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A GENERAL FOURTH-ORDER PARABOLIC EQUATION

CHAO ZHANG AND SHULIN ZHOU

(Communicated by J.-M. Rakotoson)

Abstract. In this paper we establish the existence and uniqueness of weak solutions for the
initial-boundary value problem of a general fourth-order parabolic equation. Our assumptions
are much weaker than those in the literature.

1. Introduction

Suppose that Q is a bounded domain of RY(N > 2) with smooth boundary 0Q,
and T is a positive number. Denote Q7 = Q x (0,7], I' = dQ x (0,T]. In this paper
we study the following fourth-order parabolic initial-boundary value problem

w+div (De®(VAw)) = f —divg in Qr,
u=0,Au=0 on I, (1.1
u(x,0) = up(x) on Q,

where @ : RN — R is a C! nonnegative convex function, D:®: RN — R represents
the gradient of ®(&) with respect to & . Without loss of generality we may assume that
®(0) =0.

Our main assumptions are that ®(&) satisfies the super-linear condition (or 1-
coercive condition, see [11, Chapter E]),

im (&) _ oo, (1.2)

HEe

and the symmetric condition: there exists a positive number C > 0 such that
O(-§) <CP(§), EeRY. (13)
We assume that

up € HY(Q), f € L¥(Qr) and g € (L™(Qr))~. (1.4)
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266 CHAO ZHANG AND SHULIN ZHOU

There are many interesting papers related to problem (1.1), we refer to [17] and
the reference therein. We list some well-known examples of ®(&) satisfying structure
assumptions (1.2) and (1.3):

@

1
(&) =—[", p>1;
p
(i1)
Uiy Lig 1 PN ;
®(§):_‘51|1+_‘52|2++_‘5N‘ ’ Pi>1»l:1»2»~~~7N7
p1 p2 PN
where & = (&1,&,...,&n), see [13, Chapter 2];

(>iii)
(&) = |&[log(1+[&]),
see [6] and [2, Chapter 4];

@iv)

(&) = IE[Le(IE),
where L;(s) =log(1+L;_i(s)) (i =1,2,...,k) and Lo(s) = log(1l +s) for s > 0, see
for instance [9];

v)
ﬁ
(I)(é) =e?2 — 17
see for instance [7, 12].

In [17], Xu and Zhou have proved the existence and uniqueness of weak solutions
of problem (1.1) with Neumann boundary conditions and f = g = 0 under the main
assumption that ®(&) satisfies the following A, condition, i.e., there exist a number
K > 2 and a constant R > 0 such that

O(28) <KP(E), [5]=R.

This condition implies that ®(£) would be controlled by a polynomial of |£|. There-
fore, A, condition is not satisfied by Example 5. This motivates us to weaken the A,
condition. In this paper, we do not assume polynomial or exponential growth for func-
tion ®. Generally speaking, finding solutions for such parabolic problems or deriving
the Euler-Lagrangian equations for minimizers of variational problems is not a trivial
fact when function ®(§) does not satisfy the A, condition. To do this, we need to es-
tablish some new estimates under the weaker assumption on ®(&). We will prove the
existence and uniqueness of weak solutions of problem (1.1) under assumptions (1.2),
(1.3) and (1.4) by methods of difference and calculus of variations, which have been
used in [17, 16]. By the same technique we may obtain the same results for the similar
problem with Neumann boundary conditions.

Let 1" =N/(N —1). Now we define weak solutions of problem (1.1).
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DEFINITION 1.1. A function u: Q x [0,7] — R is said to be a weak solution of
the problem (1.1) if the following conditions are satisfied:

(1) ue C([0,T];L*(Q))NL=(0,T; H} (Q))NL (0, T; W1 (Q)), Auec L'(0,T; Wy (Q))
and

T
/ / D ®(VA) - VAudxdt < +oo;
0 JQ

(2) forany ¢ € C'(Qr) with @(-,T) =0 and ¢(-,1)|9o = 0, equality
/ up(x)(x,0) dx — / / u@; + Dz ®(VAu) - Vo) dxdt

= fodxdr+ g-Vodxdt (1.5)
=) fyroasa [

holds.

REMARK 1.1. Recalling (2.4), (1.3) and (2.5), we have
|D§(I)(VAu) Vol < O(V)+D(—Vo) + ‘{’(ng)(VAu))

(C+1)® (Vo) + Dz d(VAu) - VAu.

NN

From (1) in Definition 1.1 and ¢ € C'(Qr), we can know that D ®(VAu) - Vo is an
integrable function on Q7.

REMARK 1.2. Let u be a weak solution of problem (1.1). By using the approx-
imation technique (_see [3, Chapter 3] or [5, Chapter 2]) we have, for each ¢ € [0,T]
and every ¢ € C'(Qr) with ¢(-,1)|50 =0,

t 1
/u(pdx —// [u(p, +D§®(VAu)~V(p] dxdt
Q 0 JoJa

t 1
://fq)dxdr—I—//g-V(pdxdr. (1.6)
0JQ 0JQ

REMARK 1.3. By an approximation argument (see [17]), we can formally choose
—Au as atest function in (1.6). Indeed we may use the Steklov averages

1 itk
[V]n(x,t) = Z/z v(x,7)dT (1.7

of the function v(x,t) to replace the corresponding function, and then pass to the limits.
Therefore, we obtain from (1.7) an energy type estimate

t
HVu(t)Hiz(Q)+/O/QD§®(VAu)~VAudxdT< Vo2 +C. (18)

where C is a constant depending on ®(&), || fl|,v (o) and [Igllz=(o;)-

Next, we state our main theorem.



268 CHAO ZHANG AND SHULIN ZHOU

THEOREM 1.1. Under structure assumptions (1.2), (1.3) and integrability condi-
tion (1.4), the initial-boundary value problem (1.1) admits a unique weak solution.

This paper is organized as follows. In Section 2, we give some crucial lemmas
that will be used later. We will prove our main result in Section 3.

In the following sections C will represent a generic constant that may change from
line to line even if in the same inequality.

2. Preliminaries

In this section, we will list some useful lemmas that will be used later. Let us
define the polar function of ®(£) as

¥(n) = sup {n-&—-d(&)}, (2.1)
EERN

which is also known as the Legendre transform of ®(&). It is obvious that ¥(n) is a
convex function.

LEMMA 2.1. Suppose that ®(&) is a convex C' function with ®(0) = 0. Then

we have, for all £, € RN,
D(8) < &-DD(E), (2.2)
(DO(E) —DD(L))- (&) >0. (2.3)

LEMMA 2.2. (see [1]) Suppose that ®(&) is a nonnegative convex C U function
and ¥ (n) is its polar function. Then we have, for £,1,{ € RV,

E-m<OE)+¥(), (2.4)
¥(DD({)) +D(8) =DP(E)-¢. (2.5)

LEMMA 2.3. (see [8, Chapter 3]) Suppose that ®(&) is a nonnegative convex
Sunction with ®(0) = 0, which satisfies (1.2). Then ¥(n) in (2.1) is a well-defined,
nonnegative function in RN, which also satisfies (1.2).

LEMMA 2.4. (see[14, Chapter 4]) Let D C RN be measurable with finite Lebesgue
measure, fi,gr € L'(D) (k=1,2,...) and

[fil)| < gilx), aexeD k=1,2,....

If
lim f(x) = f(x), ~Jim gi(+) = g(x). @ x€ D,

koo

and
lim [ gi(x)dx= / g(x)dx < oo,
k= JD D

then we have

lim /ka(x)dx:/Df(x)dx.

k—soo0
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LEMMA 2.5. (see [4, Chapter 3] and [15]) Suppose that ®(&) is a nonnegative

convex function satisfying (1.2). Let D C RN be a measurable with finite Lebesgue
measure |D| and a sequence {f;} C L(D;RN) satisfies that

[emar<c. 2.6)
D

where C is a positive constant. Then there exist a subsequence { fkj} C{fi} anda
function f € L(D;RN) such that

fo, = weakly in L(D:RY) as j— oo (2.7)
and
/ ®(f)dx < liminf | (fi,)dx < C. 2.8)
D J— JD

3. Proof of the main result

In this section, we will use the methods of difference and calculus of variations,
similar as in [17, 16], to prove the main result.

We first discretize problem (1.1) in the time direction to obtain a sequence of el-
liptic problems. Let m be a positive number. Denote & = T /m. Consider the following
elliptic problem

U — Ug—1 .
T + div (Déd)(VAuk))

= [f]n((k—1)h) —divig]y((k—1)h) inQ, G.1)
oo =0, Aulgo=0, k=12, ... .m,
where the Steklov averages [f];, [g]n of f,g, are, respectively, defined in (1.7). Clearly,
we have [f],(-) € L¥(Q) and [g]u(-) € (L=(Q))".
Set
Jo(x) = [f1n(0) and go(x) = [g]x(0).

Now, let us consider the existence and uniqueness of weak solutions of the following
elliptic problem

u—1ug

+div (D ®@(VAu)) = fo(x) —div(go(x)) in Q, 32)
u=0, Au=0 on 0Q, .

with ug € H}(Q), which is the case of (3.1) when k = 1.
We introduce the set

V= {v € HY(Q) NW>" (Q)|Av e W(Q) and ®(VAY) € L! (Q)} .

It is easy to verify that V is a closed and convex set.
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DEFINITION 3.1. A function u € V with Dz ®(VAu) - VAu € L'(Q) is called a
weak solution of problem (3.2) if for any ¢ € Cy’(Q), we have

/ u_uo(pdx—/Déd)(VAu)-V(pdx:/fo(pdx+/g0~V(pdx. (3.3)
o h Q Q Q

REMARK 3.1. The requirement Dz ®(VAu) - VAu € L'(Q) make it possible to
find an energy type estimate and prove the uniqueness of solutions.

PROPOSITION 3.1. There exists a unique weak solution u; € V for problem (3.2).

Proof. We consider the variational problem
min{J(v)|v € V},

where the functional J is defined by:

1
J(v):—/ |Vv—Vu0|2dx+/ ®(VAY)dx
2h Jo Q
+ / fohvdx+ / 20+ VAvdx.
Q Q

We will establish that J(v) has a minimizer u;(x) in V.
Due to (1.2), for every € > 0, there exists a constant C¢ > 0 such that

|E| < eD(&E) +Ce. 34

By Holder’s and Sobolev’s inequalities and (3.4), we have

| [ sotvax| < 1 5llovcey 1Vl

1 foll oy @) IVAV[| 1 @)

<
< Cel|D(VAV) 11 gy +Ce (3.5)

and
|| 0- Vavas| < lsolli=) 19811 g
< Ce|| D(VAV) | 1) + Ce- (3.6)

Choosing ¢ sufficiently small, we conclude from (3.5) and (3.6) that

1 1
J(v) > —/ |Vv—Vu0|2dx+—/ ®(VAV)dx
2h Jo 2Ja

—C(D, | /ollv): 180l =(2))
> —C.
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Thus we get
1
—C<infJ(v) <J(0) = —/ Vito |2 dx.
2h Jo

veV

We can choose a minimizing sequence {v,};_; C V such that

J(vp) — inf J(v).

veV

It follows that, for n =1,2,...,

vall 1@y < € and / ®(VAv,)dx < C. 3.7)
Q

Since Av, € WO1 1(Q) with ®(VAv,) € L'(Q), by using Sobolev’s imbedding theorem,
we have

1Ava][ 1+ (@) < CllAVAllwri(g) < ClIVAV11(q)

<
< BVl o) +C.

Using WP -theory of elliptic equations for the function v,, (see [10]), we obtain
Vallwze (@) < ClAVA]| 1+ () < CP(VAV,) || 11(q) +C < Ci.
Thus we obtain

HVn”H(% (Q) + HVn”WZ.l*(Q) + Hq)(VAVn)HLl(Q) S C (38)

By using Lemma 2.5 we may extract a subsequence {v,;}7_; C {v,},_; and a function
uy € HY (Q)NW21"(Q) with Auy € W, (Q) such that

vp; —up  weakly in H}(Q),

vp; —up weakly in w2 (Q),

VAv,, =1 weakly in (L'(Q))".
It follows that

Avy; — Auy - weakly in LY (Q).
Then we have 11 = VAu; .
Since

/ IV — Vo2 dx < liminf/ Vv, — Vg2 dx
Q J7e JQ

and
/d)(VAm dx < liminf dJ(VAV,, )dx,
Q

Jj—ee
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we know that u; € V, and J(v) is weakly lower semi-continuous on V', which ensures

that
J(ur) < liminfJ(v,;) = inf J(v).
’ veV

]

This implies that u; € V is a minimizer of the functional J(v) in V, i.e.,

J(u) = 325](\2)
Since u; € V is a minimizer, we have Au; € V,A € (0,1) and
J(ul) <J(1u1)7
which implies
1
—/ |Vu1—w0\2dx+h/ ®(VAuy)dx
2 /o Q
+h/f0Au1dx+h/g0-VAu1dx
Q Q
1
< —/ \)LVul—Vu0|2dx+h/ ®(AVAu)dx
2 Jo Q
+)Lh/foAuldx—l-/lh/go-VAuldx.
Q Q

Recalling (2.3), we know
D(VAu) — O(AVAu;) > (1 - )L)Déd)()LVAul) -VAuy,

then
1
E(1—/12)/ |Vu1|2dx+h(1—)t)/Dédb(/lVAul)-VAuldx
Q Q
+h(l—)L)/foAuldx—l—h(l—)L)/go-VAuldx< (1—/1)/ Vuy - Vugdx.
Q Q Q
Dividing the above inequality by 1 — A, and passing to limits as A — 1, we have
/\Vu1\2dx+hliminf/ D ®(AVAuy) - VAuj dx
Q A—1 JQ
—|—h/ foAuld)H—h/g0~VAu1dx</Vu1~Vu0dx.
Q Q Q
Since ng)()t VAuy) - VAu; > 0, by Fatou’s Lemma we conclude that
/ng)(VAul)-VAuldxgli)lL‘nilllf/ De®(AVAu) - VAu, dx
Q -1 Ja
and

/Q\Vul\2dx+h/QD§d>(VAu1)-VAuldx
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+h/QfoAu1dx—|—h/ng~VAu1dx</QVu1~Vu0dx. 3.9
Similar to (3.5) and (3.6), using (2.5) we get
/Q|VI/L1 \2dx+h/g‘{‘(D§(I)(VAu1))dx
< /Q |Vu1|2dx+h/QD§(I)(VAu1) - VAu; dx

< /QVMI -Vugdx + Chl|®(VAuy)|| 11 () +C.

It follows that Dz ®(VAu;) - VAu; € L'(Q) and W(Ds®(VAu,)) € L'(Q).
Now for every ¢ € V and every A € (0,1), we have

J(ur) <J(Aur+ (1 —24)9).

Setting
&, =AVAu; + (1—A1)VA9,

which implies from the above inequality that
1
—/ \Vul—Vuo\zdx—i-h/ O(VAuy)dx
2 Ja Q
+h/f0Au1dx+h/g0-VAu1dx
Q Q
1
< E/Q\)L(Vul—Vu0)+(l—)L)(Vq)—Vuo)\z—Fh/Q(I)(éA)dx
+)Lh/foAuldx—i—(l—)L)h/foAq&dx
Q Q
—|—7Lh/go-VAuldx—F(l—/l)h/go-VAq)dx.
Q Q
In view of (2.3), we find

O(VAur) = (&) = (1= A)De®(5) - (VAuy — VAQ).

Thus we have
(1—/l)h/QDécb(if;L)-(VAul—VAq))dx
+(1—/1)h/foAuldx+(1—/l)h/go-VAu1dx
< / (1+A)|Vuy — Vg > + 24 (Vuy — Vug) - (Vo — Vug)

4 (1= )|V — V| ]dx—i—(l—)L)h/QfOAq)dx—i-(l—)L)h/ggo~VA¢dx.
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Dividing the above inequality by 1 — A, we obtain

/DgCD(if;L)-(VAul—VAq))dx—i—/foAuldx—l—/go-VAuldx
Q Q
Zh/ (14 4)|Vuy — Vug|? +2A (Vuy — Vug) - (Vo — V)
+(1=24)|Ve — Vuo|?] dx+/foAq)dx+/go-VAq)dx. (3.10)
Q Q

Consider
g(2) = (&) = B(VAu; + (1 - 2)VAP).

It is obvious that g is a convex function in R. Then by the monotonicity of a convex
function’s derivative, we know

g0)<g () <g (1), A2€(0,1),
which yields that

D:®(VAY) - (VAus — VAG) < D ®(&;) - (VAu; — VAQ)
< D:®(VAuy) - (VAuy — VAP). 3.11)

Recalling (2.4) and (1.3), we have

ID:®(VAu,) - VAY| < W(De ®(VAuy)) + @(VAP) + D(—VAP)
SY(De®(VAu,)) + (C+ 1)D(VAP). (3.12)
When ¥(D:®(VAu,)) € L'(Q) and ¢ €V, then D ®(VAQ) - (VAuy — VA$) and

Dz ®(VAuy) - (VAuy — VA¢) are in the space L'(Q). By Lebesgue dominated conver-
gence theorem, we have

/ lim D ®(&;) - (VAu, — VAQ) dx = lim/Déd)(ék)(VAul—VAq))dx
QA—1 A—1JQ
Recalling (3.10), we obtain
/Déq)(VAul)-(VAul—VAq))dx—l—/foAuldx—i—/go-VAuldx
Q Q Q
1
< —/(Vm—Vuo)-(V¢—Vu1)dx+/foAq)dx—I—/go-VAq)dx.
hJo Q Q
Denote
Vu, -V
Aoz/ %.vuldﬁ/Décb(mul).muldx
Q Q

+/f0Au1dx+/g0~VAu1dx.
Q Q
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Then we conclude that, for every ¢ € V,

Vi, —V
/%-wdw/[)éq:(mul)-vmdx
Q Q

+/f0A¢dx+/g0-VA¢dx>Ao. (3.13)
Q Q

It follows form a scaling argument that

/Q[zu;uO(_Aq))dx—i-/QDéd)(VAul).VA(I)} dx
:—/QfoAq)dx—/QgO.VAq)dx' i

For every fixed ¢ € Cj(L2), as the problem ¢ = —A¢ is solvable in V, the function
u; is a weak solution of the corresponding Euler-Lagrange equation of J(v), which is
problem (3.2).

Suppose that there exists another weak solution i of problem (3.2). Then, for
every ¢ € Cy(Q), we have

/”‘_”(’(pdx—/Décp(vml)-wdx:/f0<pdx+/g0-wpdx,
Q h Q Q Q

which follows that

/ulzul"’d"_/ [De®(VAuy) — De®(VAd)] - Vodx = 0. (3.15)
Q Q

Recalling (2.4), (1.3) and (2.5), we observe that

D ®(VAiy) - VAuy| < D(VAuy) + @(—VAuy) + ¥ (D D(VA;))

<
< (C+ 1)D(VAuy) + D ®(VAiL) - VAii; € L'(Q).

Using the approximation argument, we can take ¢ = Au; — Adi; as a test function in
(3.15). Thus, we have

1/ Viuy — Vit | dx
hJo
+/ [De®(VAuy) — D ®(VAd)| - (VAuy — VAily) dx = 0.
Q

Since the two terms of the left-hand side in the above equality are nonnegative, we have
Vuy = Viiy ae. in Q. Recalling u; = ii; =0 on dQ, we conclude that u; = ii; a.e. in
Q. Therefore we obtain the uniqueness of weak solutions. This completes the proof of
the proposition.

Proof. [Proof of Theorem 1.1]
(1) Existence of weak solutions.
First we construct an approximation solution sequence {#™} for problem (1.1).
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When k =1, it implies from Proposition 3.1 that there is a unique solution u; € V
satisfying (3.1). By induction, we find weak solutions u; € V of (3.1), k=2,3,.... It
follows that, forevery n €V,

%/ V(uk—uk_l)-Vndx—/DgCD(VAuk)-VAT)dx
_/ k—1)h Andx+/ —1)h)- VAR dx. (3.16)

Next, we take 1 = u; as a test function in (3.16) to obtain a priori estimate for
the function u (k = 1,2,...,m). Similar to (3.5) and (3.6), using (2.5) and (1.2) we
have

IVarl|72 ) + 1 /Q D(VAuy)dx < || Vi1 2+ Ch, (3.17)

where C is a constantdepending on @(&), [|[f]n((k—1)h)|| (o) l|[gln((k—1)h )||L°°
For each ¢ € (0,T], there exists some i € {1,2,...,m} such that t € ((i—1)h,in]. We
add all inequalities (3.17) for k =1,...,i, to get

i
Vil o) +h Y, /QCD(VAuk)dx < || Vuol| 72y +CT- (3.18)
k=1

Now for every h =T /m, we define

u"(x,1) = . ) (3.19)

up(x), (n—Dh<t<mh=T.

Thus we have

ih
IV Ol + [ @(Vau") dxdt < |Vuo]fs g +C.

or
13
||Vum(z)||§2(g)+/O/Qq>(VAu’“)dxdr< IVuoll72 () +C- (3.20)

Therefore, after taking the supremum over [0,7], we get

T
sup | [V (e 0)2dx + / / O(VA" ) dxdr < ||Vuo| g +C
0<i<T /@ 0JQ

Using the same technique as in the proof of (3.8), we have

T
™[ 1 0.7:221 (@) + 1™ | 21 (0. 70217 (@) T O(VAu™)dxdt < C.
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Therefore, by Lemma 2.5, we may choose a subsequence (we also denote it by the
original sequence for simplicity) such that

" —y weakly-*in L”(0,T:H}(Q)),
Y ( (}V( ) (3.21)
VAu™ —h weaklyin (L'(Qr))".
Then we show that 7 = VAu, which implies that
T
HMHL.;C(OJ-’H(% Q) + HMHLI(O,T;WZ*I* Q) +/O L@(VAL{) dxdt S C. (322)

Indeed, from (3.21) we have
Vu" — Vu weakly-"in (L™(0, T;Lz(Q)))N.

Thus we conclude that & = VAu.
Denote
n = DgCD(VAu’”).

It follows from (2.5) that

T T
/ / W(&n)dxdt < / / D:®(VAW™) - VAu" dxdt < C.
0 JQ 0 JQ

Recalling Lemma 2.3 and Lemma 2.5, we conclude that there exists a subsequence
{&n} (we also denote it by the original sequence for simplicity) such that

Cw— ¢ weakly in L1(Qr) (3.23)

and

/()T/Q‘I‘(C)dxdt<1iminf/0T/Q‘{’(§m)dxdt<C,

m-—oo

Recalling inequality (2.4) and (1.3), we have

1C-VAu| < W(E) + D(VAU) + D(—VAu)
<SY(E) + (C+ 1)@ (VAu),

and then conclude that { - VAu € L'(Qr).

Next, we prove that the function u is a weak solution of problem (1.1).

For each ¢ € C'(Qr) with @(-,T) =0 and ¢(x,t)|r =0 and for every k €
{1,2,...,m}, we solve the equation —An(x) = @(x,kh) to find a function 1 € V
and let it be a text function in (3.16) to have

/ g (x) — ug—1(x)
Q h

= [ 1= Dmpg e+ [ [gla((k—Dh)-Vo(ekhydr. (.24
Q Q

0 (x, kh) dx — /Q D ®(VAuy) - Vo (x, kh) dx
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Summing up all the equalities and recalling the definition of ™ (x,¢) in (3.19) and
o(-,T) = ¢@(-,mh) =0, we have

S @(x;kh) — @(x, (k+1)h)
h;g'l/ﬁu (x,kh) , dx—/guo(x)(p(x7h)dx

—hi / D ®(VAu" (x,kh)) - Vo (x, kh) dx

—hZ/ ) (x, kh) dx+/ —1Dh)-Vo(x,kh)dx.  (3.25)

Passing to the limits as m — +oo, we obtain from (3.25) that

//u—dxdt / ()(p(x,O)dx—/OT/QC-V(pdxdt
=/O /Q(f(l’+g-V(p)dxdt. (3.26)

Now we choose ¢ € Ci’(Qr) to have

//u—dxdt /()T/gz(C-V(p—i—f(p—I—g-qu)dxdt. 3.27)

Since ¢ € L'(Qr), we conclude that u, € L(0,7;W~11(Q)). Thus we find a large
positive integer s such that W—11(Q) ¢ H~%(Q), and then obtain

u € L(0,T;H*(Q)),
which implies (see [18]) that
ueC([0,T;H*(Q)),

where H™*(€2) is the dual space of Hj(Q) = W(‘;’z(Q). For each € > 0 and all 7,7 €
[0,T], by (3.22) there exists a positive number § > 0 such that

8[[Vu(t) — Vu(to)|| 12(q) <

N ™

From the compact imbedding relation
H)(Q) — L*(Q) — H¥(Q).
We have, for all ,7y € [0,T],

S Ju(r) = uto)ll g1 @) + C(8) |u(t) — ulto) | -2
8| Vu(r) = Vu(to)ll 12 (q) + C(8)l|u() — ulto) [ 1)
8

Sat

C(8)[u(t) = ulto) || ),

T
Juet) — u(t0)ll 20y <
<
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where the first inequality is guaranteed by Lemma 5.1 in Chapter 1 of [13]. It follows
from the above inequalities that

ueC([0,T;;L*(Q)).

Therefore, the function u satisfies conditions (1) and (2) in Definition 1.1. Using the
monotonicity method similar as in [17, 16], we can show that { = Déq)(VAu) a.e. in
Q7. Therefore, we finish the proof of the existence of weak solutions.

(2) Uniqueness of weak solutions.
Suppose that there exist two weak solutions u and v of problem (1.1). Denote
w = u—v. Using Remark 1.2, we have, for each ¢ € [0,7] and any ¢ € C!(Qr) with

@(-1)|pe =0,
/Q [we)(x,)dx — /0 t /Q [Wor + (D ®(VAu) — D ®(VAv)) - Vo dxdt = 0.

Using the approximation argument, we choose

t+h

— [ —a
) we(x,T)dT

we p(X,1) =

as a test function in the above equality to have

Lbowealtenyae= [ [ whweslia
+ /0 /Q (D ®(VAu) — Dz ®(VAV)) - Vwe jdxdt = 0. (3.28)

We denote the sum of the first and second terms on the left side as /; and the third term
as I in (3.28). We calculate I; to have

1 t+h

L :/ Vw(x,t) - <— Vwe (x, ‘L’)d‘L’) dx
Q 2h t—h
1 t
- / Vw(x,1) - (Vwe(x,t +h) — Vwe(x,t —h)) dxdr.
2h Jo Jo

Sending € — 0, we have that

t+h

1
~ |V (=
I /Q w(x,t) <2h - VW()C,T)dT) dx

1 t
- — / Vw(x,7) - (Vw(x, T4+ h) — Vw(x,7—h)) dxdt
2h Jo Ja

1 rtth
:/QVw(x,t)~ (ﬂ - Vw(x,’c)d’c) dx

1 t+h
- — / Vw(x,T—h)-Vw(x, 7)dxdr,
2h t Q
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since w(x,?) has been extended to be 0 when ¢ < 0. Next we send 7 — 0 to have, for
ae. t€(0,T],

1 1
lim lim 1, = 5/9 V|2 (x, 1) dx = 5/9 Vi — Vo2(x,1) dx. (3.29)

Choosing § = Vwe , { = VAu and n = Dg®(VAu) in the inequalities in Lemma
2.2 and recalling (1.3), we have

IDe®(VAu) - Vwe j| < ©(Vwe ) + P(—Vwe ) +¥ (D D(VAu))
<D ®(VAu) - VAu+ (C+1)D(Vwe ).

And we estimate the term
‘Déq)(VAV) . VWg7h| < Déq)(VAV) -VAv+ (C+ l)d)(Vw&h)

in the same way. This justifies that

13
li lim I> = /0 /Q (D= ®(VAu) — D®(VAV)) - VA(u — v) dxdr. (3.30)

Sending first € — 0, and then 2 — 0 in (3.28), and recalling (3.29) and (3.30), we
conclude that

Vi — V() t -
/Q H T s /0 /Q (D ®(VAu) — D D(VAV)) - V(Au — Av) dxdz = 0.

Recalling Lemma 2.1, we know that both terms on the left-hand side are nonnegative.
Thus, we have Vu = Vv a.e. in Q7. Since u—v=0 on I', we conclude u —v=0 a.e.
in Q7, which implies u = v a.e. in Q7. Therefore we obtain the uniqueness of weak
solutions. Thus we complete the proof of Theorem 1.1.
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