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QUASI-PERIODIC SOLUTIONS OF NONLINEAR DIFFERENTIAL
EQUATIONS VIA THE FLOQUET-LIN THEORY

J. BEN SLIMENE AND J. BLOT

(Communicated by H.-O. Walther)

Abstract. We use a Floquet theory for quasi-periodic linear ordinary differential equations due
to Zhensheng Lin to obtain results on the quasi-periodic solutions of quasi-periodic nonlinear
ordinary differential equations. First we obtain an existence result, secondly we obtain a result
on the continuous dependence by using a parametrized fixed point theorem, and thirdly we obtain
alocal result on the differentiable dependence by using an implicit function theorem in function
spaces.

1. Introduction

Our aim is to study quasi-periodic solutions of ordinary differential equations in
the following forms :

X(t)=A@)x()+ f(t,x(1)), (1.1)
X(t)=A(0)x(t) +g(t,x(t),u(t)), (1.2)
x(t) = g(t,x(t),u(?)), (1.3)

where A is a quasi-periodic matrix, u is a quasi-periodic function (a forcing term or a
control term), f and g are quasi-periodic with respect to ¢.
To treat these problems we use the properties of the following forced linear ordi-
nary differential equation
() =A(t)x(t) + b(1), (1.4

where b is a quasi-periodic function. To study equation (1.4) we use a Floquet theory
of quasi-periodic equations due to Zhensheng Lin [8], [9], [10], and several tools of
Nonlinear Functional Analysis.

In Section 2 we fix our notation on the quasi-periodic function spaces.

In Section 3 we recall results of Lin and we use them to study equation (1.4), no-
tably to obtain a generalization to (1.4) of a classical theorem of Bohr and Neugebauer
on the constant coefficients systems.

In Section 4, by using results of Section 3, we build a Fixed Point approach to
obtain an existence result on quasi-periodic solutions of equation (1.1).
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Keywords and phrases: quasi-periodic solutions, Floquet theory, fixed-point theorem, implicit function
theorem.
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In Section 5, by using results of Section 3, we build a Parametrized Fixed Point
approach to obtain an existence result and a continuous dependence results on quasi-
periodic solutions of equation (1.2).

In Section 6, by using results of Section 3, we build an Implicit Function Theorem
approach to obtain a differentiable perturbation result on the quasi-periodic solutions of
equation (1.3).

2. Notation

APY(R™) denotes the space of the almost periodic functions from R into R” in
the sense of H. Bohr, [6], [7], [5]. Endowed with the norm ||@]|e = sup,cg ||@(7)]], it is
a Banach space.

When k € N, =N\ {0}, C¥(R,R") denotes the space of the functions from R into
R" which are of class Ck. AP*(IR") denotes the space of the functions ¢ € AP*(R")N
Ck(R,R™) such that the derivatives ‘ZT‘I’-’ belong to AP*(R") for all j =1,...,k. En-
dowed with the norm:

lolee = llgll+ 2 %2

APK(R™) is a Banach space.
When ¢ € AP°(R") and when A € R, we consider the Fourier-Bohr coefficient

a(p,A) = Jim ﬁ/ o(te .

We set
Alp)={A eR:a(p,A)#0}

and Mod (@) is the Z-module generated by A(¢) in R.
When @ = (@, ...,wy) is a list of N real numbers which are Z-linearly indepen-
dent, we set

o) = {}k}l,-w, c(I1yly) € ZN}.
j=1

We set
QP (R") = {9 € AP°(R") : Mod(¢) C (w)}.

The functions which belong to QP (IR") are so-called @ -quasi-periodic functions. We
also set
OF;,(R") = AP*(R") N QP (R"),

when k € N. It is a Banach subspace of APK(R").

When TV denotes the usual N-dimensional torus, if ¢ € QPX(R") then there
exists a unique ¢ € CK(TV,R") such that () = ¢(tw) forall r € R, [3].

By Wk2(TVN,R") we denote the space of Sobolev defined as follows:
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Wh2(TV, R") = {¢ € I(TV,R")| Vor = (e, ..., o) € NV
such that |a| <k, D%¢ € L*(TV,R")},

where D%¢ is the derivative of ¢ in the sense of Schwartz distributions, and |ot| =
27:1 ;.

Following [13, Definition 2.1, p.5,6], a function g : R x R” x R? — R", (¢,x,u) —
g(t,x,u), is called almost periodic in # uniformly for (x,u) € R" x R” when g is con-
tinuous and satisfies the following property:

Ve >0,V K compact subset of R" x R 3. > 0,
Vo € R, 37 € [0, 00 + [,V € R,V(x,u) €K,
Hf(t—l—’c,)@u) —f(t,x7u)|| <€

We denote by APU (R x R" x RP/R") the space of such functions as in [1], [2]. Ever
following [13, Definition 2.2, p.6], when g € APU (R x R" x RP|R"), we define

1 /T ;
Alg)={A eR: I(x,u) e R" x R?, Tlim ﬁ/ g(t,x,u)e*dr # 0}
—o0 -T

and Mod(g) is the Z-module generated by A(g) in R.

When o = (wy,...,0y) is a list of N real numbers which are Z-linearly inde-
pendent, we define QPU, (R x R” x RP | R") as the set of the functions g € APU (R X
R"” x RP,R") such that Mod(g) C (). When g € QPU,(R x R" x RP,R") there
exists a unique G € CO(TY x R” x R?,R") such that g(t,x,u) = G(tw,x,u) for all
(t,x,u) € R x R" x R?; see [3, Remark p.101].

We denote by M, ,(R) the space of the p x n real matrices, by M,(RR) the space of
the n x n real matrices, and we denote by GL(n,R) the so-called general linear group
of the n x n real invertible matrices.

3. The linear case

First we recall elements of the Floquet theory for quasi-periodic systems due to Z.
Lin [9]. We consider the following homogeneous linear ordinary differential equation

¥(1) =AQ@)y(), (3.1
where
A€ QPY(M,(R)) and A(t) = F(to) for all t € R, (3.2)
where F € W™2(TV M, (R)) is such that fpy F(u)du =0, T=2(N+1) (”<"“) + 1) ,
and o = (wy,...,wy) satisfies the following condition.

{There exists K(w) € (0,0) such that, for all (,...,ly) € Z, (33)

IS L] > K(0) (S 1)~ (.

We can find some properties of the condition (3.3) in [9] and [10]. Note also
that a condition of this kind is used in [12, p.24]. Under conditions (3.2) and (3.3), if
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Y(r) = colly(t),...,yu(t)] is a fundamental matrix of (3.1), where the notation means
that the y;(r) are the columns of Y (¢), Z. Lin defines the following real numbers, for
j=1,...n,

1
Bj= ]}im - In|ly;(t)|| when ]}im tz@ = 0 modulo 27,
—oo [ —o0

see [9], [10].

Lin proves that these numbers are independent of the choice of the fundamental
matrix Y (¢), and he calls them the FL-CER of A, where FL-CER is an abbreviation of
Floquet and Characteristics Exponential Roots.

In the following lemma we improve a result of Z. Lin in [9, lemma 1, p.202] by
weakening the assumption of differentiability. Precisely we replace the strong differen-
tiability by the distributional differentiability.

LEMMA 3.1. Let f € QPY(R") such that f(t) = F(tw) forall t € R, where:
F e Wi2(TV,R"), 1 =2(N+1) (@ + 1), and @ satisfy (3.3).

Assume that [pn F(u)du = 0. Then the function t — G(t) = [§ f(s)ds belongs to
O, (R").

Proof. F(u) can be expressed as follows:

Fu)=Y are' ).
20

Then we have:

IF :
au(r”) = Y (ikj) e ™) forall j=1,....N
j k£0

and, for all k = (ky,....ky) € ZV,

s N/Z” /2” O F(u) \ itk
(ik;) ar = <2n L o e du .

Let ||k = max|ki],...,|kn|, by taking j such that ||k|| = |k;|, and by using the
Cauchy-Schwarz inequality, we have:

1
1 / k) |2 ) 2
e "\ du | =
e (e b

where Qy = (0,27)V, thus:

0"F (u)
Ju

OTF ()

k|| Z <
K e < o

)

L2(TN)

T
J

O7F (1)

< ||k|IZT
o < K=" |

L2(TN)
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Let
J'F
M = max 3 (Tu)
1<j<N I/tj LZ(TN)
Then we obtain:
|ar| < M|[k||"

Now, for all integer r € N,., we define:
N—1 R i
C(r,N) HkHzm“:rl 2N(2r+1) 2Nj221 ci @)
Therefore, there is a constant C(N) such that:

C(r,N) <C(N)AN L,

335

(3.4)

(3.5)

Let ||k||1 = k1| + ...+ |kn|. Since [|k[|; < N||k||-, we have ||k[|27 < NT||k[|;*. Now

combining this one with (3.3) and (3.4), we obtain

Y lal kI

[1&llo=r

N kST kY
[|&][co=r

Y IRISTNY R 2
Jifla=r

[1&lle=r

= = =
< g‘a /g‘a g‘~

_ M N+ 2 ||k||;‘r+(N+l)
(@) kllo=r

M v —T+(N+1)
—K—(w)N (2 1);»

[[klle=r
_ M NHC(r,N)r_H(NH)

- K()

>

and by using (3.5), we get

ay M Nt —1,—T+(N+1)
< ——NVFlewn)N Ly )
[1&]loo=r <kaw>‘ K(w) ")

Thus we have proved that for all » € N,,

Ak ‘ —T74+2N
< Co(N)r
io=r| k)
where Co(N) = %NN“C(N). Hence
Ak ‘ —T+2N
y Y < Y Go(N)r
e P LY ) R
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and if T=s+2(N+ 1), where s € N,, we have

DY

=1 K=

r=1

Hence the series Yo <ka__ﬁ)>ei<k7u>

tion.

converges absolutely and G is a quasi-periodic func-

REMARK 3.2. Using this lemma, in Theorem 3 in [9, p.210], we can replace the
assumption A € C*(M,(R)) by (3.2) to get the following theorem.

THEOREM 3.3. Under (3.2) and (3.3), there exists C € M,(R) such that the FL-
CER of A are the real parts of the eigenvalues of C, there exists S € QPL(GL(n,R))
such that if z is a solution of the equation

2(t) = Cz(r), (3.6)

then t — y(t) = S(¢t)z(¢) is a solution of (3.1), and conversely if y is a solution of (3.1)
then t — z(t) = S(t)~'y(t) is a solution of (3.6).

It is not difficult to verify that the transformation S satisfies the following relation
forall r e R,
S(t) =A(t)S(t) - S(¢)C. (3.7)

We also recall a classical result, due to Bohr and Neugebauer, on the constant
coefficients linear systems [11].

THEOREM 3.4. Let Q € M,(R) be such that the real parts of all the eigenvalues
of Q are non zero. Then for all d € AP*(R") there exists a unique z; € AP'(R") which
is a solution of the following equation

(1) =Qz(t) +d(t). (3.8)

Moreover there exists a constant o € (0,00) such that ||z4|le < @.||d|| for all d €
APO(R™).

DEFINITION 3.5. We so-call the Bohr-Neugebauer constant the least constant
which satisfies the last assertion of the Bohr-Neugebauer theorem.

LEMMA 3.6. Let A € QPY(M,(R)) which satisfies (3.2) and (3.3) and the follow-
ing condition:
the FL-CER fi,...,B. of A are non zero. (3.9)

Then for all b € QPO(R") there exists a unique y, € QP)(R") which is a solution
of (1.4). Moreover there exists a constant y € (0,0) such that ||yp|| < V||b||- for all
b€ QPY(RM).
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Proof. We consider C and S provided by Theorem 3.3. Let b € QP)(R") be
arbitrarily chosen. We set d(t) = S(¢)~'b(t), and then we have d € QP)(R"). Since
Bi, ..., By are the real parts of the eigenvalues of C, condition (3.9) permits us to use the
Bohr-Neugebauer theorem with Q = C, and so we can assert that there exists a unique
zg € QPL(R") such that z4(t) = Cz4(t) +d(t) for all + € R. Now we set y(t) =
S(t).z4(t), then we have y;, € QP (R") and by using (3.7), we obtain, for all 7 € R,

Vp(t) = S(t)za(t) +S(1)za(t)

= [A()S(t) — S(1)Clza(t) + S(2)[Cza(t) +d(1)]
=A(t)yp(t) + 0+ S(2)d(r)
=A(1)yp(1) + b(2)

That proves the existence.

If y € QPL(R") also satisfies y(t) = A(t)y(t) + b(t), for all + € R, by setting
z(t) = S(t)"'y(t), we verify that z(t) = Cz(t) +d(t) and the uniqueness provided by the
Bohr-Neugebauer theorem implies z = z; which implies y = y;,. And the uniqueness
is proven.

We denote by o the Bohr-Neugebauer constant of C. Since S and S~! = [t
S(¢)~!] are quasi-periodic, they are bounded on R, and consequently we have:

[1Ybllee = 1152 ]|eo < [IS]]eo- | za 2o
< |8 llweeld]los = IS]]cx|S "D
<8I5S~ o]l

and so it suffices to take ¥ = ||S||cc0t[|S ™! |-

DEFINITION 3.7. We call the Bohr-Neugebauer constant of A the least constant
y which satisfies the last assertion of Lemma 3.6.

4. An existence result

In this section we obtain an existence result by using the Z. Lin theorem and the
Picard-Banach fixed point theorem.

THEOREM 4.1. Let A € QP%(M,(R)) and f € QPU,(R x R"R"). We assume
that (3.2), (3.3) and (3.9) are fulfilled. Let y denote the Bohr-Neugebauer constant of
A. We also assume that the following condition is fulfilled:

there exists ¢ € (0, (||Ally+ 14 7v)~1) such that

1£(2,0) = fE )l < cllx—y| 4.1
forallt € R and for all x,y € R".

Then equation (1.1) possesses a unique solution in QP (R").
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Proof. We consider the following linear operator L : QP} (R") — QPY(R") de-
fined by Lx = [t — x(¢) — A(¢)x(¢)]. By using Lemma 3.6 we know that L is invertible,
and for all b € QPS(R"), L~1(b) = x; the unique solution of x(¢) = A(t)x(t) + b(t) in
0P (R").

By using the Bohr-Neugebauer constant we know that ||x ||« < 7]|5]|«, and more-
over we have ||%p|le < ||Allco||xp|lee + [|D]lee < (||A]|loy + 1)]|]|c- And so we obtain
IL71(B) |1 < (J|A]|eoY + 1+ 7)]|b] |, that implies the following inequality for the norm
of the inverse operator:

1L < |Afly + 1+ v. (4.2)

We note that when x € QPO (R") there exists ¢ € CO(TV,R") such that x(t) =
o(tw) for all + € R; [3, Theorem 2, p.97]. Since f € QPU,(R x R",R"), by us-
ing Remark p.101 in [3], we know that there exists F € CO(TV x R",R") such that
f(t,x) =F(tw,x) forall t € R and for all x € R". It is clear that the function v, de-
fined by w(0) = F(0,9(0)) forall 6 € TV, belongs to C°(TV,R") as a composition
of continuous periodic functions. Consequently, we have [t — f(z,x(t)) = y(tw)] €
OPY(R"). And so the superposition operator build on f, Ny : QP9 (R") — QPJ(R"),
N¢(x) = [t — f(t,x(1))], is well defined. From the assumption (4.1) it is easy to obtain
the following inequality:

N7 () = N (9)lleo < €l = ylleo (4.3)

for all x,y € QP9 (R").
Consequently by setting ¢ = c(||A||l«y + 1+ 7)~! we have ¢; € (0,1) and by
using (4.2) and (4.3), the following inequality holds:

IL7 o Np(x) = L™ o Np () o < el =y

for all x,y € QPY(R"). And so the operator L' o Ny : QPS(R") — QPY(R") is a
contraction. Then by using the Picard-Banach Fixed Point Theorem, we obtain that
there exists a unique x € QP9 (R") such that L~! o Nf(x) = x.

We note that, for x € QPY(R"), L~ o N(x) = x is equivalent to say that x is a
solution of (1.1) in QP} (R"), and so the theorem is proven.

5. A continuous dependence result

In this section, we establish the existence of quasi-periodic solutions of equa-
tion (1.2) and a continuous dependence result with respect to the parameters functions
u.

First we recall a theorem on fixed points which is proven in [14, p.103].

THEOREM 5.1. (Parametrized fixed point) Let E be a complete metric space , let
A be a topological space and let ¢ : E X A — E be a mapping which satisfies the two
following properties:

forallxe€ E, A — @(x,A) is continuous from A into E, (5.1)
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and
there exists k € (0,1) such that,

forall A € A and forall x,y € E,
the following inequality holds:
d(¢(x,2),0(y,4)) < kd(x.y).

Then, for all A € A, denoting by a[A] the unique fixed point of the partial mapping
o (.,A), the mapping A — a[A] is continuous from A into E.

(5.2)

THEOREM 5.2. Let A € QPY(M,(R)) and g € QPU,(R x R" x R?,R"). We as-
sume that (3.2), (3.3) and (3.9) are fulfilled, and y denotes the Bohr-Neugebauer con-
stant. We also assume that the following condition is fulfilled.

There exists d € (0, (|Alley+1+7)" 1)
such that ||g(t,x,u) — g(t,y,u)|| < d.[x—y]| (5.3)
forallt € R, forall x,y € R" and for all u € R?.

Then, for all u € QP)(RP) there exists a unique solution X[u] € QPL(R") of (1.2), and
moreover the mapping u — X[u] is continuous from QPS(RP) into QPL(R").

Proof. We consider the operator L defined in the proof of Theorem 4.1. By using
on g arguments similar to these ones used on f in the proof of Theorem 4.1, we obtain
that the superposition operator N, : QPS(R") x QP9 (R?) — QPY(R"), Ng(x,u) =
[t — g(#,x(t),u(?))], is well defined. By using (5.3) we easily verify that the following
property holds:

N (r,t0) — N (y.t0) oo < = ¥ (5.4)

for all x,y € QPY(R") and for all u € QPJ(R").
We define the nonlinear operator ¢ : QPO (R") x QPY(RP) — QPY(R") by set-
ting:
¢ (x,u) = L~ o Ng(x,u) forall (x,u) € QPY(R") x QPS(RP).

With
E = QP%(R") and A = QP (RP),

by using (4.2) and (5.4) by setting k = d.(||A||~Y+1+7) € (0,1), we see that ¢ satis-
fies (5.2). By using [2, Theorem 3.5, p.47], we know that

Nj : AP°(R") x AP’ (RP) — APO(R"), Nj(x,u) = [t — g(t,x(t),u(t))],

is continuous, and since N, is a restriction of Ngl, N is also continuous. Since L]
is linear continuous, ¢ is continuous as a composition of continuous operators, and
consequently the partial operator u — ¢ (x,u) is continuous for all x € QPY(R"), and
so ¢ satisfies (5.1).

Now we can use the theorem of parametrized fixed point, and we can assert that,
for all u € QPY(IRP) there exists a unique X[u] = L~! o Ny(X[u],u), and moreover the
mapping u +— X[u] is continuous from QPY(R”) into QPY(R™).
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To say that X[u] satisfies the equation X[u] = L™ o Ng(X[u],u) is equivalent to
say that X[u] € QPL(IR") and X[u] is a solution of (1.2).
We note that

X[u)(t) = A(0)X[u) (1) + (¢, X[u] (£), u(r)).-

Since u +— X[u] is continuous from QPY(IRP) into QP)(R") and since v — Av = [t
A(t)v(¢)] is linear continuous from QP2 (R") into QPY(R"), we obtain that u — Ax[u]
is continuous from QPY(R?) into QPY(R"). We have yet seen that the superposition
operator N, is continuous from QP (R") x QP (RP) into QPY(IR"), and it is clear that
the operator u +— (X[u],u) is continuous from QPY(RP) into QPY(R") x QPY(RP),
and so u +— Ng(X[u],u) is continuous from QPY(RP) into QPY(IR") as a composition
of continuous operators. Finally u +— X[u] = AX[u] + No(X[u],u) is continuous from
QP (RP) into QPY(R") as a sum of continuous operators. Therefore u +— X[u] is
continuous from QPY(RP) into QPL(R").

6. A differentiable perturbation result

We fix o = (wy,...,0y) alist of Z-linearly independent real numbers. We con-
sider, about the vector-field of the equation (1.3), the following condition:

g € OPU,(R x R" x R”, R")NC* (R x R" x R, R"),

D.g € OPUu (R x R x R?, M,(R)) NCT(R x R” x R?, M,(R))
with 7= 2(N + 1) (2% 4 1), and

Dyg € QPU, (R x R" x R?, M, ,(R)).

6.1)

In this condition, D,g denotes the partial differential of g with respect to the second
vector variable and D, g denotes the partial differential of g with respect to the third
vector variable.

THEOREM 6.1. Let g: R x R" x R? — R" be a function which satisfies (6.1)
where o satisfies (3.3). Let u, € QP5(RP) and let x. € QPL(R") be a solution of
(1.3) where u = u,. We set J(t) = Dyg(t,x.(t),u.(t)) for all t € R and we denote by
Bi,..., By the FL-CER of J. Moreover we assume that the following condition is fulfilled.

Forall j=1,...,n, PB;isnon zero. (6.2)

Then there exists r € (0,%0) such that, for all u € QPY(RP) satisfying
|tt — us]|eo < 7, there exists X[u] € QPL(R™) which is a solution of (1.3).

Moreover the nonlinear operator u — X[u] is of class C' from
{u € QPY(RP) : |lu — u* || < r} into QPL(R™), and there exists a neighborhood N
of x. in QPL(R") such that X[u] is the unique solution of (1.3) in QPL(R") which
belongsto N .

Before to do the proof of this theorem we need a lemma of Differential Calculus.
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LEMMA 6.2. When g € QPUy, (R x R" x RP R") is such that its partial differen-
tials with respect to the second and the third vector variables exist and satisfy

D,g € QPU,»(R x R" x R? M, (R)) and D,g € QPUy,(R x R" x R? M, ,(R)),
then the operator
[ QP (R") x QP (RP) — QP (R"), T(x,u) = [t i(r) — g(t,x(t),u(t))],

is well-defined and it is of class C'.

The formula of its partial differential with respect to its first variable is the follow-
ing one:

DiU(xi,us).y = [t = 3(1) = Dag (t,%:(1), 1 1)) 3(1)]

forall y € QPL(R").

Proof. When x € QPY(R") and u € QP (RP) there exist ¢ € CO(TV,R") and
v € CO(TV,RP) such that x(¢) = ¢(t®) and u(t) = y(tw) forall # € R, [3, Theorem
2, p.97]. By using Remark p.101 in [3], since g € QPU,(R x R" x RP/R"), there
exists G € CO(TY x R" x R?,R") such that g(t,x,u) = G(tw,x,u) for all (¢,x,u) €
RxR"xRP. Weset x(0)=G(0,¢(0),y(0)), then x € CO(TV,R") as a composition
of continuous periodic functions. Consequently we have:

[t g(t,x(),u(r)) = 2 (tw)] € QPH(R™).

And so the operator I" is well-defined.
By using Theorem 5.1, p.54 in [2], we know that the superposition operator:

Ng : APY(R") x APY(RP) — APY(R"), Ng (x,u) = [t — g(t,x(t),u(1))],
is of class C'. And so the superposition operator
Ng : QP (R") x QP (RP) — QP (R"), Ng(x,u) = [t — g(t,x(t),u(1))]
is of class C' as a restriction of NA} . And so the following assertion holds:
N, € C' (QPG(R") x QPG (R?),QF,(R")) . (6.3)

The operator IT; : QP) (R") x QPY(RP) — QPL(R"), defined by IT; (x,u) = x,
is linear continuous, therefore the following assertion holds:

IT; € C'(QPL(R") x QP (RP), OPy (R™M)). (6.4)

The operator % : QP) (R") — QPO (R™), %x = X, is linear continuous, therefore
the following assertion holds:

% € C'(QP,(R"),QP)(R™). (6.5)
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The operator in : QP (R") x QP) (RP) — QPY (R") x QPY(RP), in(x,u) = (x,u),
is linear continuous, and so the following assertion holds:

in € C' (P, (R") x QP (R?), QP (R") x QPy(RY)). (6.6)

We note that I' = £ oTIj — N, oin, and so by using (6.3)-(6.6), T is of class C! as
the difference of compositions of operators of class C!.

Now, by using Theorem 5.1, p.54, in [2] and the chain rule of the differential
calculus in Banach spaces, we obtain the following calculations:

D1 T(xy,us).y = DI (x4, us).(3,0)

_D (% oHl) (s 10,).(3,0) — D(Ng 0 ) (2,12 (1,0)
d

= E OHl(y,O) _DNg(x*’u*)'(y’O)
= [t (1) — Dxg(t,x:(1),us (1)) y(1)].

PROOF OF THEOREM 6.1. Since g is of class C*~!, by using a bootstrapping
argument we see that x, is also of class C*. And so the matrix J(¢) satisfies the
condition (3.2). The assumption (6.2) ensures that (3.9) is fulfilled for A =J. And
so can use Lemma 3.6 to assert that for all b € QPY(IR"), there exists a unique y €
OPL(R") such that y(t) = J(t)y(t) + b(t) for all t € R. And so, by using Lemma 6.2,
we can translate this result in the following form:

DT'(x,,u,) is a bijection from QP (R") onto QP2 (R"). (6.7)
Since %, (1) = g(¢,x(t),u(z)) forall r € R, the following assertion holds:
I(xe,u,) =0. (6.8)

Since I is of class C', (6.7) and (6.8) permit to use the implicit function theorem
of the differential calculus in Banach spaces, see [4, Theorem 4.7.1, p.61]. And so
we can assert that there exist ¥ = {x € QP}(R") : [|x —x.||c1 <r} with r € (0,0), a
neighborhood .4 of u, in QP)(RP), and a C'-mapping X : # — .4 such that, for
all (x,u) € ¥ x A, we have I'(x,u) = 0 if and only if x = X[u].

Notice that T'(x,u) = 0 is equivalent to say that x is solution of (1.3) in QPL(R").
And so Theorem 6.1 is proven.
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