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ON THE OSCILLATION OF SECOND ORDER
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Abstract. For the second order linear impulsive differential equation with oscillatory coefficient⎧⎨
⎩

(r(t)x′(t))′ +h(t)x(t) = 0, t �= tk, tk � t0, k = 1,2, · · · ,
x(t+k ) = akx(tk), x′(t+k ) = bkx′(tk), k = 1,2, · · · ,
x(t+0 ) = x0, x′(t+0 ) = x′0,

(E)

where h can be changed sign on [t0,∞) , by using the equivalence transformation, we establish
an associated impulsive differential equation with damping and give oscillation criteria for the
equation. As applications, we obtain oscillation theorems for Eq.(E). Moveover, an example is
also given to illustrate the relevance of the results.

1. Introduction

In this paper, we are concerned with the oscillation of the following second order
impulsive linear differential equation with oscillatory coefficient⎧⎨

⎩
(r(t)x′(t))′ +h(t)x(t) = 0, t �= tk, tk � t0, k = 1,2, · · · ,
x(t+k ) = akx(tk), x′(t+k ) = bkx′(tk), k = 1,2, · · · ,
x(t+0 ) = x0, x′(t+0 ) = x′0,

(1.1)

where 0 � t0 < t1 < · · · < tk < · · · , lim
k→∞

tk = +∞ , and

x′(tk) = lim
t→t−k

x(t)− x(tk)
t− tk

, x′(t+k ) = lim
t→t+k

x(t)− x(t+k )
t − tk

.

Here we assume that the following conditions hold.

(A1) ak > 0,bk > 0, k = 1,2, · · · , are constants, and r(t) : [t0,∞) → (0,∞) is a con-
tinuous differentiable function;

(A2) h(t) : [t0,+∞) → R is a continuous function, and there exists a continuous dif-
ferentiable function p(t) : [t0,∞) → [0,∞) such that

q(t) := h(t)+ p′(t)+
p2(t)
r(t)

� 0 and p(tk) = 0, k = 1,2, · · · .
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Note that h(t) can be changed sign in [t0,∞) . Let J ⊂ R be an interval, define

PC(J,R) : = {x : J → R : x(t) is continuous everywhere except some

tk at which x(t+k ) and x(t−k ) exist and x(t−k ) = x(tk)}.

DEFINITION 1.1. A function x ∈ PC([t0,∞),R) is called a solution of Eq.(1.1) if

(a) x(t+0 ) = x0, x′(t+0 ) = x′0 ;
(b) x(t) satisfies (r(t)x′(t))′ +h(t)x(t) = 0 for t ∈ [t0,∞), t �= tk ;
(c) x(t+k ) = akx(tk), x′(t+k ) = bkx′(tk) for such tk , and assume that both x(t) and x′(t)
are left continuous.

DEFINITION 1.2. A solution of Eq.(1.1) is said to be non-oscillatory if this solu-
tion is eventually positive or eventually negative. Otherwise, it is said to be oscillatory.

We note that the impulsive differential equations are an adequate mathematical ap-
paratus for simulation of process and phenomena observed on control theory, physics,
chemistry, population dynamics, ecology, biological systems, industrial, economics,
etc. For further applications and questions concerning existence and uniqueness of
solutions of impulsive differential equations, see [5]. Compared to equations without
impulses, there is little known about the oscillation of solutions of impulsive differen-
tial equations due to the difficulties caused by impulsive perturbations. It seems that the
first article studying the oscillation of second order impulsive differential equations was
given by Chen and Feng [2]. Since then, there has been an increasing interest in finding
the oscillation criteria for such equations; see [1,3,4,6-12] and the reference therein. It
should be noted that all almost impulsive differential equations considered in the liter-
ature so far have been imposed the restrictive condition which the coefficient function
is nonnegative. To develop the qualitative theory of impulsive differential equations,
in this paper, by using the equivalence transformation, we establish an associated im-
pulsive differential equation with damping (cf, Eq.(2.2)), and give oscillation criteria
for Eq.(2.2). As applications, we obtain oscillation theorems for Eq.(1.1). Moveover,
an example is also given to illustrate the relevance of the results. Here we would like
to point out that the obtained oscillation theorems in present paper are essentially new
even for Eq.(2.2).

2. Main results

We are interested in the oscillation of solutions of Eq.(1.1). To this end, we intro-
duce an equivalence transform (2.1) to establish an associated equation (2.2). We now
begin with the following two lemmas.

LEMMA 2.1. Let x(t) be a solution of Eq.(1.1) and let

y(t) = x(t)exp
(
−

∫ t

t0

p(s)
r(s)

ds
)
. (2.1)
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Then y(t) is a solution of the following impulsive differential equation with damping⎧⎨
⎩

(r(t)y′(t))′ +2p(t)y′(t)+q(t)y(t) = 0, t �= tk, tk � t0, k = 1,2, · · · ,
y(t+k ) = aky(tk), y′(t+k ) = bky′(tk), k = 1,2, · · · ,
y(t+0 ) = y0, y′(t+0 ) = y′0.

(2.2)

Proof. Clearly,

x(t) = y(t)exp
(∫ t

t0

p(s)
r(s)

ds
)
.

Consequently,

(r(t)x′(t))′ =
[
(r(t)y′(t))′ +2p(t)y′(t)

+
(

p′(t)+
p2(t)
r(t)

)
y(t)

]
exp

(∫ t

t0

p(s)
r(s)

ds
)
. (2.3)

Noting that x(t) is the solution of Eq.(1.1), and by (2.3), we have

(r(t)y′(t))′ +2p(t)y′(t)+q(t)y(t) = 0, t �= tk. (2.4)

On the other hand, by (2.1), we get

y(t+k ) = x(t+k )exp
(
−

∫ tk

t0

p(s)
r(s)

ds
)

= akx(tk)exp
(
−

∫ tk

t0

p(s)
r(s)

ds
)

= aky(tk), (2.5)

and, by p(tk) = 0,

y′(t+k ) =
[
x′(t+k )− p(tk)

r(tk)
x(t+k )

]
exp

(
−

∫ tk

t0

p(s)
r(s)

ds
)

= bk

[
x′(tk)− p(tk)

r(tk)
x(tk)

]
exp

(
−

∫ tk

t0

p(s)
r(s)

ds
)

+(bk −ak)
p(tk)
r(tk)

x(tk)exp
(
−

∫ tk

t0

p(s)
r(s)

ds
)

= bky
′(tk). (2.6)

It follows from (2.4)-(2.6) that y(t) is a solution of Eq.(2.2). This completes the proof.
�

LEMMA 2.2. Let y(t) be a non-oscillatory solution of Eq.(2.2) . If

limsup
n→∞

{∫ t1

t0
q(t)dt +

a1

b1

∫ t2

t1
q(t)dt

+
a1a2

b1b2

∫ t3

t2
q(t)dt + · · ·+

n−1

∏
i=1

ai

bi

∫ tn

tn−1

q(t)dt
}

= +∞, (2.7)

then there exists a T � t0 such that y(t)y′(t) < 0 for t � T and t �= tk .
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Proof. Without loss of generality we may assume that there exists a T ∈ [t0,∞)
such that y(t) > 0 for t � T . Next we show that y′(t) < 0 for t � T by three steps.

Step 1. We prove that y′(t) is non-oscillatory in (tk,tk+1] for all sufficiently large
k .

If not, then there exist a positive integer j and some t ′ ∈ (t j,t j+1] such that y′(t ′) =
0. By (2.2), we have

r(t ′)y′′(t)|t=t′ = −q(t ′)y(t ′) < 0.

Hence, there exists some δ > 0 such that y′(t) is decreasing in (t ′,t ′ + δ ] ⊂ (t j, t j+1] ,
consequently,

y′(t) < 0, t ∈ (t ′,t ′ + δ ]. (2.8)

We now claim that there does not exist any t ′′ ∈ (t ′,t j+1) such that y′(t ′′) = 0.
Otherwise, we let t ′′ ∈ (t ′,t j+1] ⊂ (t j,t j+1] be the first point such that y′(t ′′) = 0. By
(2.8), we see y′′(t ′′) � 0. But, from (2.2), we know r(t ′′)y′′(t ′′) < 0, so y′′(t ′′) < 0,
which is a contradiction. Thus we have y′(t) < 0 for t ∈ (t ′,t j+1] . Moreover, y′(t j+1) <
0 and y′(t+j+1) = b j+1y′(t j+1) < 0.

Similarly, applying the above method, we get there does not exist t ′′ ∈ (t j+1,t j+2]
such that y′(t ′′) = 0 and y′(t) < 0 for t ∈ (t j+1,t j+2] . Similar procedures have been
demonstrated repeatedly, we can obtain that y′(t) is non-oscillatory for t ∈ (t j+i,t j+i+1] ,
i = 0,1,2, · · · .

Step 2. We prove that there exists some T ′ � T such that y′(t) is non-oscillatory
for t � T ′ .

Without loss of generality we can let t j � T , by Step 1, we know that y′(t) is
non-oscillatory in (t j+i,t j+i+1] , i = 0,1,2, · · · . Now we consider two case as follows.

Case 1. If y′(t) < 0 for t ∈ (t j,t j+1] , it is easy to see that y′(t+j+1) = b j+1y′(t j+1) <

0. Noting that y′(t) is negative in every interval (t j+i, t j+i+1] , i = 0,1,2, · · · , we have
that there is some T ′ � T such that y′(t) < 0 for t � T

′
.

Case 2. If y′(t) > 0 for t ∈ (tk,tk+1] , we easily see that y′(t+k+1) = bk+1y′(tk+1) >
0. Since y′(t) is positive in every interval (tk+i,tk+i+1] , i = 0,1,2, · · · . Hence, there
exists some T

′ � T such that y′(t) > 0 for t � T ′ .
Step 3. We will prove that there exists some T ′ � T such that y′(t) < 0 for

T ′ � T .
First, we prove that y

′
(tk) < 0. If not, there exists some t j � T ′ such that y′(t j) >

0, using y′(t+j ) = b jy′(t j) > 0 and Step 2, we have

y′(t) > 0, t � t j, (2.9)

which follows from (2.2) that

(r(t)y′(t))′ = −2p(t)y′(t)−q(t)y(t) < −q(t)y(t) � 0. (2.10)

Hence, r(t)y′(t) is nonincreasing in (t j+i−1,t j+i] , i = 1,2, · · · .
We next claim that, for any n � 2,

r(t j+n)y′(t j+n) �b j+1 · · ·b j+n−1

{
r(t j)y′(t+j )− y(t+j )

[∫ t j+1

t j
q(t)dt
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+
a j+1

b j+1

∫ t j+2

t j+1

q(t)dt + · · ·+ a j+1 · · ·a j+n−1

b j+1 · · ·b j+n−1

∫ t j+n

t j+n−1

q(t)dt
]}

. (2.11)

Indeed, integrating (2.10) from t j to t j+1 , we have

r(t j+1)y′(t j+1) � r(t+j )y′(t+j )−
∫ t j+1

t j
q(t)y(t)dt

� r(t j)y′(t+j )− y(t+j )
∫ t j+1

t j
q(t)dt. (2.12)

Similar to the proof of (2.12), we get

r(t j+2)y′(t j+2)

� r(t+j+1)y
′(t+j+1)−

∫ t j+2

t j+1

q(t)y(t)dt

= b j+1r(t j+1)y′(t j+1)−
∫ t j+2

t j+1

q(t)y(t)dt

� b j+1

[
r(t j)y′(t+j )− y(t+j )

∫ t j+1

t j
q(t)dt

]
− y(t+j+1)

∫ t j+2

t j+1

q(t)dt

� b j+1

{
r(t j)y′(t+j )− y(t+j )

[∫ t j+1

t j
q(t)dt +

a j+1

b j+1

∫ t j+2

t j+1

q(t)dt
]}

. (2.13)

Thus, (2.11) holds for n = 2. Next we suppose that (2.11) holds for n = N , i.e.,

r(t j+N)y′(t j+N) � b j+1 · · ·b j+N−1

{
r(t j)y′(t+j )− y(t+j )

[∫ t j+1

t j
q(t)dt

+
a j+1

b j+1

∫ t j+2

t j+1

q(t)dt + · · ·+ a j+1 · · ·a j+N−1

b j+1 · · ·b j+N−1

∫ t j+N

t j+N−1

q(t)dt
]}

. (2.14)

From (2.9), (2.10) and (2.14), we have, for t ∈ (t j+N ,t j+N+1] ,

y′(t j+N+1)

� 1
r(t j+N+1)

{
r(t+j+N)y′(t+j+N)− y(t+j+N)

∫ t j+N+1

t j+N

q(t)dt
}

� b j+1 · · ·b j+N

r(t j+N+1)

{
r(t j)y′(t+j )− y(t+j )

[∫ t j+1

t j
q(t)dt +

a j+1

b j+1

∫ t j+2

t j+1

q(t)dt

+ · · ·+ a j+1 · · ·a j+N−1

b j+1 · · ·b j+N−1

∫ t j+N

t j+N−1

q(t)dt
]}

− a j+1 · · ·a j+N

r(t j+N+1)
y(t+j )

∫ t j+N+1

t j+N

q(t)dt

=
b j+1 · · ·b j+N

r(t j+N+1)

{
r(t j)y′(t+j )− y(t+j )

[∫ t j+1

t j
q(t)dt +

a j+1

b j+1

∫ t j+2

t j+1

q(t)dt

+ · · ·+ a j+1 · · ·a j+N−1a j+N

b j+1 · · ·b j+N−1b j+N

∫ t j+N+1

t j+N

q(t)dt
]}

.
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Hence (2.11) holds for n = N +1. By induction, (2.11) holds for any n � 2. By (2.11),
it follows from (2.7) that y′(t j+n) < 0 as n→+∞ which contradicts y′(t)> 0 for t � t j .
Therefore, y′(tk) < 0 for tk � T ′ . It follows from Step 2 that y′(t) < 0 for t �= t j+n and
t � T ′ . The proof is complete. �

We are now in a position to establish oscillation criteria for Eq.(2.2).

THEOREM 2.1. Let (2.7) hold. If

limsup
n→∞

{∫ t1

t0
Θ(t0,s)ds

+
b1

a1

∫ t2

t1
Θ(t0,s)ds+ · · ·+

n−1

∏
i=1

bi

ai

∫ tn

tn−1

Θ(t0,s)ds
}

= +∞ (2.15)

holds, where

Θ(s,t) =
1

r(t)
exp

(
−2

∫ t

s

p(τ)
r(τ)

dτ
)
, t > s � t0,

then Eq.(2.2) is oscillatory.

Proof. Suppose to the contrary that y(t) is a non-oscillatory solution of Eq.(2.2).
Without loss of generality we may assume y(t) > 0 for t � t0 . By Lemma 2.2, there
exists a T � t0 such that

y′(t) < 0, t � T, t �= tk. (2.16)

By (2.2), we have

(r(t)y′(t))′ +2p(t)y′(t) < 0, t � T, t �= tk,

which follows from (2.16) that

(r(t)y′(t))′

r(t)y′(t)
+

2p(t)
r(t)

> 0. (2.17)

Let tk = min{tk : tk � T,k ∈ N} , integrating (2.17) from tk to t , where t ∈ (tk,tk+1] , we
have

ln
( r(t)y′(t)

r(t+k )y′(t+k )

)
> −2

∫ t

tk

p(τ)
r(τ)

dτ,

or,
y′(t) < r(t+k )y′(t+k )Θ(tk,t), (2.18)

and
y′(tk+1) < r(tk)y′(t+k )Θ(tk,tk+1). (2.19)

Integrating (2.18) from tk to tk+1 , we have

y(tk+1) < y(t+k )+ r(tk)y′(t+k )
∫ tk+1

tk
Θ(tk,s)ds. (2.20)
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Similar to the proof of (2.18), we have, for t ∈ (tk+1,tk+2] ,

y′(t) < r(t+k+1)y
′(t+k+1)Θ(tk+1,t). (2.21)

Noting that (2.19) and (2.20), and integrating (2.21) from tk+1 to tk+2 , we have

y(tk+2) <y(t+k+1)+ r(t+k+1)y
′(t+k+1)

∫ tk+2

tk+1

Θ(tk+1,s)ds

<ak+1

[
y(t+k )+ r(tk)y′(t+k )

∫ tk+1

tk
Θ(tk,s)ds

]

+bk+1r(tk)y′(t+k )
∫ tk+2

tk+1

Θ(tk,s)ds,

or,

y(tk+2) < ak+1

{
y(t+k )+ r(tk)y′(t+k )

[∫ tk+1

tk
Θ(tk,s)ds+

bk+1

ak+1

∫ tk+2

tk+1

Θ(tk,s)ds
]}

.

By induction, it can be proved that for any n � k+1,

y(tn) <y(t+n−1)+ r(t+n−1)y
′(t+n−1)

∫ tn

tn−1

Θ(tn−1,s)ds

<ak+1 · · ·an−1

{
y(t+k )+ r(tk)y′(t+k )

[∫ tk+1

tk
Θ(tk,s)ds

+
bk+1

ak+1

∫ tk+2

tk+1

Θ(tk,s)ds+ · · ·+ bk+1 · · ·bn−1

ak+1 · · ·an−1

∫ tn

tn−1

Θ(tk,s)ds
]}

<0 as n → ∞, (by (2.15)),

which contradicts y(t) > 0 for t � T . The proof is complete. �

THEOREM 2.2. Let (2.7) hold. If exists a continuous differentiable function η(t) :
[t0,∞) → (0,∞) with r(t)η ′(t) � 2η(t)p(t) such that

limsup
n→∞

{n−1

∏
i=1

bi

ai

∫ t1

t0
η(s)q(s)ds

+
n−1

∏
i=2

bi

ai

∫ t2

t1
η(s)q(s)ds+ · · ·+

∫ tn

tn−1

η(s)q(s)ds
}

= +∞, (2.22)

and

limsup
k→∞

∫ tk+1

tk

dt
r(t)η(t)

� 1, (2.23)

then Eq.(2.2) is oscillatory.

Proof. Suppose that there exists a non-oscillatory solution y(t) of Eq.(2.2) so that
y(t) �= 0 for t � t0 . Without loss of generality we may assume that y(t) > 0 for t � t0 .
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By Lemma 2.2, there exists a T � t0 such that y′(t) < 0 for t � T . It follows from
(2.2) that

(r(t)y′(t))′ +2p(t)y′(t)+q(t)y(t) = 0, t �= tk. (2.24)

Let tk = min{tk : tk � T,k ∈ N} , multiplying (2.24) by η(t)/y(t) , and integrating from
tk to t , we get, for t ∈ (tk,tk+1] ,

r(tk)η(tk)y′(t+k )
y(t+k )

=
r(t)η(t)y′(t)

y(t)
−

∫ t

tk
[r(s)η ′(s)−2η(s)p(s)]

y′(s)
y(s)

ds

+
∫ t

tk
r(s)η(s)

( y′(s)
y(s)

)2
ds+

∫ t

tk
η(s)q(s)ds.

Consequently,

r(t)η(t)y′(t)
y(t)

<
r(t)η(t)y′(t)

y(t)
+

∫ t

tk
r(s)η(s)

( y′(s)
y(s)

)2
ds

=
r(tk)η(tk)y′(t+k )

y(t+k )

−
∫ t

tk
η(s)q(s)ds+

∫ t

tk
[r(s)η ′(s)−2η(s)p(s)]

y′(s)
y(s)

ds

<
r(tk)η(tk)y′(t+k )

y(t+k )
−

∫ t

tk
η(s)q(s)ds. (2.25)

Then,

r(tk+1)η(tk+1)y′(tk+1)
y(tk+1)

<
r(tk)η(tk)y′(t+k )

y(t+k )
−

∫ tk+1

tk
η(s)q(s)ds. (2.26)

Similar to the proof of (2.25) and (2.26), we get, for t ∈ (tk+1,tk+2] ,

r(t)η(t)y′(t)
y(t)

<
r(tk+1)η(tk+1)y′(t+k+1)

y(t+k+1)
−

∫ t

tk+1

η(s)q(s)ds

=
bk+1

ak+1

r(tk+1)η(tk+1)y′(tk+1)
y(tk+1)

−
∫ t

tk+1

η(s)q(s)ds

<
bk+1

ak+1

[ r(tk)η(tk)y′(t+k )
y(t+k )

−
∫ tk+1

tk
η(s)q(s)ds

]
−

∫ t

tk+1

η(s)q(s)ds,

so,

r(tk+2)η(tk+2)y′(tk+2)
y(tk+2)

<
bk+1

ak+1

[ r(tk)η(tk)y′(t+k )
y(t+k )

−
∫ tk+1

tk
η(s)q(s)ds

]
−

∫ tk+2

tk+1

η(s)q(s)ds.
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Since y′(t+k )y(t+k ) < 0, by induction, it is easy to prove that, for any n � k+1,

r(tn)η(tn)y′(tn)
y(tn)

<
bk+1 · · ·bn−1

ak+1 · · ·an−1

[ r(tk)η(tk)y′(t+k )
y(t+k )

−
∫ tk+1

tk
η(s)q(s)ds

− ak+1

bk+1

∫ tk+2

tk+1

η(s)q(s)ds− ak+1 · · ·an−1

bk+1 · · ·bn−1

∫ tn

tn−1

η(s)q(s)ds
]

< −
{bk+1 · · ·bn−1

ak+1 · · ·an−1

∫ tk+1

tk
η(s)q(s)ds+

bk+2 · · ·bn−1

ak+2 · · ·an−1

∫ tk+2

tk+1

η(s)q(s)ds

+ · · ·+
∫ tn

tn−1

η(s)q(s)ds
}

,

which follows from (2.22) that

lim
n→∞

r(tn)η(tn)y′(tn)
y(tn)

= −∞. (2.27)

By (2.25) and (2.27), there exists some j such that

r(t)η(t)y′(t)
y(t)

+
∫ t

t j
r(s)η(s)

( y′(s)
y(s)

)2
ds � −1, t � t j.

Consequently,
r(t)η(t)y′(t)

y(t)
� −1−

∫ t

t j
r(s)η(s)

( y′(s)
y(s)

)2
ds. (2.28)

Noting that y′(t) < 0, multiplying (2.28) by

−y′(t)
y(t)

(
1+

∫ t

t j
r(s)η(s)

( y′(s)
y(s)

)2
ds

)−1
,

we have

r(t)η(t)
(y′(t)

y(t)

)2(
1+

∫ t

t j

(y′(s)
y(s)

)2
ds

)−1
� −y′(t)

y(t)
. (2.29)

Integrating (2.29) from t j to t , we get

ln
(
1+

∫ t

t j
r(s)η(s)

( y′(s)
y(s)

)2
ds

)
� ln

(y(t+j )

y(t)

)
. (2.30)

From (2.28) and (2.30), it follows that

−r(t)η(t)
y′(t)
y(t)

�
y(t+j )

y(t)
,

which can be rewritten as

y′(t) � − y(t+j )
r(t)η(t)

. (2.31)
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Integrating (2.31) from t j to t j+1 , we have

y(t j+1) � y(t+j )
(
1−

∫ t j+1

t j

dt
r(t)η(t)

dt
)
.

By (2.23), we have limsup
j→∞

y(t j+1) � 0, which contradicts y(t) > 0 for t � T . The

proof is complete. �

As the immediate consequences of Theorems 2.1 and 2.2, we obtain the following
oscillation theorems for Eq.(1.1).

THEOREM 2.3. If the conditions of Theorem 2.1 hold, then Eq.(1.1) is oscilla-
tory.

THEOREM 2.4. If the conditions of Theorem 2.2 hold, then Eq.(1.1) is oscilla-
tory.

Finally, we provide an example to illustrate the applications of Theorems 2.3 and
2.4.

EXAMPLE 2.1. Consider
⎧⎪⎪⎨
⎪⎪⎩

x′′(t)+ ( sint
4t + 1

8t + 3
16t2

+ cost
8t2

)x(t) = 0, t � t0, t �= 3kπ , k = 1,2, · · · ,
x(t+k ) = x(tk), x′(t+k ) = k+1

k x′(tk), k = 1,2, · · · ,
x(t+0 ) = x0, x′(t+0 ) = x′0,

(2.32)

where

r(t) = 1, h(t) = ( sin t
4t + 1

8t + 3
16t2

+ cost
8t2

) , and ak = 1, tk = 3kπ , bk = k+1
k .

Let

p(t) =
1
4t

(1+ cost) � 0.

Then

p(tk) = 0 and q(t) =
2t + cos2 t

16t2
>

1
8t

> 0.

A straightforward calculation shows

lim
n→∞

∫ t1

t0
q(t)dt +

a1

b1

∫ t2

t1
q(t)dt +

a1a2

b1b2

∫ t3

t2
q(t)dt + · · ·+

n−1

∏
i=1

ai

bi

∫ tn

tn−1

q(t)dt

� lim
n→∞

(1
2

∫ 3π

π

1
8t

dt +
1
3

∫ 9π

3π

1
8t

dt + · · ·+ 1
n+1

∫ 3nπ

3n−1π

1
8t

dt
)

� 1
8

lim
n→∞

(1
2

+
1
3

+ · · ·+ 1
n+1

)
= +∞,
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Hence the conditions (2.7) is satisfied. Note that −1
t � −2p(t) � 0 and

lim
n→∞

{∫ t1

t0
Θ(t0,s)ds+

b1

a1

∫ t2

t1
Θ(t0,s)ds+ · · ·+

n−1

∏
i=1

bi

ai

∫ tn

tn−1

Θ(t0,s)ds
}

� lim
n→∞

∫ 3π

π

1
s
ds+

∫ 32π

3π

1
s
ds+ · · ·+

∫ 3nπ

3n−1π

1
s
ds

= ln3 lim
n→∞

(n−1) = +∞.

Then (2.15) holds. By Theorem 2.3, Eq.(2.32) is oscillatory.
At fact, we can also show that Eq.(2.32) is oscillatory by Theorem 2.4. Indeed, let

η(t) = t . Then

lim
n→∞

{n−1

∏
i=1

bi

ai

∫ t1

t0
tq(t)dt +

n−1

∏
i=2

bi

ai

∫ t2

t1
tq(t)dt + · · ·+

∫ tn

tn−1

tq(t)dt}

� lim
n→∞

(
n

∫ 3π

π

1
8
dt +

n
2

∫ 9π

3π

1
8
dt + · · ·+

∫ 3nπ

3n−1π

1
8
dt

)
= +∞,

and ∫ 3kπ

3k−1π

dt
r(t)η(t)

=
∫ 3kπ

3k−1π

1
t
dt = ln3 > 1,

hence, (2.22) and (2.23) hold. Then, by Theorem 2.4, Eq.(2.32) is oscillatory.

REMARK 2.1. Note that h(t) can be changed sign in [t0,∞) . Therefore, the os-
cillation criteria in [1-4,6-8,11,12] can not apply to Example 2.1.
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