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QUASI–PERIODIC SOLUTIONS OF NONLINEAR DIFFERENTIAL

EQUATIONS VIA THE FLOQUET–LIN THEORY
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Abstract. We use a Floquet theory for quasi-periodic linear ordinary differential equations due
to Zhensheng Lin to obtain results on the quasi-periodic solutions of quasi-periodic nonlinear
ordinary differential equations. First we obtain an existence result, secondly we obtain a result
on the continuous dependence by using a parametrized fixed point theorem, and thirdly we obtain
a local result on the differentiable dependence by using an implicit function theorem in function
spaces.

1. Introduction

Our aim is to study quasi-periodic solutions of ordinary differential equations in
the following forms :

ẋ(t) = A(t)x(t)+ f (t,x(t)) , (1.1)

ẋ(t) = A(t)x(t)+g(t,x(t),u(t)) , (1.2)

ẋ(t) = g(t,x(t),u(t)) , (1.3)

where A is a quasi-periodic matrix, u is a quasi-periodic function (a forcing term or a
control term), f and g are quasi-periodic with respect to t .

To treat these problems we use the properties of the following forced linear ordi-
nary differential equation

ẋ(t) = A(t)x(t)+b(t) , (1.4)

where b is a quasi-periodic function. To study equation (1.4) we use a Floquet theory
of quasi-periodic equations due to Zhensheng Lin [8], [9], [10], and several tools of
Nonlinear Functional Analysis.

In Section 2 we fix our notation on the quasi-periodic function spaces.
In Section 3 we recall results of Lin and we use them to study equation (1.4), no-

tably to obtain a generalization to (1.4) of a classical theorem of Bohr and Neugebauer
on the constant coefficients systems.

In Section 4, by using results of Section 3, we build a Fixed Point approach to
obtain an existence result on quasi-periodic solutions of equation (1.1).
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In Section 5, by using results of Section 3, we build a Parametrized Fixed Point
approach to obtain an existence result and a continuous dependence results on quasi-
periodic solutions of equation (1.2).

In Section 6, by using results of Section 3, we build an Implicit Function Theorem
approach to obtain a differentiable perturbation result on the quasi-periodic solutions of
equation (1.3).

2. Notation

AP0(Rn) denotes the space of the almost periodic functions from R into R
n in

the sense of H. Bohr, [6], [7], [5]. Endowed with the norm ‖ϕ‖∞ = supt∈R ‖ϕ(t)‖ , it is
a Banach space.

When k∈N∗ = N\{0} , Ck(R,Rn) denotes the space of the functions from R into
R

n which are of class Ck . APk(Rn) denotes the space of the functions ϕ ∈ APk(Rn)∩
Ck(R,Rn) such that the derivatives d jϕ

dt j belong to AP0(Rn) for all j = 1, ...,k . En-
dowed with the norm:

‖ϕ‖Ck = ‖ϕ‖∞+
k

∑
j=1

‖d jϕ
dt j ‖∞,

APk(Rn) is a Banach space.
When ϕ ∈ AP0(Rn) and when λ ∈ R , we consider the Fourier-Bohr coefficient

a(ϕ ,λ ) = lim
T→∞

1
2T

∫ T

−T
ϕ(t)e−iλ tdt.

We set
Λ(ϕ) = {λ ∈ R : a(ϕ ,λ ) �= 0}

and Mod(ϕ) is the Z-module generated by Λ(ϕ) in R .
When ω = (ω1, ...,ωN) is a list of N real numbers which are Z-linearly indepen-

dent, we set

〈ω〉 =

{
k

∑
j=1

l jω j : (l1, ..., lN) ∈ Z
N

}
.

We set
QP0

ω(Rn) =
{
ϕ ∈ AP0(Rn) : Mod(ϕ) ⊂ 〈ω〉} .

The functions which belong to QP0
ω(Rn) are so-called ω -quasi-periodic functions. We

also set
QPk

ω(Rn) = APk(Rn)∩QP0
ω(Rn),

when k ∈ N . It is a Banach subspace of APk(Rn) .
When T

N denotes the usual N -dimensional torus, if ϕ ∈ QPk
ω(Rn) then there

exists a unique φ ∈Ck(TN ,Rn) such that ϕ(t) = φ(tω) for all t ∈ R , [3].
By Wk,2(TN ,Rn) we denote the space of Sobolev defined as follows:
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Wk,2(TN ,Rn) = {φ ∈ L2(TN ,Rn)| ∀α = (α1, ...,αN) ∈ N
N

such that |α| � k, Dαφ ∈ L2(TN ,Rn)},
where Dαφ is the derivative of φ in the sense of Schwartz distributions, and |α| =
∑N

j=1α j .
Following [13, Definition 2.1, p.5,6], a function g : R×R

n×R
p →R

n , (t,x,u) �→
g(t,x,u) , is called almost periodic in t uniformly for (x,u) ∈ R

n ×R
p when g is con-

tinuous and satisfies the following property:

∀ε > 0,∀ K compact subset of R
n×R

p,∃ lε > 0,

∀α ∈ R,∃τ ∈ [α,α + lε ],∀t ∈ R,∀(x,u) ∈ K,

‖ f (t + τ,x,u)− f (t,x,u)‖ � ε.

We denote by APU(R×R
n×R

p,Rn) the space of such functions as in [1], [2]. Ever
following [13, Definition 2.2, p.6], when g ∈ APU(R×R

n×R
p,Rn) , we define

Λ(g) = {λ ∈ R : ∃(x,u) ∈ R
n×R

p, lim
T→∞

1
2T

∫ T

−T
g(t,x,u)e−iλ tdt �= 0}

and Mod(g) is the Z-module generated by Λ(g) in R .
When ω = (ω1, ...,ωN) is a list of N real numbers which are Z-linearly inde-

pendent, we define QPUω(R×R
n ×R

p,Rn) as the set of the functions g ∈ APU(R×
R

n ×R
p,Rn) such that Mod(g) ⊂ 〈ω〉 . When g ∈ QPUω(R×R

n ×R
p,Rn) there

exists a unique G ∈ C0(TN ×R
n ×R

p,Rn) such that g(t,x,u) = G(tω ,x,u) for all
(t,x,u) ∈ R×R

n×R
p ; see [3, Remark p.101].

We denote by Mp,n(R) the space of the p×n real matrices, by Mn(R) the space of
the n×n real matrices, and we denote by GL(n,R) the so-called general linear group
of the n×n real invertible matrices.

3. The linear case

First we recall elements of the Floquet theory for quasi-periodic systems due to Z.
Lin [9]. We consider the following homogeneous linear ordinary differential equation

ẏ(t) = A(t)y(t) , (3.1)

where
A ∈ QP0

ω(Mn(R)) and A(t) = F(tω) for all t ∈ R, (3.2)

where F ∈W τ,2(TN ,Mn(R)) is such that
∫
TN F(u)du = 0, τ = 2(N +1)

(
n(n+1)

2 +1
)

,

and ω = (ω1, ...,ωN) satisfies the following condition.{
There exists K(ω) ∈ (0,∞) such that, for all (l1, ..., lN) ∈ Z

N∗ ,

|∑N
j=1 l jω j| � K(ω)(∑N

j=1 |l j|)−(N+1).
(3.3)

We can find some properties of the condition (3.3) in [9] and [10]. Note also
that a condition of this kind is used in [12, p.24]. Under conditions (3.2) and (3.3), if
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Y (t) = col[y1(t), ...,yn(t)] is a fundamental matrix of (3.1), where the notation means
that the y j(t) are the columns of Y (t) , Z. Lin defines the following real numbers, for
j = 1, ...,n ,

β j = lim
k→∞

1
tk

ln‖y j(tk)‖ when lim
k→∞

tkω = 0 modulo 2π ,

see [9], [10].
Lin proves that these numbers are independent of the choice of the fundamental

matrix Y (t) , and he calls them the FL-CER of A , where FL-CER is an abbreviation of
Floquet and Characteristics Exponential Roots.

In the following lemma we improve a result of Z. Lin in [9, lemma 1, p.202] by
weakening the assumption of differentiability. Precisely we replace the strong differen-
tiability by the distributional differentiability.

LEMMA 3.1. Let f ∈ QP0
ω(Rn) such that f (t) = F(tω) for all t ∈ R , where:

F ∈W τ,2(TN ,Rn) , τ = 2(N +1)
(

n(n+1)
2 +1

)
, and ω satisfy (3.3).

Assume that
∫
TN F(u)du = 0 . Then the function t �→ G(t) =

∫ t
0 f (s)ds belongs to

QP0
ω(Rn) .

Proof. F(u) can be expressed as follows:

F(u) = ∑
k �=0

ake
i〈k,u〉.

Then we have:

∂τF(u)
∂uτj

= ∑
k �=0

(ik j)τake
i〈k,u〉, for all j = 1, ...,N

and, for all k = (k1, ...,kN) ∈ Z
N∗ ,

(ik j)τak =
(

1
2π

)N ∫ 2π

0
...

∫ 2π

0

(
∂τF(u)
∂uτj

)
e−i〈k,u〉du .

Let ‖k‖∞ = max|k1|, ..., |kN | , by taking j such that ‖k‖∞ = |k j| , and by using the
Cauchy-Schwarz inequality, we have:

‖k‖τ∞|ak| �
∥∥∥∥∥∂

τF(u)
∂uτj

∥∥∥∥∥
L2(TN)

(
1

(2π)N

∫
QN

|e−i〈k,u〉|2du

) 1
2

=

∥∥∥∥∥∂
τF(u)
∂uτj

∥∥∥∥∥
L2(TN )

,

where QN = (0,2π)N , thus:

|ak| � ‖k‖−τ∞
∥∥∥∥∥∂

τF(u)
∂uτj

∥∥∥∥∥
L2(TN )

.
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Let

M = max
1� j�N

∥∥∥∥∥∂
τF(u)
∂uτj

∥∥∥∥∥
L2(TN )

.

Then we obtain:
|ak| � M‖k‖−τ∞ . (3.4)

Now, for all integer r ∈ N∗ , we define:

C(r,N) = ∑
‖k‖∞=r

1 = 2N(2r+1)N−1 = 2N
N−1

∑
j=1

CN−1
j (2r) j.

Therefore, there is a constant C(N) such that:

C(r,N) � C(N)rN−1. (3.5)

Let ‖k‖1 = |k1|+ ...+ |kN| . Since ‖k‖1 � N‖k‖∞ , we have ‖k‖−τ∞ � Nτ‖k‖−τ1 . Now
combining this one with (3.3) and (3.4), we obtain

∑
‖k‖∞=r

∣∣∣∣ ak

〈k,ω〉
∣∣∣∣� 1

K(ω) ∑
‖k‖∞=r

|ak|.‖k‖N+1
1

� M
K(ω) ∑

‖k‖∞=r

‖k‖−τ∞ ‖k‖N+1
1

� M
K(ω) ∑

‖k‖∞=r

‖k‖−τ∞ NN+1‖k‖N+1
∞

=
M

K(ω)
NN+1 ∑

‖k‖∞=r

‖k‖−τ+(N+1)
∞

=
M

K(ω)
NN+1

(
∑

‖k‖∞=r

1

)
r−τ+(N+1)

=
M

K(ω)
NN+1C(r,N)r−τ+(N+1)

and by using (3.5), we get

∑
‖k‖∞=r

∣∣∣∣ ak

〈k,ω〉
∣∣∣∣� M

K(ω)
NN+1C(N)rN−1r−τ+(N+1).

Thus we have proved that for all r ∈ N∗ ,

∑
‖k‖∞=r

∣∣∣∣ ak

〈k,ω〉
∣∣∣∣� C0(N)r−τ+2N

where C0(N) = M
K(ω)N

N+1C(N) . Hence

∑
r=1

∑
‖k‖∞=r

∣∣∣∣ ak

〈k,ω〉
∣∣∣∣� ∑

r=1

C0(N)r−τ+2N
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and if τ = s+2(N +1) , where s ∈ N∗ , we have

∑
r=1

∑
‖k‖∞=r

∣∣∣∣ ak

〈k,ω〉
∣∣∣∣� C0(N)∑

r=1
r−(s+2) < ∞.

Hence the series ∑k �=0
ak

〈k,ω〉e
i〈k,u〉 converges absolutely and G is a quasi-periodic func-

tion.

REMARK 3.2. Using this lemma, in Theorem 3 in [9, p.210], we can replace the
assumption A ∈Cτ(Mn(R)) by (3.2) to get the following theorem.

THEOREM 3.3. Under (3.2) and (3.3), there exists C ∈ Mn(R) such that the FL-
CER of A are the real parts of the eigenvalues of C , there exists S ∈ QP1

ω(GL(n,R))
such that if z is a solution of the equation

ż(t) = Cz(t), (3.6)

then t �→ y(t) = S(t)z(t) is a solution of (3.1), and conversely if y is a solution of (3.1)
then t �→ z(t) = S(t)−1y(t) is a solution of (3.6).

It is not difficult to verify that the transformation S satisfies the following relation
for all t ∈ R ,

Ṡ(t) = A(t)S(t)−S(t)C. (3.7)

We also recall a classical result, due to Bohr and Neugebauer, on the constant
coefficients linear systems [11].

THEOREM 3.4. Let Ω ∈ Mn(R) be such that the real parts of all the eigenvalues
of Ω are non zero. Then for all d ∈ AP0(Rn) there exists a unique zd ∈ AP1(Rn) which
is a solution of the following equation

ż(t) = Ωz(t)+d(t). (3.8)

Moreover there exists a constant α ∈ (0,∞) such that ‖zd‖∞ � α.‖d‖∞ for all d ∈
AP0(Rn) .

DEFINITION 3.5. We so-call the Bohr-Neugebauer constant the least constant α
which satisfies the last assertion of the Bohr-Neugebauer theorem.

LEMMA 3.6. Let A∈QP0
ω(Mn(R)) which satisfies (3.2) and (3.3) and the follow-

ing condition:
the FL-CER β1, ...,βn of A are non zero. (3.9)

Then for all b ∈ QP0
ω(Rn) there exists a unique yb ∈ QP1

ω(Rn) which is a solution
of (1.4). Moreover there exists a constant γ ∈ (0,∞) such that ‖yb‖∞ � γ‖b‖∞ for all
b ∈ QP0

ω(Rn) .
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Proof. We consider C and S provided by Theorem 3.3. Let b ∈ QP0
ω(Rn) be

arbitrarily chosen. We set d(t) = S(t)−1b(t) , and then we have d ∈ QP0
ω(Rn) . Since

β1, ...,βn are the real parts of the eigenvalues of C , condition (3.9) permits us to use the
Bohr-Neugebauer theorem with Ω= C , and so we can assert that there exists a unique
zd ∈ QP1

ω(Rn) such that żd(t) = Czd(t) + d(t) for all t ∈ R . Now we set yb(t) =
S(t).zd(t) , then we have yb ∈ QP1

ω(Rn) and by using (3.7), we obtain, for all t ∈ R ,

ẏb(t) = Ṡ(t)zd(t)+S(t)żd(t)
= [A(t)S(t)−S(t)C]zd(t)+S(t)[Czd(t)+d(t)]
= A(t)yb(t)+0+S(t)d(t)
= A(t)yb(t)+b(t).

That proves the existence.
If y ∈ QP1

ω(Rn) also satisfies ẏ(t) = A(t)y(t) + b(t) , for all t ∈ R , by setting
z(t) = S(t)−1y(t) , we verify that ż(t) =Cz(t)+d(t) and the uniqueness provided by the
Bohr-Neugebauer theorem implies z = zd which implies y = yb . And the uniqueness
is proven.

We denote by α the Bohr-Neugebauer constant of C . Since S and S−1 = [t �→
S(t)−1] are quasi-periodic, they are bounded on R , and consequently we have:

‖yb‖∞ = ‖Szd‖∞ � ‖S‖∞.‖zd‖∞
� ‖S‖∞α‖d‖∞ = ‖S‖∞α‖S−1b‖∞
� ‖S‖∞α‖S−1‖∞‖b‖∞,

and so it suffices to take γ = ‖S‖∞α‖S−1‖∞ .

DEFINITION 3.7. We call the Bohr-Neugebauer constant of A the least constant
γ which satisfies the last assertion of Lemma 3.6.

4. An existence result

In this section we obtain an existence result by using the Z. Lin theorem and the
Picard-Banach fixed point theorem.

THEOREM 4.1. Let A ∈ QP0
ω(Mn(R)) and f ∈ QPUω(R×R

n,Rn) . We assume
that (3.2), (3.3) and (3.9) are fulfilled. Let γ denote the Bohr-Neugebauer constant of
A. We also assume that the following condition is fulfilled:⎧⎨

⎩
there exists c ∈ (0,(‖A‖γ+1+ γ)−1) such that
‖ f (t,x)− f (t,y)‖ � c‖x− y‖
for all t ∈ R and for all x,y ∈ R

n.
(4.1)

Then equation (1.1) possesses a unique solution in QP1
ω(Rn) .
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Proof. We consider the following linear operator L : QP1
ω(Rn) −→ QP0

ω(Rn) de-
fined by Lx = [t �→ ẋ(t)−A(t)x(t)] . By using Lemma 3.6 we know that L is invertible,
and for all b ∈ QP0

ω(Rn) , L−1(b) = xb the unique solution of ẋ(t) = A(t)x(t)+b(t) in
QP1

ω(Rn) .
By using the Bohr-Neugebauer constant we know that ‖xb‖∞ � γ‖b‖∞ , and more-

over we have ‖ẋb‖∞ � ‖A‖∞‖xb‖∞ + ‖b‖∞ � (‖A‖∞γ + 1)‖b‖∞ . And so we obtain
‖L−1(b)‖C1 � (‖A‖∞γ+1+ γ)‖b‖∞ , that implies the following inequality for the norm
of the inverse operator:

‖L−1‖L � ‖A‖∞γ +1+ γ. (4.2)

We note that when x ∈ QP0
ω(Rn) there exists ϕ ∈ C0(TN ,Rn) such that x(t) =

ϕ(tω) for all t ∈ R ; [3, Theorem 2, p.97]. Since f ∈ QPUω(R×R
n,Rn) , by us-

ing Remark p.101 in [3], we know that there exists F ∈ C0(TN ×R
n,Rn) such that

f (t,x) = F(tω ,x) for all t ∈ R and for all x ∈ R
n . It is clear that the function ψ , de-

fined by ψ(θ ) = F(θ ,ϕ(θ )) for all θ ∈ T
N , belongs to C0(TN ,Rn) as a composition

of continuous periodic functions. Consequently, we have [t �→ f (t,x(t)) = ψ(tω)] ∈
QP0

ω(Rn) . And so the superposition operator build on f , Nf : QP0
ω(Rn)−→QP0

ω(Rn) ,
Nf (x) = [t �→ f (t,x(t))] , is well defined. From the assumption (4.1) it is easy to obtain
the following inequality:

‖Nf (x)−Nf (y)‖∞ � c‖x− y‖∞ (4.3)

for all x,y ∈ QP0
ω(Rn) .

Consequently by setting c1 = c(‖A‖∞γ + 1 + γ)−1 we have c1 ∈ (0,1) and by
using (4.2) and (4.3), the following inequality holds:

‖L−1 ◦Nf (x)−L−1 ◦Nf (y)‖∞ � c1‖x− y‖∞
for all x,y ∈ QP0

ω(Rn) . And so the operator L−1 ◦Nf : QP0
ω(Rn) −→ QP0

ω(Rn) is a
contraction. Then by using the Picard-Banach Fixed Point Theorem, we obtain that
there exists a unique x ∈ QP0

ω(Rn) such that L−1 ◦Nf (x) = x .
We note that, for x ∈ QP0

ω(Rn) , L−1 ◦Nf (x) = x is equivalent to say that x is a
solution of (1.1) in QP1

ω(Rn) , and so the theorem is proven.

5. A continuous dependence result

In this section, we establish the existence of quasi-periodic solutions of equa-
tion (1.2) and a continuous dependence result with respect to the parameters functions
u .

First we recall a theorem on fixed points which is proven in [14, p.103].

THEOREM 5.1. (Parametrized fixed point) Let E be a complete metric space , let
Λ be a topological space and let φ : E ×Λ−→ E be a mapping which satisfies the two
following properties:

for all x ∈ E, λ �→ φ(x,λ ) is continuous from Λ into E, (5.1)
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and ⎧⎪⎪⎨
⎪⎪⎩

there exists k ∈ (0,1) such that,
for all λ ∈ Λ and for all x,y ∈ E,
the following inequality holds:
d(φ(x,λ ),φ(y,λ )) � k.d(x,y).

(5.2)

Then, for all λ ∈Λ , denoting by a[λ ] the unique fixed point of the partial mapping
φ(.,λ ) , the mapping λ �→ a[λ ] is continuous from Λ into E .

THEOREM 5.2. Let A ∈ QP0
ω(Mn(R)) and g ∈ QPUω(R×R

n×R
p,Rn) . We as-

sume that (3.2), (3.3) and (3.9) are fulfilled, and γ denotes the Bohr-Neugebauer con-
stant. We also assume that the following condition is fulfilled.⎧⎨

⎩
There exists d ∈ (0,(‖A‖∞γ +1+ γ)−1)
such that ‖g(t,x,u)−g(t,y,u)‖� d.‖x− y‖
for all t ∈ R, for all x,y ∈ R

n and for all u ∈ R
p.

(5.3)

Then, for all u∈QP0
ω(Rp) there exists a unique solution X[u]∈QP1

ω(Rn) of (1.2), and
moreover the mapping u �→ X[u] is continuous from QP0

ω(Rp) into QP1
ω(Rn) .

Proof. We consider the operator L defined in the proof of Theorem 4.1. By using
on g arguments similar to these ones used on f in the proof of Theorem 4.1, we obtain
that the superposition operator Ng : QP0

ω(Rn)×QP0
ω(Rp) −→ QP0

ω(Rn) , Ng(x,u) =
[t �→ g(t,x(t),u(t))] , is well defined. By using (5.3) we easily verify that the following
property holds:

‖Ng(x,u)−Ng(y,u)‖∞ � d.‖x− y‖∞ (5.4)

for all x,y ∈ QP0
ω(Rn) and for all u ∈ QP0

ω(Rn) .
We define the nonlinear operator φ : QP0

ω(Rn)×QP0
ω(Rp) −→ QP0

ω(Rn) by set-
ting:

φ(x,u) = L−1 ◦Ng(x,u) for all (x,u) ∈ QP0
ω(Rn)×QP0

ω(Rp) .

With
E = QP0

ω(Rn) and Λ= QP0
ω(Rp) ,

by using (4.2) and (5.4) by setting k = d.(‖A‖∞γ+1+ γ) ∈ (0,1) , we see that φ satis-
fies (5.2). By using [2, Theorem 3.5, p.47], we know that

N1
g : AP0(Rn)×AP0(Rp) −→ AP0(Rn), N1

g (x,u) = [t �→ g(t,x(t),u(t))],

is continuous, and since Ng is a restriction of N1
g , Ng is also continuous. Since L−1

is linear continuous, φ is continuous as a composition of continuous operators, and
consequently the partial operator u �→ φ(x,u) is continuous for all x ∈ QP0

ω(Rn) , and
so φ satisfies (5.1).

Now we can use the theorem of parametrized fixed point, and we can assert that,
for all u ∈ QP0

ω(Rp) there exists a unique X[u] = L−1 ◦Ng(X[u],u) , and moreover the
mapping u �→ X[u] is continuous from QP0

ω(Rp) into QP0
ω(Rn) .
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To say that X[u] satisfies the equation X[u] = L−1 ◦Ng(X[u],u) is equivalent to
say that X[u] ∈ QP1

ω(Rn) and X[u] is a solution of (1.2).
We note that

Ẋ[u](t) = A(t)X[u](t)+g(t,X[u](t),u(t)).

Since u �→ X[u] is continuous from QP0
ω(Rp) into QP0

ω(Rn) and since v �→ Av = [t �→
A(t)v(t)] is linear continuous from QP0

ω(Rn) into QP0
ω(Rn) , we obtain that u �→ Ax[u]

is continuous from QP0
ω(Rp) into QP0

ω(Rn) . We have yet seen that the superposition
operator Ng is continuous from QP0

ω(Rn)×QP0
ω(Rp) into QP0

ω(Rn) , and it is clear that
the operator u �→ (X[u],u) is continuous from QP0

ω(Rp) into QP0
ω(Rn)×QP0

ω(Rp) ,
and so u �→ Ng(X[u],u) is continuous from QP0

ω(Rp) into QP0
ω(Rn) as a composition

of continuous operators. Finally u �→ Ẋ[u] = AX[u]+Ng(X[u],u) is continuous from
QP0

ω(Rp) into QP0
ω(Rn) as a sum of continuous operators. Therefore u �→ X[u] is

continuous from QP0
ω(Rp) into QP1

ω(Rn) .

6. A differentiable perturbation result

We fix ω = (ω1, ...,ωN) a list of Z-linearly independent real numbers. We con-
sider, about the vector-field of the equation (1.3), the following condition:

⎧⎪⎪⎨
⎪⎪⎩

g ∈ QPUω(R×R
n×R

p,Rn)∩Cτ−1(R×R
n×R

p,Rn),
Dxg ∈ QPUω(R×R

n×R
p,Mn(R))∩Cτ(R×R

n×R
p,Mn(R))

with τ = 2(N +1)( n(n+1)
2 +1), and

Dug ∈ QPUω(R×R
n×R

p,Mn,p(R)).

(6.1)

In this condition, Dxg denotes the partial differential of g with respect to the second
vector variable and Dug denotes the partial differential of g with respect to the third
vector variable.

THEOREM 6.1. Let g : R×R
n ×R

p −→ R
n be a function which satisfies (6.1)

where ω satisfies (3.3). Let u∗ ∈ QPτ
ω(Rp) and let x∗ ∈ QP1

ω(Rn) be a solution of
(1.3) where u = u∗ . We set J(t) = Dxg(t,x∗(t),u∗(t)) for all t ∈ R and we denote by
β1, ...,βn the FL-CER of J. Moreover we assume that the following condition is fulfilled.

For all j = 1, ...,n, β j is non zero. (6.2)

Then there exists r ∈ (0,∞) such that, for all u ∈ QP0
ω(Rp) satisfying

‖u−u∗‖∞ < r , there exists X[u] ∈ QP1
ω(Rn) which is a solution of (1.3).

Moreover the nonlinear operator u �→ X[u] is of class C1 from
{u ∈ QP0

ω(Rp) : ‖u− u ∗ ‖∞ < r} into QP1
ω(Rn) , and there exists a neighborhood N

of x∗ in QP1
ω(Rn) such that X[u] is the unique solution of (1.3) in QP1

ω(Rn) which
belongs to N .

Before to do the proof of this theorem we need a lemma of Differential Calculus.
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LEMMA 6.2. When g ∈ QPUω(R×R
n×R

p,Rn) is such that its partial differen-
tials with respect to the second and the third vector variables exist and satisfy

Dxg ∈ QPUω(R×R
n×R

p,Mn(R)) and Dug ∈ QPUω(R×R
n×R

p,Mn,p(R)) ,

then the operator

Γ : QP1
ω(Rn)×QP0

ω(Rp) −→ QP0
ω(Rn) , Γ(x,u) = [t �→ ẋ(t)−g(t,x(t),u(t))],

is well-defined and it is of class C1 .
The formula of its partial differential with respect to its first variable is the follow-

ing one:
D1Γ(x∗,u∗).y = [t �→ ẏ(t)−Dxg(t,x∗(t),u∗(t)).y(t)]

for all y ∈ QP1
ω(Rn) .

Proof. When x ∈ QP0
ω(Rn) and u ∈ QP0

ω(Rp) there exist ϕ ∈ C0(TN ,Rn) and
ψ ∈C0(TN ,Rp) such that x(t) = ϕ(tω) and u(t) = ψ(tω) for all t ∈ R , [3, Theorem
2, p.97]. By using Remark p.101 in [3], since g ∈ QPUω(R×R

n ×R
p,Rn) , there

exists G ∈ C0(TN ×R
n ×R

p,Rn) such that g(t,x,u) = G(tω ,x,u) for all (t,x,u) ∈
R×R

n×R
p . We set χ(θ )= G(θ ,ϕ(θ ),ψ(θ )) , then χ ∈C0(TN ,Rn) as a composition

of continuous periodic functions. Consequently we have:

[t �→ g(t,x(t),u(t)) = χ(tω)] ∈ QP0
ω(Rn) .

And so the operator Γ is well-defined.
By using Theorem 5.1, p.54 in [2], we know that the superposition operator:

N1
g : AP0(Rn)×AP0(Rp) −→ AP0(Rn) , N1

g (x,u) = [t �→ g(t,x(t),u(t))] ,

is of class C1 . And so the superposition operator

Ng : QP0
ω(Rn)×QP0

ω(Rp) −→ QP0
ω(Rn) , Ng(x,u) = [t �→ g(t,x(t),u(t))]

is of class C1 as a restriction of N1
g . And so the following assertion holds:

Ng ∈C1 (QP0
ω(Rn)×QP0

ω(Rp),QP0
ω(Rn)

)
. (6.3)

The operator Π1 : QP1
ω(Rn)×QP0

ω(Rp) −→ QP1
ω(Rn) , defined by Π1(x,u) = x ,

is linear continuous, therefore the following assertion holds:

Π1 ∈C1(QP1
ω(Rn)×QP0

ω(Rp),QP1
ω(Rn)). (6.4)

The operator d
dt : QP1

ω(Rn)−→QP0
ω(Rn) , d

dt x = ẋ , is linear continuous, therefore
the following assertion holds:

d
dt

∈C1(QP1
ω(Rn),QP0

ω(Rn)). (6.5)
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The operator in : QP1
ω(Rn)×QP0

ω(Rp)−→QP0
ω(Rn)×QP0

ω(Rp) , in(x,u)= (x,u) ,
is linear continuous, and so the following assertion holds:

in ∈C1(QP1
ω(Rn)×QP0

ω(Rp),QP0
ω (Rn)×QP0

ω(Rp)). (6.6)

We note that Γ= d
dt ◦Π1−Ng ◦ in , and so by using (6.3)-(6.6), Γ is of class C1 as

the difference of compositions of operators of class C1 .
Now, by using Theorem 5.1, p.54, in [2] and the chain rule of the differential

calculus in Banach spaces, we obtain the following calculations:

D1Γ(x∗,u∗).y = DΓ(x∗,u∗).(y,0)

= D

(
d
dt

◦Π1

)
(x∗,u∗).(y,0)−D(Ng ◦ in)(x∗,u∗).(y,0)

=
d
dt

◦Π1(y,0)−DNg(x∗,u∗).(y,0)

= [t �−→ ẏ(t)−Dxg(t,x∗(t),u∗(t)).y(t)].

PROOF OF THEOREM 6.1. Since g is of class Cτ−1 , by using a bootstrapping
argument we see that x∗ is also of class Cτ . And so the matrix J(t) satisfies the
condition (3.2). The assumption (6.2) ensures that (3.9) is fulfilled for A = J . And
so can use Lemma 3.6 to assert that for all b ∈ QP0

ω(Rn) , there exists a unique y ∈
QP1

ω(Rn) such that ẏ(t) = J(t)y(t)+b(t) for all t ∈ R . And so, by using Lemma 6.2,
we can translate this result in the following form:

D1Γ(x∗,u∗) is a bijection from QP1
ω(Rn) onto QP0

ω(Rn). (6.7)

Since ẋ∗(t) = g(t,x∗(t),u∗(t)) for all t ∈ R , the following assertion holds:

Γ(x∗,u∗) = 0. (6.8)

Since Γ is of class C1 , (6.7) and (6.8) permit to use the implicit function theorem
of the differential calculus in Banach spaces, see [4, Theorem 4.7.1, p.61]. And so
we can assert that there exist V =

{
x ∈ QP1

ω(Rn) : ‖x− x∗‖C1 < r
}

with r ∈ (0,∞) , a
neighborhood N of u∗ in QP0

ω(Rp) , and a C1 -mapping X : V −→ N such that, for
all (x,u) ∈ V ×N , we have Γ(x,u) = 0 if and only if x = X[u] .

Notice that Γ(x,u) = 0 is equivalent to say that x is solution of (1.3) in QP1
ω(Rn) .

And so Theorem 6.1 is proven.
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Université Paris 1 Panthéon-Sorbonne, Centre P.M.F
90 rue de Tolbiac, 75634 Paris Cedex 13

France
e-mail: blot@univ-paris1.fr

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


