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POSITIVE PERIODIC SOLUTIONS FOR

THE NONLINEAR WAVE EQUATION

SVETLIN GEORGIEV GEORGIEV

(Communicated by C.-H. Hsu)

Abstract. In this paper we prove that nonlinear wave equation

utt −Δu = f (t,x,u,ut ,ux)

has unique positive solution u(t,x) which is ω -periodic with respect to the time variable t . The
period ω > 0 is arbitrarily chosen and fixed.

1. Introduction

In this paper we consider the periodicity problem for the nonlinear wave equation

utt −Δu = f (t,x,u,ut ,ux), t ∈ R, x ∈ R
n, (1.1)

u is periodic in t. (1.2)

For a positive real number ω , a function u = u(t,x) : R×R
n −→ R is called

ω -periodic in the first variable t if u(t +ω ,x) = u(t,x) for every (t,x) ∈ R×R
n .

We will search a positive ω -periodic solution to the equation (1.1) in the form

of a series
{{

v(t)g(x)
}

t∈[0,ω]

}
x∈Rn

, where g(x) ∈ C 2(Rn) and v(t) ∈ C 2(R) . This

notation is an original notation by S. Georgiev.
Let

u =
{{

v(t)g(x)
}

t∈[0,ω]

}
x∈Rn

. (1.1′)

We have that u(t,x) ∈ C 2([0,ω ]×R
n) .

When we say that u , which is defined with (1.1′) , is a solution to the equation
(1.1) we understand: for every fixed x ∈ R

n the function v(t) satisfies the equation

v′′(t) = v(t)
1

g(x)

n

∑
i=1

∂ 2g(x)
∂x2

i

+
1

g(x)
f (t,x,v(t)g(x),v′(t)g(x),v(t)∇g(x)), (1.1′′)

where g(x) �= 0 for every x ∈ R
n .
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Below we will prove if the function v(t)g(x) satisfies the equation (1.1′′) for
every fixed x ∈ R

n and for every t ∈ [0,ω ] then v(t)g(x) satisfies the equation (1.1)
for every fixed x ∈ R

n and for every t ∈ [0,ω ] . For convenience we will note the

series
{{

v(t)g(x)
}

t∈[0,ω]

}
x∈Rn

with v(t)g(x) , i.e. below we will use the notation u =

v(t)g(x) .
When we say that the function v(t)g(x) is a positive solution to the equations

(1.1) , which is continuous ω -periodic with respect to the time variable t and con-
tinuous with respect to the variable x we understand: v(t) is positive continuous ω -
periodic , g(x) is positive continuous and for every fixed x ∈ R

n the function v(t)g(x)
satisfies the equation (1.1′′) for every t ∈ [0,ω ] . When we say that the function
v(t)g(x) is an unique positive solution to the equation (1.1) which is continuous ω -
periodic with respect to the time variable t and continuous with respect to the variable x
we understand: the function v(t)g(x) is a positive solution to the equation (1.1) , which
is continuous ω -periodic with respect to time variable t and continuous with respect
to the variable x , and for every fixed x ∈ R

n the function v(t) is unique.
The search of such solutions is motivated from the way in which is obtained every

model with partial differential equations. Usually the models are based on the every
numerical value v(t)g(x) when x is fixed or t is fixed and physical laws. This is
the reason for which we consider here separable solutions. For instance we will give
the seismic modeling and imaging (see [12] and references given therein). Also the
analyze of the amplitude variation as a function of reflection angle for angle domain
common image gathers produced via wave equation (see [1], [10] and the references
given therein).

Here the period ω > 0 is arbitrary chosen and fixed.
Here we propose new approach for investigation of the problem (1.1) , (1.2)

which is based on the theory of completely continuous vector field presented by M.
Krasnosel’skii and P. Zabreiko [6]. This method is used for investigation of the peri-
odicity problem for the Korteweg de Vries equation [3] and for the nonlinear parabolic
equation [4]. In the accessible literature there are too many methods for investigations
of the periodicity problem (1.1) , (1.2)( see [2], [8], [9], [11] and the references therein)
which are different than the method which we propose in this paper. This method gives
new results for the problem (1.1) , (1.2) .

The equation (1.1) is equivalent to the system
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂ t

= u0,

∂u j

∂ t
=

∂u0

∂x j
, j = 1,2, · · · ,n,

∂u0

∂ t
=

n

∑
j=1

∂u j

∂x j
+ f (t,x,u,ut ,ux),

(1.3)

where u j = ∂u
∂x j

. Therefore we will search positive ω -periodic solutions to the sys-

tem (1.3) with respect to the time variable t in the form u(t,x) = v(t)g(x) , u j(t,x) =
v j(t)g j(x) , j = 0,1, · · · ,n .
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Our main result is

THEOREM 1.1. Let n � 2 and ω > 0 be fixed; the constants M1 > 0 , M2 > 0 ,
M3 > 0 , m3 > 0 are taken so that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m3 � M3,
e−M3ω

(
1− e−m3ω

)2

(
1− e−M3ω

)
e2(M3−m3)ω

> (M3 +nM1 +M2)ω ,

e−M3ω
(
1− e−m3ω

)2

(
1− e−M3ω

)
e2(M3−m3)ω

> (M3 +1)ω ,

m3ω
e−M3ω

1− e−M3ω
> 1.

(1.4)

Let f (t,x,u,ut ,ux) ∈C (R×R
n×R×R×R

n) be ω - periodic function with respect to
the time variable t , f (t,x,u1,u1t ,u1x) � f (t,x,u2,u2t ,u2x) for every t ∈ [0,ω ] , x∈ R

n ,
u1 � u2 , 0 � f (t,x,u,ut ,ux) � M2 , f (t,x,λu,λut ,λux) �

√
λ f (t,x,u,ut ,ux) for every

(t,x,u,ut ,ux) ∈ R×R
n ×R×R×R

n and λ ∈ [0,1] , f (t,x,0,ut ,ux) = 0 for every
(t,x,ut ,ux)∈R×R

n×R×R
n , g(x) , g j(x) , j = 0,1, · · · ,n be fixed functions for which

g(x) ∈ C 2(Rn) , g j(x) ∈ C 1(Rn) , j = 0,1, · · · ,n, g(x) �= 0 , g j(x) �= 0 , j = 0,1, · · · ,n,

M1 � 1
g0(x)

∂g0(x)
∂x j

> 0, M1 � 1
g j(x)

∂g j(x)
∂x j

> 0,

M1 � 1
g(x)

∂g(x)
∂x j

> 0, j = 1, · · · ,n,

(1.5)

for every x ∈ R
n . Then the system (1.3) has exactly one nontrivial solution

u(t,x) = (u(t,x),u1(t,x), · · · ,un(t,x),u0(t,x))
= (v(t)g(x),v1(t)g1(x), · · · ,vn(t)gn(x),v0(t)g0(x)),

(1.6)

which is positive continuous ω -periodic with respect to the time variable t and positive
continuous with respect to the variable x .

A function f : R×R
n×R×R×R

n −→ R is ω -periodic with respect to the time
variable t if f (t +ω ,x,u,ut ,ux) = f (t,x,u,ut ,ux) for every (t,x,u,ut ,ux) ∈ R×R

n ×
R×R×R

n .

EXAMPLE. 1) There exist constants M1 , M2 , M3 , m3 , which satisfy the condi-
tions (1.4) for every fixed n � 2 and ω > 0. Really,

M1ω = M2ω =
1

10n
, M3ω =

1
10

, m3ω =
1

102 ,

where ω > 0 is fixed, n � 2 is arbitrary chosen and fixed, satisfy the conditions (1.4) .
2) Let M1 , ω , n be the same constants as in above example. Then the functions

g(x) = g j(x) = eM1∑n
j=1 x j , j = 0,1, . . . ,n,
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satisfy all conditions of the Theorem 1.1.
The function

f (t,x,u,ut ,ux) = f0(t)
u

2
7

1+u
2
7

,

where f0(t) is given positive continuous ω -periodic function, f0 � M2 , satisfies all
conditions of the Theorem 1.1.

The author prepare a paper with applications of the Theorem 1.1 which are con-
nected with seismic modeling (see [5]), more precisely, accurate descriptions of the
lateral variation of reservoir heterogeneities.

The paper is organized as follows. In section 2 we will prove some preliminary re-
sults. In section 3 we will prove existence of positive continuous ω -periodic solutions.
In section 4 we will prove uniqueness of the positive continuous ω -periodic solution
of the equation (1.3) .

2. Preliminary results

In this section we will prove some preliminary results which are connected with
the system (1.3) .

LEMMA 2.1. Let a(t) , a j(t) , j = 0,1, · · · ,n, be fixed positive ω -periodic func-
tions, g(x) , g j(x) , j = 0,1, · · · ,n, be fixed continuous-differentiable functions for which
g(x) �= 0 , g j(x) �= 0 , j = 0,1, · · · ,n, for every x ∈ R

n . Let also f (t,x,u,ut ,ux) ∈
C (R×R

n ×R×R×R
n) be ω -periodic function with respect to the time variable t .

If the system (1.3) has a solution in the form (1.6) which is ω -periodic with respect
to the time variable t , then for every fixed x ∈ R

n it satisfies the following system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t,x) =
e−[a]ω

1− e−[a]ω

ω∫
0

e
∫ t+s
t a(τ)dτ

[
a(t + s)u(t + s,x)+u0(t + s,x)

]
ds

u j(t,x) =
e−[a j ]ω

1−e−[a j ]ω

ω∫
0

e
∫ t+s
t a j(τ)dτ

[
a j(t+s)u j(t+s,x)+

1
g0(x)

∂g0(x)
∂x j

u0(t+s,x)
]
ds

u0(t,x) =
e−[a0]ω

1−e−[a0]ω

ω∫
0

e
∫ t+s
t a0(τ)dτ

[
a0(t+s)u0(t+s,x)+

n

∑
j=1

1
g j(x)

∂g j(x)
∂x j

u j(t+s,x)

+ f (t + s,x,u(t + s,x),
v′(t + s)
v(t + s)

u(t + s,x),
∂g
∂x1

1
g(x)

u(t + s,x),

· · · , ∂g
∂xn

1
g(x)

u(t + s,x))
]
ds.

(2.1)
Conversely, if for every fixed x ∈ R

n the function (1.6) is a continuous ω -periodic
solution to the system (2.1) , then for every fixed x ∈ R

n it is a continuous ω -periodic
solution to the system (1.3) .

REMARK. Here we note [a] = 1
ω

∫ ω
0 a(s)ds for continuous ω -periodic function

a(t) .
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Proof. 1. Let x ∈ R
n be fixed. Let also (1.6) be a continuous ω -periodic solution

to the system (1.3) . Then

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v′(t) = −a(t)v(t)+a(t)v(t)+
1

g(x)
v0(t)g0(x)

v′j(t) = −a j(t)v j(t)+a j(t)v j(t)+ v0(t)
1

g j(x)
∂g0(x)
∂x j

, j = 1,2, · · · ,n,

v′0(t) = −a0(t)v0(t)+a0(t)v0(t)+
1

g0(x)

n

∑
j=1

v j(t)
∂g j

∂x j
+

1
g0(x)

f (t,x,u,ut ,ux).

The last system we can consider as a system of ordinary linear differential equations of
first order with respect to v(t) , v j(t) , j = 0,1, · · · ,n . Let us consider the first equation

v′(t) = −a(t)v(t)+a(t)v(t)+
1

g(x)
v0(t)g0(x).

Then

v(t) = e−
∫ t
0 a(τ)dτ

(
C+

∫ t

0
e

∫ τ
0 a(s)ds[a(τ)v(τ)+

1
g(x)

v0(τ)g0(x)]dτ
)

for every constant C . Let

C+
∫ −∞

0
e

∫ τ
0 a(s)ds[a(τ)v(τ)+

1
g(x)

v0(τ)g0(x)]dτ = 0,

from here

C =
∫ 0

−∞
e

∫ τ
0 a(s)ds[a(τ)v(τ)+

1
g(x)

v0(τ)g0(x)]dτ,

v(t) = e−
∫ t
0 a(s)ds

∫ t

−∞
e

∫ τ
0 a(s)ds[a(τ)v(τ)+

1
g(x)

v0(τ)g0(x)]dτ

=
∫ t

−∞
e−

∫ t
τ a(s)ds[a(τ)v(τ)+

1
g(x)

v0(τ)g0(x)]dτ

=
∫ t

t−ω
e−

∫ t
τ a(s)ds[a(τ)v(τ)+

1
g(x)

v0(τ)g0(x)]dτ

+
∫ t−ω

t−2ω
e−

∫ t
τ a(s)ds[a(τ)v(τ)+

1
g(x)

v0(τ)g0(x)]dτ

+
∫ t−2ω

t−3ω
e−

∫ t
τ a(s)ds[a(τ)v(τ)+

1
g(x)

v0(τ)g0(x)]dτ + · · · .

Let

J1 =
∫ t

t−ω
e−

∫ t
τ a(s)ds[a(τ)v(τ)+

1
g(x)

v0(τ)g0(x)]dτ.
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Then ∫ t−ω

t−2ω
e−

∫ t
τ a(s)ds[a(τ)v(τ)+

1
g(x)

v0(τ)g0(x)]dτ = (τ = y−ω)

=
∫ t

t−ω
e−

∫ y
y−ω a(s)dse−

∫ t
y a(s)ds[a(y)v(y)+

1
g(x)

v0(y)g0(x)]dy

= e−[a]ωJ1.

As in above we can see that
∫ t−2ω

t−3ω
e−

∫ t
τ a(s)ds[a(τ)v(τ)+

1
g(x)

v0(τ)g0(x)]dτ = (τ = y−ω)

=
∫ t−ω

t−2ω
e−

∫ y
y−ω a(s)dse−

∫ t
y a(s)ds[a(y)v(y)+

1
g(x)

v0(y)g0(x)]dy

= e−[a]ω
∫ t−ω

t−2ω
e−

∫ t
y a(s)ds[a(y)v(y)+

1
g(x)

v0(y)g0(x)]dτ = e−2[a]ωJ1.

Consequently

v(t) = J1 + e−[a]ωJ1 + e−2[a]ωJ1 + · · ·
=

1

1− e−[a]ω J1

=
1

1− e−[a]ω

∫ t

t−ω
e−

∫ t
τ a(s)ds[a(τ)v(τ)+

1
g(x)

v0(τ)g0(x)]dτ

now we make the change τ = y−ω+ t

=
1

1− e−[a]ω

∫ ω

0
e−

∫ y+t
y−ω+t a(s)dse−

∫ t
y+t a(s)ds[a(y−ω+ t)v(y−ω+ t)

+
1

g(x)
v0(y−ω+ t)g0(x)]dy

=
e−[a]ω

1− e−[a]ω

∫ ω

0
e

∫ y+t
t a(s)ds[a(y+ t)v(y+ t)+

1
g(x)

v0(y+ t)g0(x)]dy,

from here

u(t,x) =
e−[a]ω

1− e−[a]ω

∫ ω

0
e

∫ y+t
t a(s)ds[a(y+ t)u(y+ t,x)+u0(y+ t,x)]dy.

Similarly, we can check that the functions u j(t,x) , j = 0,1, · · · ,n satisfy the system
(2.1) .

2. Let x ∈ R
n be fixed and the function (1.6) be a solution to the system (2.1)

which is continuous-differentiable with respect to the variable x and continuous ω -
periodic with respect to the time variable t . Then

u(t,x) =
e−[a]ω

1− e−[a]ω

∫ ω

0
e

∫ y+t
t a(s)ds[a(y+ t)u(y+ t,x)+u0(y+ t,x)]dy
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now we make the change y+ t = τ

=
e−[a]ω

1− e−[a]ω

∫ t+ω

t
e

∫ τ
t a(s)ds[a(τ)u(τ,x)+u0(τ,x)]dτ

= e−
∫ t
0 a(s)ds e−[a]ω

1− e−[a]ω

∫ t+ω

t
e

∫ τ
0 a(s)ds[a(τ)u(τ,x)+u0(τ,x)]dτ,

ut(t,x) = −a(t)e−
∫ t
0 a(s)ds e−[a]ω

1− e−[a]ω

∫ t+ω

t
e

∫ τ
0 a(s)ds[a(τ)u(τ,x)+u0(τ,x)]dτ

+ e−
∫ t
0 a(s)ds e−[a]ω

1− e−[a]ω

(
e

∫ t+ω
0 a(s)ds[a(t +ω)u(t +ω ,x)+u0(t +ω ,x)]

− e
∫ t
0 a(s)ds[a(t)u(t,x)+u0(t,x)]

)

= −a(t)u(t,x)+
e−[a]ω

1− e−[a]ω e[a]ω
(
1− e−[a]ω

)
[a(t)u(t,x)+u0(t,x)]

= −a(t)u(t,x)+a(t)u(t,x)+u0(t,x) = u0(t,x).

Consequently for every fixed x ∈ R
n we have

∂u
∂ t

(t,x) = u0(t,x).

As in above we can see that our assertion is valid for the functions u j(t,x) ,
j = 0,1, · · · ,n . �

Let

D− = min
0�t,s�ω

e−[a]ω

1− e−[a]ω e
∫ t+s
t a(τ)dτ ,

D+ = max
0�t,s�ω

e−[a]ω

1− e−[a]ω e
∫ t+s
t a(τ)dτ ,

D−
j = min

0�t,s�ω

e−[a j ]ω

1− e−[a j]ω
e

∫ t+s
t a j(τ)dτ ,

D+
j = max

0�t,s�ω

e−[a j ]ω

1− e−[a j]ω
e

∫ t+s
t a j(τ)dτ , j = 0,1, · · · ,n,

P− = min{D−,D−
1 ,D−

2 , · · · ,D−
n ,D−

0 },
P+ = max{D+,D+

1 ,D+
2 , · · · ,D+

n ,D+
0 }.

We put

χ(u) =
e−[a]ω

1− e−[a]ω

∫ ω

0
e

∫ t+s
t a(τ)dτ

[
a(t + s)u(t + s,x)+u0(t + s,x)

]
ds,

χ j(u) =
e−[a j ]ω

1− e−[a j ]ω

∫ ω

0
e

∫ t+s
t a j(τ)dτ

[
a j(t + s)u j(t + s,x)+

1
g0(x)

∂g0(x)
∂x j

u0(t + s,x)
]
ds,

j = 1,2, · · · ,n,
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χ0(u) =
e−[a0]ω

1− e−[a0]ω

∫ ω

0
e

∫ t+s
t a0(τ)dτ

[
a0(t + s)u0(t + s,x)+

n

∑
j=1

1
g j(x)

∂g j(x)
∂x j

u j(t + s,x)

+ f (t + s,x,u(t + s,x),
v′(t + s)
v(t + s)

u(t + s,x),
∂g
∂x1

1
g(x)

u(t + s,x), · · · ,
∂g
∂xn

1
g(x)

u(t + s,x))
]
ds,

where u is (1.6) , g(x) �= 0, g j(x) �= 0 for every x ∈ R
n , g(x) , g j(x) , j = 0,1, · · · ,n ,

are continuous-differentiable functions.
We put

G (u) = (χ(u),χ1(u), · · · ,χn(u),χ0(u)).

Let C (ω) (C+(ω)) be the space of real (real positive) continuous ω -periodic
functions which are defined on the whole real axis.

When we write ||u|| for u ∈
[
C (ω)

]n+2
we understand

max
t∈[0,ω]

|u| = ||u|| := max

{
max

t∈[0,ω]
|u(t)|, max

t∈[0,ω]
|u1(t)|, · · · , max

t∈[0,ω]
|un(t)|, max

t∈[0,ω]
|u0(t)|

}
.

When we write mint |u| for u ∈
[
C (ω)

]n+2
we understand

min
t

|u| := min

{
min

t∈[0,ω]
|u(t)|, min

t∈[0,ω]
|u1(t)|, · · · , min

t∈[0,ω]
|un(t)|, min

t∈[0,ω]
|u0(t)|

}
.

When we write u1 � u2 for u1 = (u11, · · · ,u1n) , u2 = (u21, · · · ,u2n) we understand
u1i � u2i for every i = 1,2, · · · ,n .

Let also

C ◦
+(ω) =

{
x ∈

[
C+(ω)

]n+2
: min

t
x(t) � P−

P+ ||x||
}
.

PROPOSITION 2.1. The space C ◦
+(ω) is a cone. Let f (t,x,u,ut ,ux) ∈ C (R×

R
n ×R×R×R

n) , f (t,x,u,ut ,ux) � 0 for every (t,x,u,ut ,ux) ∈ R×R
n ×R×R×

R
n , g(x) , g j(x) , j = 0,1, · · · ,n be fixed functions for which g(x) �= 0 , g j(x) �= 0 ,

j = 0,1, · · · ,n for every x ∈ R
n , g(x) ∈ C 1(Rn) , g j(x) ∈ C 1(Rn) , j = 0,1, · · · ,n,

1
g0(x)

∂g0(x)
∂x j

> 0,
1

g j(x)
∂g j(x)
∂x j

> 0,
1

g(x)
∂g(x)
∂x j

> 0, j = 1,2, · · · ,n,

for every x ∈ R
n . Let also a(t) , a j(t) , j = 0,1, . . . ,n, be fixed positive continuous

ω -periodic functions. Then

G : C ◦
+(ω) −→ C ◦

+(ω).

Proof. The space C ◦
+(ω) is closed and convexed. Indeed, let y ∈ C ◦

+(ω) and
k > 0 be fixed constant. Then

kmin
t

y(t) � P−

P+ k||y|| ⇐⇒ min
t

(ky) � P−

P+ ||ky||,
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i.e. ky ∈ C ◦
+(ω) . If k < 0 then

min
t

(ky) � P−

P+ ||ky||.

Consequently C ◦
+(ω) is a cone.

Let x ∈ R
n be fixed, u(t,x) ∈ C ◦

+(ω). Then from the definition of the operator χ
we have

χ(u) � D−
∫ ω

0
[a(t + s)u(t + s,x)+u0(t + s,x)]ds.

Since a(t) , u(t,x) , u0(t,x) are continuous ω -periodic functions with respect to the
time variable t we have

χ(u) � D−
∫ ω

0
[a(s)u(s,x)+u0(s,x)]ds.

From here

min
0�t�ω

χ(u) � D−
∫ ω

0
[a(s)u(s,x)+u0(s,x)]ds. (2.2)

On the other hand

χ(u) � D+
∫ ω

0
[a(t + s)u(t + s,x)+u0(t + s,x)]ds = D+

∫ ω

0
[a(s)u(s,x)+u0(s,x)]ds,

from where

max
0�t�ω

χ(u) � D+
∫ ω

0
[a(s)u(s,x)+u0(s,x)]ds. (2.3)

From (2.2) , (2.3) we get

min
t∈[0,ω]

χ(u) � D−

D+ max
t∈[0,ω]

χ(u) � P−

P+ max
t∈[0,ω]

χ(u).

As in above we can see that

mint∈[0,ω] χ j(u) � D−
j

D+
j

maxt∈[0,ω] χ j(u) � P−
P+ maxt∈[0,ω] χ j(u), j = 0,1, · · · ,n. �

PROPOSITION 2.2. Let f (t,x,u,ut ,ux)∈C (R×R
n×R×R×R

n) , | f (t,x,u,ut ,ux)|
� M2 for every (t,x,u,ut ,ux) ∈ R×R

n ×R×R×R
n , g(x) , g j(x) , j = 0,1, · · · ,n

be fixed functions for which g(x) �= 0 , g j(x) �= 0 , j = 0,1, · · · ,n for every x ∈ R
n ,

g(x) ∈ C 1(Rn) , g j(x) ∈ C 1(Rn) , j = 0,1, · · · ,n,

∣∣∣ 1
g0(x)

∂g0(x)
∂x j

∣∣∣ � M1,
∣∣∣ 1
g j(x)

∂g j(x)
∂x j

∣∣∣ � M1,
∣∣∣ 1
g(x)

∂g(x)
∂x j

∣∣∣ � M1, j = 1,2, · · · ,n,

for every x ∈ R
n . Let also a(t) , a j(t) be fixed continuous ω -periodic functions and

|a(t)| � M3 , |a j(t)| � M3 , j = 0,1, · · · ,n for every t ∈ [0,ω ] . Then the operator G is
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a completely continuous operator in
[
C (ω)

]n+2
for every fixed x ∈ R

n and for every

t ∈ [0,ω ] .

Proof. Let x∈R
n be fixed and u(t,x)= (u(t,x),u1(t,x),u2(t,x), · · · ,un(t,x),u0(t,x))

∈
[
C (ω)

]n+2
, maxt∈[0,ω] |u(t,x)| = r , r > 0 be fixed constant. From the definition of

the operator G , for every fixed x ∈ R
n , we have

|χ(u)| � P+
∫ ω

0
(M3 +1)rds = P+(M3 +1)rω , (2.4)

|χ j(u)| � P+
∫ ω

0
(M3 +M1)rds = P+(M3 +M1)rω , j = 1,2, · · · ,n, (2.5)

|χ0(u)| � P+
∫ ω

0
(M3r+M1nr+M2)ds = P+(M3r+M1nr+M2)ω . (2.6)

Consequently the functions χ(u)(t) , χ j(u)(t) , j = 0,1, · · · ,n , are uniformly bounded

in the space
[
C (ω)

]n+2
for every fixed x ∈ R

n .

Let ε > 0. Then there exists δ > 0 such that for every t1 and t2 for which |t1 −
t2| < δ we have∣∣∣e∫ t1+s

t1
a(τ)dτ

[
a(t1 + s)u(t1 + s,x)+u0(t1 + s,x)

]

− e
∫ t2+s
t2

a(τ)dτ
[
a(t2 + s)u(t2 + s,x)+u0(t2 + s,x)

]∣∣∣ <
ε

ωP+ ,

∣∣∣e∫ t1+s
t1

a j(τ)dτ
[
a j(t1 + s)u j(t1 + s,x)+

1
g0(x)

∂g0(x)
∂x j

u0(t1 + s,x)
]

− e
∫ t2+s
t2

a j(τ)dτ
[
a j(t2 + s)u j(t2 + s,x)+

1
g0(x)

∂g0(x)
∂x j

u0(t2 + s,x)
]∣∣∣ <

ε
ωP+ ,

∣∣∣e∫ t1+s
t1

a0(τ)dτ
[
a0(t1 + s)u0(t1 + s,x)+

n

∑
j=1

1
g j(x)

∂g j(x)
∂x j

u j(t1 + s,x)

+ f (t1 + s,x,u(t1 + s,x),
v′(t1 + s)
v(t1 + s)

u(t1 + s,x),
∂g
∂x1

1
g(x)

u(t1 + s,x), · · · ,
∂g
∂xn

1
g(x)

u(t1 + s,x))
]

− e
∫ t2+s
t2

a0(τ)dτ
[
a0(t2 + s)u0(t2 + s,x)+

n

∑
j=1

1
g j(x)

∂g j(x)
∂x j

u j(t2 + s,x)

+ f (t2 + s,x,u(t2 + s,x),
v′(t2 + s)
v(t2 + s)

u(t2 + s,x),
∂g
∂x1

1
g(x)

u(t2 + s,x), · · · ,
∂g
∂xn

1
g(x)

u(t2 + s,x))
]∣∣∣ <

ε
ωP+ .

Then
|χ(u)(t1)− χ(u)(t2)| < ε,

|χ j(u)(t1)− χ j(u)(t2)| < ε, j = 0,1, · · · ,n,
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for |t1 − t2| < δ and for every fixed x ∈ R
n . Then χ(u) , χ j(u) , j = 0,1, · · · ,n are

equicontinuous for every fixed x∈R
n . From the Arzela-Ascoli theorem follows that the

set {χ(u),χ1(u), · · · ,χn(u),χ0(u)} is compact subset of the space
[
C (ω)

]n+2
for ev-

ery fixed x∈R
n . From here and from uniformly bounded of the functions χ(u),χ1(u),

· · · ,χn(u),χ0(u) follows that the operators χ(u),χ1(u), · · · ,χn(u) , χ0(u) are com-

pletely continuous in
[
C (ω)

]n+2
for every fixed x ∈ R

n . �

3. Existence of positive periodic solutions

The proof for existence of nontrivial solution to the equation (1.3) , which is pos-
itive continuous ω -periodic with respect to the variable t and positive continuous with
respect to the variable x is based on the theory of completely continuous vector field
presented by M. Krasnosel’skii and P. Zabrejko in [6]. More precisely we will prove
that the equation (1.3) has nontrivial solution, which is positive continuous ω -periodic
with respect to the variable t and positive continuous with respect to the variable x after
we use the following theorem which is extracted from [6].

THEOREM 3.1. [6] Let Y be a real Banach space with a cone Q and L :Y −→Y
be a completely continuous and positive with respect to Q. Then the following propo-
sitions are valid.

i) Let L(0) = 0 . Let also for every sufficiently small r > 0 there is no y ∈ Q,

||y||Y = r , with y
◦
� L(y) . Then there exists ind(0,L;Q) = 1 .

ii) Let for every sufficiently large R > 0 there is no y ∈ Q with ||y||Y = R and

y
◦
� L(y) . Then there exists ind(∞,L;Q) = 0 .

iii) Let L(0) = 0 and let there exist ind(0,L;Q) �= ind(∞,L;Q) . Then L has non-
trivial fixed point in Q.

Here ind(·,L;Q) denotes an index of a point with respect to L and Q . The sign
◦
� denotes the semiordering generated by Q .

THEOREM 3.2. Let n � 2 be fixed and ω > 0 be fixed; the constants M1 > 0 ,
M2 > 0 , M3 > 0 , m3 > 0 are taken so that the conditions (1.4) hold. Let f (t,x,u,ut ,ux)
∈ C (R ×R

n ×R×R ×R
n) be ω -periodic function with respect to the time vari-

able t , 0 � f (t,x,u,ut ,ux) � M2 for every (t,x,u,ut ,ux) ∈ R×R
n ×R×R ×R

n ,
f (t,x,0,ut ,ux)= 0 for every (t,x,ut ,ux)∈R×R

n×R×R
n , g(x) , g j(x) , j = 0,1, · · · ,n

be fixed functions for which g(x) �= 0 , g j(x) �= 0 , j = 0,1, · · · ,n for every x ∈ R
n ,

g(x) ∈ C 2(Rn) , g j(x) ∈ C 1(Rn) , j = 0,1, · · · ,n, and the conditions (1.5) hold. Let
also a(t) , a j(t) be fixed positive continuous ω -periodic functions for which m3 �
a(t) � M3 , m3 � a j(t) � M3 , j = 0,1, · · · ,n, for every t ∈ R . Then the system (1.3)
has a nontrivial solution in the form (1.6) which is positive continuous ω -periodic
with respect to the time variable t and positive continuous with respect to the variable
x .

Proof. First we note that G (0) = 0. Let x ∈ R
n be fixed. From the conditions
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(1.4) we have

P−

P+2(M3 +1)ω
> 1,

P−

P+2(M3 +M1)ω
> 1,

P−

P+2(M3 +nM1 +M2)ω
> 1, P−m3ω > 1.

(3.1)

Let us suppose that for every sufficiently small r > 0 there is u ∈ C ◦
+(ω) such that

||u|| = r , u(t,x) � G (u)(t,x) for every t ∈ [0,ω ] .
We suppose that r > 0 is sufficiently small so that f (t,x,u,ut ,ux) � M2r (this is

possible because f (t,x,0,ut ,ux) = 0 and f is a continuous function).
If maxt∈[0,ω] u(t,x) = r then, after we use (2.4) ,

u(t,x) � P+(M3 +1)rω . (3.2)

From the definition of the cone C ◦
+(ω) we have that

min
t∈[0,ω]

u(t,x) � P−

P+ max
t∈[0,ω]

u(t,x) =
P−

P+ r.

From here and from (3.2) we obtain

P−

P+ r � P+(M3 +1)rω ,

from where
P−

P+2(M3 +1)ω
� 1,

which is a contradiction with (3.1) .
If there exists j ∈ {1,2, · · · ,n} such that maxt∈[0,ω] u j(t,x) = r then we have, after

we use (2.5) ,
u j(t,x) � P+(M3 +M1)rω ,

from here
max

t∈[0,ω]
u j(t,x) � P+(M3 +M1)rω . (3.3)

Also, from the definition of the cone C ◦
+(ω) we have

u j(t,x) � P−

P+ r.

From here and from (3.3) we obtain

P−

P+ r � P+(M3 +M1)rω

or
P−

P+2(M3 +M1)ω
� 1
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which is a contradiction with (3.1) .
If maxt∈[0,ω] u0(t,x) = r then we have, after we use (2.6) ,

u0(t,x) � P+ω(M3r+nM1r+M2r).

From the last inequalities we get

max
t∈[0,ω]

u0(t,x) � P+ω(M3 +nM1 +M2)r. (3.4)

From the definition of the cone C ◦
+(ω) we have

min
t∈[0,ω]

u0(t,x) � P−

P+ r.

From here and from (3.4) we get

P−

P+ r � P+ω(M3 +nM1 +M2)r

or
P−

P+2ω(M3 +nM1 +M2)
� 1

which is a contradiction with (3.1) .
Therefore from the Theorem 3.1 i) we conclude that there exists ind(0,G ;C ◦

+(ω))
and

ind(0,G ;C ◦
+(ω)) = 1. (3.5)

Let R > 0 be sufficiently large. We suppose that there exists u(t,x)∈C ◦
+(ω) such

that ||u|| = R , u(t,x) � G (u)(t,x) .
If

∫ ω
0 u(t,x)dt > 0 then

u(t,x) � e−[a]ω

1− e−[a]ω

∫ ω

0
e

∫ t+s
t a(τ)dτ [a(t + s)u(t + s,x)+u0(t + s,x)]ds

� e−[a]ω

1− e−[a]ω

∫ ω

0
e

∫ t+s
t a(τ)dτa(t + s)u(t + s,x)ds

� P−m3

∫ ω

0
u(s,x)ds,

from here ∫ ω

0
u(t,x)dt � P−m3ω

∫ ω

0
u(t,x)dt,

which is a contradiction with (3.1) .
If there exists j ∈ {1,2, · · · ,n} such that

∫ ω
0 u j(t,x)dt > 0 we have

u j(t,x) � e−[a j ]ω

1− e−[a j]ω

∫ ω

0
e

∫ t+s
t a j(τ)dτa j(t + s)u j(t + s,x)ds

� P−m3

∫ ω

0
u j(s,x)ds,
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from here ∫ ω

0
u j(t,x)dt � P−m3ω

∫ ω

0
u j(s,x)ds,

which is a contradiction with (3.1) .
If

∫ ω
0 u0(t,x)dt > 0 then

u0(t,x) � e−[a0]ω

1− e−[a0]ω

∫ ω

0
e

∫ t+s
t a0(τ)dτa0(t + s)u0(t + s,x)ds

� P−m3

∫ ω

0
u0(t,x)dt,

from here ∫ ω

0
u0(t,x)dt � P−m3ω

∫ ω

0
u0(t,x)dt,

which is a contradiction with (3.1) .
Consequently, from Theorem3.1 ii) we conclude that there exists ind(∞,G ;C ◦

+(ω))
and

ind(∞,G ;C ◦
+(ω)) = 0.

From here and from (3.5) and Theorem 3.1 iii) we conclude that the operator G has a
nontrivial fixed point in C ◦

+(ω) . From Lemma 2.1 follows that the system (1.3) has a
nontrivial solution u(t,x) which is positive continuous ω -periodic with respect to the
time variable t and positive continuous with respect to the variable x . �

4. Uniqueness of the positive periodic solutions

Here we use the following theorem.

THEOREM 4.1. [6] Let Q be a cone in the Banach space Y and the operator
A : Y −→ Y be k0 -monotonous (k0 ∈ Q). Then the equation x = Ax has in the cone Q
no more than one nontrivial solution.

When we say that the operator A : Y −→ Y , where Y is a Banach space with a
cone Q , is k0 -monotonous (k0 ∈ Q) we understand: if for every x ∈ Q, x �= 0 we have

α(x)k0 � Ax � β (x)k0, (4.1)

where α(x) > 0 , β (x) > 0 ;

A(λx) � λAx, λ ∈ [0,1], x ∈ Q; (4.2)

A(λx) �= λAx (4.3)

for 0 < λ < 1 and for every x � γ(x)k0 (γ(x) > 0);

Ax � Ay+ ε0k0 (4.4)

for x � y, x �= y, where ε0 = ε0(x,y) > 0 .
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THEOREM 4.2. Let n � 2 be fixed and ω > 0 be fixed; the constants M1 > 0 ,
M2 > 0 , M3 > 0 , m3 > 0 are taken so that the condition (1.4) hold. Let f (t,x,u,ut ,ux)
∈ C (R×R

n×R×R×R
n) be ω - periodic function with respect to the time variable

t , f (t,x,u1,u1t ,u1x) � f (t,x,u2,u2t ,u2x) for every t ∈ [0,ω ] , x ∈ R
n , u1 � u2 , 0 �

f (t,x,u,ut ,ux) � M2 , f (t,x,λu,λut ,λux) �
√
λ f (t,x,u,ut ,ux) for every (t,x,u,ut ,ux)

∈ R×R
n×R×R×R

n and λ ∈ [0,1] , f (t,x,0,ut ,ux) = 0 for every (t,x,ut ,ux) ∈ R×
R

n×R×R
n , g(x) , g j(x) , j = 0,1, · · · ,n be fixed functions for which g(x) �= 0 , g j(x) �=

0 , j = 0,1, · · · ,n for every x ∈ R
n , g(x) ∈ C 2(Rn) , g j(x) ∈ C 1(Rn) , j = 0,1, · · · ,n,

and the conditions (1.5) hold. Let also a(t) , a j(t) be fixed positive continuous ω -
periodic functions for which m3 � a(t) � M3 , m3 � a j(t) � M3 , j = 0,1, · · · ,n for
every t ∈ R . Then the system (1.3) has exactly one nontrivial solution in the form
(1.6) which is positive continuous ω -periodic with respect to the time variable t and
positive continuous with respect to the variable x .

Proof. From Theorem 3.2 we have that the system (1.3) has a solution in the form
(1.6) which is continuous positive ω -periodic solution with respect to the time variable
t and positive continuous with respect to the variable x . Let k0 = 1. Evidently χ(u) ,
χ j(u) , j = 1,2, · · · ,n , satisfy the conditions (4.1) , (4.2) , (4.3) , (4.4) . We note that
χ(λ u) = λχ(u) , χ j(λ u) = λχ j(u) , j = 1,2, · · · ,n . Also, for λ ∈ [0,1] , u ∈ C ◦

+(ω)
we have

χ0(λ u) =
e−[a0]ω

1−e−[a0]ω

ω∫
0

e
∫ t+s
t a0(τ)dτ

[
λa0(t+s)u0(t+s,x)

+λ
n

∑
j=1

1
g j(x)

∂g j(x)
∂x j

u j(t+s,x)

+ f
(
t + s,x,λu(t + s,x),λ

v′(t + s)
v(t + s)

u(t + s,x),λ
∂g
∂x1

1
g(x)

u(t + s,x),

· · · ,λ ∂g
∂xn

1
g(x)

u(t + s,x)
)]

ds

� e−[a0]ω

1−e−[a0]ω

ω∫
0

e
∫ t+s
t a0(τ)dτ

[
λa0(t+s)u0(t+s,x)

+λ
n

∑
j=1

1
g j(x)

∂g j(x)
∂x j

u j(t+s,x)

+
√
λ f (t + s,x,u(t + s,x),

v′(t + s)
v(t + s)

u(t + s,x),
∂g
∂x1

1
g(x)

u(t + s,x),

· · · , ∂g
∂xn

1
g(x)

u(t+s,x))
]
ds

� λ
e−[a0]ω

1−e−[a0]ω

ω∫
0

e
∫ t+s
t a0(τ)dτ

[
a0(t+s)u0(t+s,x)
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+
n

∑
j=1

1
g j(x)

∂g j(x)
∂x j

u j(t+s,x)

+ f
(
t + s,x,u(t + s,x),

v′(t + s)
v(t + s)

u(t + s,x),
∂g
∂x1

1
g(x)

u(t + s,x),

· · · , ∂g
∂xn

1
g(x)

u(t + s,x)
)]

ds

= λχ0(u), χ0(λ u) �= λχ0(u) for λ ∈ (0,1).

From the last inequality we conclude that G (λ u) �= λG (u) for every λ ∈ (0,1) . From
the condition f (t,x,u1,u1t ,u1x) � f (t,x,u2,u2t ,u2x) if u1 � u2 , follows that χ0(u1) �
χ0(u2) if u1 � u2 . Also, χ0(u1) � χ0(u2)+ ε0 if u1 � u2 , u1 �= u2 . Consequently
the operator G is 1- monotonous operator. From here and from Theorem 3.2, Theorem
4.1 follows that the system (1.3) has exactly one solution in the form (1.6) which is
positive continous ω -periodic solution with respect to the time variable t and positive
continuous with respect to the variable x . �
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