u → 0 as |x| → ∞,
(2.5)

holds, then λ � λ0(ρ) .

Proof. Because u satisfies (2.5), then we have{−Δpu � λρ(x)up−1, x ∈ Bk(0),
u > 0, x ∈ Bk(0),

for k = 1,2, · · · and Bk(0) is as above. Assume the first eigenvalue of (2.3) with Ω be
replaced by Bk(0) is λBk(0) . By theorem 2.4, we have

λ � λBk(0)(ρ), k = 1,2, · · · .
That is λ � limk→∞ λBk(0)(ρ) = λ0(ρ) , this end the proof.

REMARK 3. By Lemma 2.4 we can easily verify λ0(ρ) is positive if (2.2) is
satisfied.

Now we obtain our main result.
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THEOREM 2.6. Assume M(x),N(x) have the property (Hp),(Hq) and

m̃(x) �= 0, ñ(x) �= 0, −∞ < m < p−1, −∞< l < q−1, max{p−1,q−1}< n.

Then there exist (0,0) < (λ∗,θ∗), (λ ∗,θ ∗) < (∞,∞) such that the system (1.1) has:
(1) at least one solution, if (0,0) � (λ ,θ ) � (λ∗,θ∗) and
(2) no position solution, if (λ ∗,θ ∗) < (λ ,θ ) .

3. Proof of Main Result

In this section we will give the proof of Theorem 2.6. First let us study another
system: ⎧⎨

⎩
−Δpu = a(x)(um +λvn), x ∈ R

N ,
−Δqv = b(x)(vl +θus), x ∈ R

N ,
u,v > 0, x ∈ R

N and u → 0,v → 0 as |x| → ∞,
(3.1)

where a,b : RN → [0,∞) are locally Hölder continuous functions, and we assume −∞<
m < p−1 < n,−∞< l < q−1 < s . Then we have.

THEOREM 3.1. Assume that a(x),b(x) have the property (Hp),(Hq) , and −∞<
m < p−1 < n,−∞< l < q−1 < s. Then there exist (λ∗,θ∗) > (0,0) such that system
(3.1) has at least one positive solution for each (λ∗,θ∗) � (λ ,θ ) � (0,0) .

Proof. First we may assume ωa satisfies (2.1) with ρ(x) be replaced by a(x) and
ωb satisfies (2.1) with ρ(x), p be replaced by b(x),q . Consider

λ (t) =
t p−1− tm‖ωa‖m

∞
tn‖ωb‖n

∞
=

1
‖ωb‖n

∞
(t p−1−n− tm−n‖ωa‖m

∞),

θ (t) =
tq−1− tl‖ωb‖l

∞
ts‖ωa‖s

∞
=

1
‖ωa‖s

∞
(tq−1−s− tl−s‖ωb‖l

∞).

It is easy to see λ (t) reaches its maximum value at t1 = ((m−n)‖ωa‖m
∞

p−1−n )
1

p−1−m , and θ (t)

reaches its maximum value at t2 = ((l−s)‖ωb‖l
∞

q−1−s )
1

p−1−l , set t0 = max{t1, t2} , and denote

λ∗ =
1

‖ωb‖n
∞

(t p−1−n
0 − tm−n

0 ‖ωa‖m
∞), θ∗ =

1
‖ωa‖s

∞
(tq−1−s

0 − tl−s
0 ‖ωb‖l

∞).

Then for (0,0) � (λ ,θ ) � (λ∗,θ∗) , we take u = t0ωa, v = t0ωb . Then there is

−Δpu = t p−1
0 a(x) � a(x)[tm0 ‖ωa‖m

∞+λ tn0‖ωb‖n
∞]

� a(x)[tm0 ω
m
a +λ tn0ω

n
b ]

� a(x)(um + vn).

It follows that we have
−Δqv � b(x)(vl +us).
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Thus (u,v) ∈C1(RN)×C1(RN) is a supper-solution of system (3.1).
On the other hand, let us consider⎧⎨

⎩
−Δpu = a(x)um, x ∈ Bk(0),
−Δqv = b(x)vl x ∈ Bk(0)
u,v > 0, x ∈ Bk(0) and u = 0,v = 0, x ∈ ∂Bk(0),

(3.2)

where Bk(0) as above. In fact, the existence of positive solutions for system (3.2) is
equivalent to the existence of positive solutions for the following two elliptic problems:{−Δpu = a(x)um, x ∈ Bk(0),

u > 0, x ∈ Bk(0) and u = 0, x ∈ ∂Bk(0),

and {−Δqv = b(x)vl x ∈ Bk(0),
v > 0, x ∈ Bk(0) and v = 0, x ∈ ∂Bk(0).

From [21] we know there exist uk,vk ∈ C1(Bk(0))∩C(Bk(0)) satisfy the above two
problems, that’s satisfy system (3.2). Taking uk = vk = 0 for |x| > k and using a weak
comparison principle (see [13]), for any x ∈ R

N we have:

u1(x) � u2(x) � · · · � uk(x) � uk+1(x) � · · · � u(x),

v1(x) � v2(x) � · · · � vk(x) � vk+1(x) � · · · � v(x).

Setting u(x) = limk→∞ uk(x), v(x) = limk→∞ vk(x) and using some standard computa-
tions we show that u(x),v(x) ∈C1(RN) and satisfy⎧⎨

⎩
−Δpu = a(x)um � a(x)(um +λvn), x ∈ R

N ,
−Δqv = b(x)vl � b(x)(vl +θus) x ∈ R

N ,
u,v > 0, x ∈ R

N and u → 0,v → 0 as |x| → ∞,
(3.3)

and u � u,v � v . By lemma 2.1 we complete the proof. �

REMARK 4. Theorem 3.1 can be considered as an improvement and generalization
of the result in [23].

PROOF OF THEOREM 2.6. First we denote. Similar to the proof of Theorem 3.1,
we can find (λ∗,θ∗) > (0,0) corresponding to M(x),N(x) such that for any

(λ∗,θ∗) � (λ ,θ ) � (0,0),

there is (uλ ,vθ ) ∈C1(RN)×C1(RN) satisfy⎧⎨
⎩

−Δpu = M(x)(um +λvn) � a(x)um +λc(x)vn � a(x)um, x ∈ R
N ,

−Δqv = N(x)(vl +θun) � b(x)vl +θc(x)un � b(x)vl , x ∈ R
N ,

u,v > 0, x ∈ R
N and u → 0,v → 0 as |x| → ∞.

(3.4)

In particular, (u,v) = (uλ ,vθ ) is a supper-solution for system (1.1).
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Now we consider (u,v) being a solution for system (3.3), then (u,v) is a sub-
solution of (1.1), and (u,v) � (u,v) . Then by Lemma 1.1, there exists a positive solu-
tion (u,v) ∈C1(RN)×C1(RN) with (u,v) � (u,v) � (u,v) .

This shows (1) of Theorem 2.6.
On the other hand, given λ ,θ > 0, define

hλ (t) = tm−p+1 +λ tn−p+1 and hθ (t) = tl−q+1 +θ tn−q+1.

Consider

tλ = (
p−1−m
n− p+1

)
1

n−m
1

λ
1

n−m

, λ > 0,

tθ = (
q−1− l
n−q+1

)
1

n−l
1

θ
1

n−l

, θ > 0.

We easily to see that

hλ (t) � hλ (tλ ) = (
n−m

n− p+1
)(

p−1−m
n− p+1

)
m−p+1

n−m λ
n−p+1
n−m , ∀t > 0,

and

hθ (t) � hθ (tθ ) = (
n− l

n−q+1
)(

q−1− l
n−q+1

)
l−q+1
n−l θ

n−q+1
n−l , ∀t > 0,

since hλ (t) → ∞ asλ → ∞ , and hθ (t) → ∞ as θ → ∞ , we choose

λ > λ1(m̃)
n−m

p−1−m (
p−1−m
n− p+1

)
p−1−n
p−1−m (

n−m
n− p+1

)
m−n

p−1−m = λ ∗, (3.5)

θ > θ1(ñ)
n−l

q−1−l (
q−1− l
n−q+1

)
q−1−n
q−1−l (

n− l
n−q+1

)
l−n

q−1−l = θ ∗, (3.6)

by contradiction, system (1.1) has a solution (u,v) , so for any ϕ ∈C∞
0 (RN),ϕ � 0,

∫
RN

|∇u|p−2∇u∇ϕdx−
∫
RN

hλ (tλ )m̃(x)up−1ϕdx

�
∫

RN
|∇u|p−2∇u∇ϕdx−

∫
RN

hλ (u)m̃(x)up−1ϕdx

=
∫

RN
|∇u|p−2∇u∇ϕdx−

∫
RN

m̃(x)(um +λun)ϕdx

�
∫

RN
|∇u|p−2∇u∇ϕdx−

∫
RN

a(x)umϕ +λc(x)unϕdx

and

∫
RN

|∇v|q−2∇v∇ϕdx−
∫

RN
hθ (tθ )ñ(x)uq−1ϕdx

�
∫

RN
|∇v|q−2∇v∇ϕdx−

∫
RN

b(x)vlϕ+θc(x)vnϕdx,
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but we have ∫
RN

c(x)unϕdx �
∫

RN
c(x)vnϕdx (3.7)

or ∫
RN

c(x)unϕdx �
∫

RN
c(x)vnϕdx (3.8)

holds. If (3.8) holds, then

∫
RN

|∇u|p−2∇u∇ϕdx−
∫
RN

hλ (tλ )m̃(x)up−1ϕdx

�
∫

RN
|∇u|p−2∇u∇ϕdx−

∫
RN

a(x)umϕ+λc(x)vnϕdx = 0.

By lemma 2.5 we have hλ (tλ ) � λ1(m̃(x)) , but its impossible from (3.5).
If (3.7) holds, then we also get the contradiction with (3.6). That’s end the proof

of Theorem 2.6 �

REMARK 5. If we still have m, l � 0 of system (1.1) or (3.1), and there is a
positive solution (u,v) for (1.1) or (3.1), similar as the argument in [23], define ua =

p−1
p−1−mu

p−1−m
p−1 (x) and vb = q−1

q−1−l v
q−1−l
p−1 (x) . It’s easy to see that ua is a supper-solution

of (2.1) with ρ = a , so a(x) has the property (Hp) , also we have b(x) has the property
(Hq) .
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