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POSITIVE SOLUTIONS OF SECOND ORDER

MULTI–POINT BOUNDARY VALUE PROBLEMS WITH

NON–HOMOGENEOUS BOUNDARY CONDITIONS

JAMES S. W. WONG

(Communicated by S. K. Ntouyas)

Abstract. We are interested in the existence of positive solutions to multi-point boundary value
problems for second order nonlinear differential equations with non-homogeneous boundary
conditions. We show that results for the multi-point problems can be proved much in a similar
way by methods available for the three point problem.

1. Introduction

We are interested in the existence of positive solutions of second order differential
equation

y′′ +a(t) f (y) = 0, 0 � t � 1, (1.1)

where a(t), f (y) are continuous and non-negative functions of t ∈ (0,1) and y ∈ [0,∞)
and a(t) �≡ 0 in (0,1) , subject to a variety of boundary conditions. When such boundary
conditions involve one or more interior points in (0,1) , equation (1.1) and the associ-
ated boundary conditions together are commonly referred to as multi-point boundary
value problems.

We shall be interested in multi-point boundary conditions at m interior points,
0 < ξ1 < ξ2 < · · · < ξm < 1, of the following types:

(BC1) y(0) =
m

∑
i=1

αiy(ξi), y′(1) =
m

∑
i=1

βiy
′(ξi)+b, (1.2)

(BC2) y′(0) =
m

∑
i=1

αiy
′(ξi), y(1) =

m

∑
i=1

βiy(ξi)+b, (1.3)

(BC3) y(0) =
m

∑
i=1

αiy(ξi), y(1) =
m

∑
i=1

βiy(ξi)+b, (1.4)

where 0 � αi < 1,0 � βi < 1, i = 1,2, · · · ,m and b real constant. We refer to (1.1),
(1.2); (1.1), (1.3) and (1.1), (1.4) as (BVP1), (BVP2) and (BVP3) respectively. When
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b = 0, (BVP1), (BVP2) and (BVP3) are referred to as homogeneous boundary value
problems and they are called inhomogeneous boundary value problems if b �= 0.

Multi-point boundary value problems are also known as non-local boundary value
problems and were initiated in the study by Ilin and Moiseev [20],[21]. These problems
arise from a variety of problems in applied physics notably in heat conduction, Cannon
[2], [3], Ionkin [22], Kamyuin [23], the vibration of cables with non-uniform weights,
Moshinsky [42] and other problems in nonlinear elasticity, Timoshenko [47].

In the simplest case that of a three-point boundary value problem, i.e. m = 1 in
(1.2), (1.3), (1.4) with one interior point ξ1 ∈ (0,1) , Gupta [14], [15], [16] first applied
functional analytical methods to prove existence of solutions followed by Eloe and
Henderson [5], Ma [36],[37], Liu [31],[32], Webb [49] and many others. For existence
of positive solutions, the fixed point theorem on cones by Krasnoselskü and Guo is
commonly used, see [4],[11],[28]. The origin of applying this theorem can be found
in Erbe and Wang [8] with application to semilinear elliptic equations on annuli, see
Wang [48], Bandle, Coffman and Marcus [1], Lee and Lin [30], and Hai [18].

Denote the following limits of f (y)/y which are assumed to exist

f0 = lim
y→0

f (y)
y

and f∞ = lim
y→∞

f (y)
y

. (1.5)

When f (y) satisfies f0 < f∞ , the boundary value problem (1.1) subject to various
boundary conditions, such as (1.2), (1.3), (1.4), is said to be superlinear. Likewise
if f∞ < f0 , then it is said to be sublinear. When f (y) = yp , it is superlinear if p > 1
and sublinear if 0 < p < 1.

We are interested in a result of Ma for the inhomogeneous three point boundary
value problem in the superlinear case:

(Eb)

{
y′′ +a(t) f (y) = 0, 0 < t < 1,

y(0) = 0, y(1) = βy(ξ )+b,
(1.6)

where 0 < ξ < 1, 0 < β < 1/ξ ,b � 0. Boundary value problem (Eb) is a special case
of (BVP3).

THEOREM A. (Ma [37]) Suppose that f0 = 0 and f∞ =∞ . Then there exists b∗ >
0 such that the boundary value problem (Eb) has a positive solution for b satisfying
0 < b < b∗ and no positive solution for b > b∗ .

Theorem A has been extended by Guo, Shan, and Ge [12] to a special case of
(BVP3) with αi = 0 i = 1,2, · · · ,m . A similar result was given by Sun, Chen, Zhang
and Wang [45] for (BVP2).

In the homogeneous case when b = 0, we are interested in a results of Zhang and
Sun [54] concerning boundary value problem (E0) , i.e. with b = 0 in (1.6), which re-
lates f0, f∞ to the smallest positive eigenvalue λ1 of the linear boundary value problem

(D)

{
u′′ +λa(t)u = 0, 0 < t < 1,

u(0) = 0, u(1) = βu(ξ ),



SECOND ORDER MULTI-POINT BOUNDARY VALUE PROBLEMS 347

with 0 < ξ < 1, 0 < β < 1/ξ as in (1.6).

THEOREM B. Suppose that f∞ < λ1 < f0 . Then the (BVP3) with αi = 0 , i =
1,2, · · · ,m, has a positive solution.

The first paper which relates f0, f∞ to the eigenvalue of a linear problem seems to
be Gupta and Trofimchuk [17] and more recently by Webb and Lan [50], Han [19], Sun
[46], Kwong and Wong [29].

More recently, Zhang and Sun [55] studied (BVP1) (note these authors are not the
same as that of [54]) and improved the results of Liu [33] for the homogeneous case,
i.e. (1.2) with b = 0. They proved

THEOREM C. Suppose that 0 <
m
∑
i=1

αi < 1 and
m
∑
i=1

βi < 1 . If f0 = 0 and f∞ = ∞

and f (y) is non-decreasing in y, then there exists b∗ > 0 such that (BVP1) has a
positive solution for all b,0 � b � b∗ and no positive solution for b > b∗ .

THEOREM D. Suppose that 0 <
m
∑
i=1

αi < 1 and
m
∑
i=1

βi < 1 . If f0 = ∞ and f0 = 0 ,

then (BVP1) has a positive solution for every b > 0 .

The purpose of this paper is to show that Theorems A and B for the three point
boundary value problem (Eb) remain valid in their entirety for the more general bound-
ary value problems (BVP1), (BVP2), and (BVP3). For Theorem C concerning (BVP1),
we show that the assumption that f (y) is non-decreasing is superfluous. In the sublin-
ear case of Theorem D, it becomes a corollary to the “optimal existence theorems” in
the form of Theorem B for b � 0 and for all three type of boundary conditions (1.2),
(1.3), (1.4)

This paper is organized as follows. In section 2, we introduce a short hand notation
for the summation given in (1.2), (1.3), (1.4) which allows us to apply techniques used
for the three point problem for the more general boundary value problems (BVP1),
(BVP2), (BVP3). Here we used the equivalent integral operator formulation originated
from the earlier works of Gupta [14 ] and Ma [36] for the three point case where the
fixed points of the Hammerstein operator give rise to the positive solutions of multi-
point boundary value problems (BVP1), (BVP2), (BVP3). In section 3, we employ
the standard Krasnoselskii- Guo fixed point theorem on cones and obtain extensions of
Theorems A and C. In section 4, we use topological degree theory together with Krein-
Rutman theorem to prove “optimal existence theorems” for (BVP1), (BVP2), (BVP3),
thereby extending Theorems B and D in the sublinear case. In section 5, we discuss
examples, give remarks concerning the limitation of our methods and suggest related
problem for further research.

2. Integral operators via scalar product formulation

In proving existence theorems for boundary value problems (BVP1), (BVP2),
(BVP3), we convert (1.1) and its associated boundary conditions (1.2),(1.3),(1.4)
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to an equivalent integral equation in the form of a Hammerstein operator. For mul-
tipoint boundary value problems, one often finds it cumbersome in the repetitive use
of summation notations. We now introduce a simpler method by introducing a “scalar
product” for two m-dimensional vectors. Consider the collection of interior points {ξi :
i = 1,2, · · · ,m} as a m-vector in R

m . For any function in C1[0,1] , e.g. y(t),y′(t) we
consider the set {y(ξi) : i = 1,2, · · · ,m} as a m-vector function of ξ = (ξ1,ξ2, · · · ,ξm) .
Likewise we denote α = (α1,α2, · · · ,αm) and β = (β1,β2, · · · ,βm) as m-vectors in
R

m . The standard scalar product of two m-vectors are then given by examples below

〈β ,ξ 〉 =
m

∑
i=1

βiξi, 〈β ,y′(ξ )〉 =
m

∑
i=1

βi,y
′(ξi).

Using this notation, we can restate the boundary conditions (BVP1), (BVP2), (BVP3)
as follows:

(BVP1)

{
y′′(t)+a(t) f

(
y(t)
)

= 0, 0 < t < 1,

y(0) = 〈α,y(ξ )〉, y′(1) = 〈β ,y′(ξ )〉+b,
(2.1)

(BVP2)

{
y′′(t)+a(t) f

(
y(t)
)

= 0, 0 < t < 1,

y′(0) = 〈α,y′(ξ )〉, y(1) = 〈β ,y(ξ )〉+b,
(2.2)

(BVP3)

{
y′′(t)+a(t) f

(
y(t)
)

= 0, 0 < t < 1,

y(0) = 〈α,y(ξ )〉, y(1) = 〈β ,y(ξ )〉+b.
(2.3)

We denote α,β by

α = 〈α,1〉 =
m

∑
i=1

αi, β = 〈β ,1〉 =
m

∑
i=1

βi, (2.4)

where 〈α,1〉,〈β ,1〉 are scalar products of α,β with the identity vector (1,1, · · · ,1) ∈
R

m .
Using the notation introduced above, we introduce three Hammerstein integral

operators A1,A2,A3 in terms of kernels K1(t,s),K2(t,s),K3(t,s) by

Ajy(t) =
∫ 1

0
Kj(t,s)a(s) f

(
y(s)

)
ds+ l j(t), j = 1,2,3, (2.5)

where Kj(t,s) and l j(t), j = 1,2,3 are to be determined from the boundary conditions
(2.1),(2.2),(2.3) . Now write Ajy(t) as

Ajy(t) = Gj(t)+Cjt +Dj, j = 1,2,3, (2.6)

where

Gj(t) =
∫ 1

0
g j(t,s)a(s) f

(
y(s)

)
ds, j = 1,2,3, (2.7)

with

g1(t,s) =

{
s, 0 � s � t � 1,

t, 0 � t � s � 1,
(2.8)
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g2(t,s) =

{
1− s, 0 � s � t � 1,

1− t, 0 � t � s � 1,
(2.9)

g3(t,s) =

{
s(1− t), 0 � s � t � 1,

t(1− s), 0 � t � s � 1.
(2.10)

From boundary conditions (2.1), (2.2), (2.3), we obtain three sets of two linear equa-
tions in unknowns Cj and Dj, j = 1,2,3, which are given below

C1 = (1−β)−1 [〈β ,G′
1(ξ )〉+b

]
, (2.11)

D1 = (1−α)−1
{
〈α,G1(ξ )〉+ 〈α,ξ 〉

1−β
,
[〈β2G

′
1(ξ )〉+b

]}
, (2.12)

where

G′
1(t) =

∫ 1

0

∂g1

∂ t
(t,s)a(s) f

(
y(s)

)
ds =

∫ 1

t
a(s) f

(
y(s)

)
ds. (2.13)

Similarly, we have

C2 = (1−α)−1〈α,G′
2(ξ )〉, (2.14)

D2 = (1−β)−1
{
〈β ,G2(ξ )〉− (1−〈β ,ξ 〉)

1−α
〈α,G′

2(ξ )〉+b

}
, (2.15)

where

G′
2(t) =

∫ 1

0

∂g2

∂ t
(t,s)a(s) f

(
y(s)

)
ds = −

∫ t

0
a(s) f

(
y(s)

)
ds. (2.16)

Also, we have

C3 =
1
Λ
{
(1−α) [〈β ,G3(ξ )〉+b]− (1−β)〈α,G3(ξ )〉}, (2.17)

D3 =
1
Λ
{
(1−〈β ,ξ 〉)〈α,G3(ξ )〉+ 〈α,ξ 〉 [〈β ,G3(ξ )〉+b]

}
, (2.18)

where Λ= (1−α)(1−〈β ,ξ 〉)+ (1−β)〈α,ξ 〉 , and

G3(t) = t
∫ 1

t
(1− s)a(s) f

(
y(s)

)
ds+(1− t)

∫ t

0
sa(s) f

(
y(s)

)
ds. (2.19)

Denote g′j(t,s) = ∂
∂ t g j(t,s), j = 1,2,3. We can also express Kj(t,s) , being kernel
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of the Hammerstine operator Aj defined by (2.5), as follows:

K1(t,s) =g1(t,s)+
t

(1−β)

{〈β ,g′1(ξ ,s)〉}
+

1
(1−α)

{
〈α,g1(ξ ,s)〉+ 〈α,ξ 〉

(1−β)

[〈β ,g′1(ξ ,s)〉]}, (2.20)

K2(t,s) =g2(t,s)+
t

(1−α)
〈α,g′2(ξ ,s)〉

+
1

(1−β)

{
〈β ,g2(ξ ,s)〉+ 〈β ,ξ 〉−1

(1−α)
〈α,g′2(ξ ,s)〉

}
, (2.21)

K3(t,s) =g3(t,s)+
t
Λ
{
(1−α) [〈β ,g3(ξ ,s)〉]− (1−β)〈α,g3(ξ ,s)〉}

+
1
Λ
{
(1−〈β ,ξ 〉)〈α,g3(ξ ,s)〉+ 〈α,ξ 〉 [〈β ,g3(ξ ,s)〉]}, (2.22)

where Λ= (1−α)(1−〈β ,ξ 〉)+ (1−β)〈α,ξ 〉 , and

l1(t) =
b
D
{(1−α)t + 〈α,ξ 〉} , D = (1−α)(1−β),

l2(t) =
b

1−β
, l3(t) =

b
Λ
{(1−α)t + 〈α,ξ 〉} .

We find it more convenient to discuss our proofs by using the simpler formula (2.6)
and the constants C′

js,D
′
js as given by (2.11), (2.12); (2.14), (2.15); (2.17), (2.18). For

these formulas to make sense we require 
 = (1−α)(1−β) �= 0 and Λ �= 0.
We first prove that Aj, j = 1,2,3 are positive operators in the sense that Aj(P)⊆P ,

where P is the cone of non-negative functions in C[0,1] , i.e.

P = {y(t) ∈C[0,1] : y(t) � 0, 0 � t � 1},

when in addition 
 > 0 and Λ> 0.
Since G′

1(t) � 0 by (2.13), we note from (2.11), (2.12) that C1,D1 � 0 so A1(P)⊆
P . Note that G′

2(t) � 0 by (2.16), therefore C0 � 0 by (2.14) and D2 � 0 by (2.15).
Now the linear function C2t +D2 � min (D2,C2 +D2) . We note by adding up (2.14)
and (2.15) that

D2 � C2 +D2

= (1−β)−1
{

(β −〈β ,G2(ξ )〉+ 〈β ,ξ 〉−β
1−α

[〈α,G′
2(ξ )〉+b

]}
� 0,

which proves A2(P) ⊆ P . Finally since 1−〈β ,ξ 〉 � 0, so D3 � 0. Adding up (2.17),
(2.18), we find

C3 +D3 =
1


{
(β −〈β ,ξ 〉)〈α,G3(ξ )〉 + (1−α+ 〈α,ξ 〉)〈β ,G3(ξ )〉}� 0.
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Thus C3t +D3 � min (D3,C3 +D3) � 0 and A3(P) ⊆ P .
We need the following lemmas concerning solutions of (1.1) satisfying boundary

conditions (1.2), (1.3), (1.4) in the proofs of theorems in the next section.

LEMMA 2.1. Let u(t) be a solution of u′′ + h(t) = 0,h(t) � 0,t ∈ [0,1] . If u(t)
satisfies (2.1) with 0 < α < 1 and 0 � β < 1 , then u(t) is monotone nondecreasing
and satisfies

u(t) � γ1‖u‖ for t ∈ [0,1] ,

where

γ1 =
〈α,ξ 〉

1−α+ 〈α,ξ 〉 . (2.23)

REMARK 2.1. This result is given by Zhang and Sun [55; Lemma 2.2] which was
attributed to Liu [33] (for the case when b = 0 in (2.1)). The proof is similar to Lemma
2.2 which we shall give in its entity below.

LEMMA 2.2. Let u′′ +h(t) = 0,h(t) � 0,t ∈ [0,1] . If u(t) satisfies (2.2) , where
0 � α < 1 and 0 < β < 1 , then u(t) is monotone non-increasing and satisfies

u(t) � γ2‖u‖ for t ∈ [0,1] ,

where

γ2 =
β −〈β ,ξ 〉
1−〈β ,ξ 〉 . (2.24)

Proof. Since u′′(t) � 0, so by (2.2), u′(0) = 〈α,u′(ξ )〉 and (1−α)u′(0) � 0.
Now 0 � α < 1 implies u′(0) � 0 hence u′(t) � u′(0) � 0 and u(t) is monotone non-
increasing. Furthermore, we have u(0) � u(t) � u(1) . By (2.2), u(1) = 〈β ,u(ξ )〉+b
which implies u(1) � βu(1)+ b . Now 0 < β < 1 and b � 0 imply u(1) > 0 thus
u(t) > 0 for all t ∈ [0,1] .

For each i = 1,2, · · · ,m , we have from concavity of u(t) that

u(0) � u(1)+
u(1)−u(ξi)

1− ξi
(0−1),

that is,
u(0)(1− ξ1) � u(1)(1− ξ1)+u(ξ1)−u(1). (2.25)

Multiplying (2.25) by βi and summing up, we find

u(0)(β −〈β ,ξ 〉) � 〈β ,u(ξ )〉+u(1)〈β ,ξ 〉,

which by (2.2) implies

u(0)(β −〈β ,ξ 〉) � u(1)(1−〈β ,ξ 〉)−b. (2.26)

Since b � 0, (2.26) proves u(t) � γ2‖u‖ , where γ2 is given by (2.24).
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LEMMA 2.3. Let u(t) be a solution of u′′+h(t) = 0,h(t) � 0 , t ∈ [0,1] and u(t)
satisfies (2.3) . If 0 � α < 1 and 0 < 〈β ,ξ 〉 < 1 , then u(t) satisfies

inf
ξ1�t�1

u(t) � γ3‖u‖, (2.27)

where

γ3 = min
0�s�m

{
ξ1,〈β ,ξ 〉,(1−〈β ,ξ 〉)−1

(
β −〈β ,ξ 〉

)
,θs

}
,

θs = (1−〈β ,ξ 〉)−1

{
s−1

∑
i=1

βiξi +
m

∑
i=s

βi(1− ξi)

}
.

Proof. Let u(t) attains its maximum at t = σ , i.e. ‖u‖ = max
0�t�1

u(t) = u(σ) .

Case (i) (0 < σ < ξ1 ) By concavity, we have

inf
ξi�t�1

u(t) = u(1),

and for each i = 1,2, · · · ,m ,

u(ξ1) � (1− ξ1)u(σ)+ xiu(1). (2.28)

Multiplying (2.28) through by βi and summing from i = 1 to i = m , we obtain by
(2.3) ,

u(1) = 〈β ,u(ξ )〉 = (β −〈β ,ξ 〉)u(σ)+ 〈β ,ξ 〉u(1)

from which we obtain

u(1) � (1−〈β ,ξ 〉)−1(β −〈β ,ξ 〉)‖u‖. (2.29)

Case (ii)
(
0 < ξ1 < σ < 1 and inf

ξ1�t�1
u(t) = u(ξ1)

)
Consider

(t−1u(t))′ = t−2g(t),

where g′(t) = tu′′(t) � 0 and g(t) = tu′(t)−u(t) � g(0) = −u(0) . Since u(t) satisfies
the integral equation (2.6),(2.7), j = 3, where

G3(t) =
∫ 1

0
g3(t,s)h(s)ds � 0

and the linear function C3t + D3 � 0, we conclude that u(0) � 0 so g(t) � 0 and
t−1u(t) is non-increasing. Thus

u(ξ1)
ξ1

� u(σ)
σ

� u(σ) = ‖u‖

and
inf

ξ1�t�1
u(t) = u(ξ1) � ξ1‖u‖. (2.30)
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Case (iii)
(

inf
ξ1�t�1

u(t)= u(1) and 0 � ξs−1 <σ < ξs < 1, for s = 2,3, · · · ,m) Multiply

(2.28) through by βi and summing from i = s to m , we obtain

m

∑
i=s

βiu(ξ1) �
(

m

∑
i=s

βiξ1

)
u(1)+

m

∑
i=s

βi(1− ξ1)u(σ). (2.31)

On the other hand, for 1 � i � s−1,u(ξ1) � ξ1u(σ)/σ � ξ1u(σ) , so

s−1

∑
i=1

βiu(ξ1) � u(σ)

(
s−1

∑
i=1

ξ1βi

)
(2.32)

Adding (2.31) and (2.32), we obtain(
1−

m

∑
i=s

βiξ1

)
u(1)−b �

[
〈β ,u(ξ )〉−

m

∑
i=s

βiξ1

]
u(1)

�
(

s−1

∑
i=1

βiξ1 +
m

∑
i=s

βi(1− ξ1)

)
u(σ),

which gives

inf
ξ1�t�1

u(t) = u(1) � (1−〈β ,ξ 〉)−1

{
s−1

∑
i=1

βiξ1 +
m

∑
i=s

βi(1− ξ1)

}
u(σ). (2.33)

Case (iv)
(

inf
ξ�t�1

u(t) = u(1) and σ > ξm
)

Note that

u(1) � 〈β ,u(ξ )〉 and u(ξ1) � ξ1u(σ)/σ � ξ1u(σ)

implies
〈β ,u(ξ )〉 � 〈β ,ξ 〉u(σ),

so
inf

ξ�t�1
u(t) � 〈β ,u(ξ )〉 � 〈β ,ξ 〉u(σ). (2.34)

Combining (2.30), (2.31), (2.32), (2.33) and (2.34), we obtain (2.27) proving this
lemma. �

REMARK 2.2. The constant γ3 given in (2.27) differs from γ1 , γ2 in (2.23) ,
(2.24) , which are valid for all t ∈ [0,1] , and gives a lower bound of u(t) only for
t ∈ [ξ1,1] . This constant γ3 reduces to that given by Guo, Shan and Ge [12 ; p.418]
when αi = 0 for all i = 1,2, · · · ,m in the boundary condition (2.3)
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3. Superlinear boundary value problems

In this section, we prove the extensions of Theorem A to (BVP1), (BVP2), (BVP3)
when f (y) is superlinear. Instead of the original assumption in [37] that f0 = 0 and
f∞ = ∞ , we give upper bounds on f0 and lower bounds on f∞ in terms of boundary
conditions (1.2),(1.3),(1.4) and a(t) . Here the lower bounds of f∞ are always larger
than the upper bounds on f0 and there remains a gap so that these existence theorems
are not optimal in the sense that there exists only one positive number separating f0
and f∞ . On the other hand, this is the case when f (y) is sublinear which we shall show
in section 4.

The main tool in proving the results in this section is the Krasnoselskii-Guo fixed
point theorem, see Guo Laksmikantham [11], Deimling [4], Krasnoselskii [28].

THEOREM KG. Let X be a Banack space with a cone P ⊆ X , and Ω1,Ω2 are
open subsets of X with 0 ∈ Ω1 and Ω1 ⊆ Ω2 . Let A be a completely continuous
operator which maps P∩ (Ω2 \Ω1) into P and satisfies either

(a) (expanded form) ‖Ax‖ � ‖x‖ for all x ∈ P∩ ∂Ω1 and ‖Ax‖ � ‖x‖ for all x ∈
P∩∂Ω2 ; or

(b) (compressed form) ‖Ax‖ � ‖x‖ for all x ∈ P∩ ∂Ω1 and ‖Ax‖ � ‖x‖ for all x ∈
P∩∂Ω2 .

Then A has a fixed point x̂ , i.e. Ax̂ = x̂ , where x̂ ∈ P∩ (Ω2 \Ω1) .

We now describe briefly the method of our proofs which are similar for all three
boundary value problems. In particular, (BVP1) and (BVP2) having Neumann bound-
ary conditions at t = 1 and t = 0 are simpler than (BVP3) because by Lemma 2.1 and
2.2 we know that solutions to u′′+h(t)= 0, h(t)� 0, t ∈ [0,1] , subject to (BC1) (BC2),
i.e. (1.2), (1.3), have a lower bound in terms of its maximum, i.e. u(t) � γ‖u‖,t ∈ [0,1]
for some γ > 0. The conditions for non-resonance are imposed so that such solutions
u(t) are unique and that the constants Ci , Di in (2.6) are solvable from the boundary
conditions imposed at t = 0 and t = 1 (cf. Remark 5.2).

THEOREM 3.1. Let 0 � α < 1,0 < β < 1 . Then (BVP1) has the following prop-
erties with regard to b:

(a) (BVP1) has a positive non-decreasing solution if f0 < 1
2Λ1 and f∞ > γ−1

1 Λ1 , for
b � 0 in (1.2) sufficiently small, where

Λ−1
1 =

∫ 1

0
sa(s)ds+(1−α)−1〈α,

∫ 1

0
g1(ξ ,s)a(s)ds〉

+
1−α+ 〈α,ξ 〉
(1−α)(1−β)

〈β ,

∫ 1

ξ
a(s)ds〉 (3.1)

and
γ1 = 〈α,ξ 〉/(1−α+ 〈α,ξ 〉); (3.2)
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(b) (BVP1) has no positive solutions if b is sufficiently large;

(c) There exists b∗ > 0 such that for all b , 0 < b < b∗ , (BVP1) has a positive non-
decreasing solution and has no positive solution if b > b∗ .

Clearly statement (c) in Theorem 3.1 comprises both (a) and (b). Indeed part
(a) and part (b) were proved in [55] whilst part (c) was proved under the additional
assumption that f (y) is monotone non-decreasing in y . Note that the constants Λ1 , γ1
given in (3.1), (3.2) are the same as given in [55]. So we shall only prove part (c).

PROOF OF THEOREM 3.1 (c). From Part (b), there exists b∗ = sup {b : (BVP1)
has a positive solution}. We first show that for every b , 0 � b < b∗ , (BVP1) has a
positive solution. Let b be any such real constant. From the definition of b∗ , there
exists c , b < c < b∗ , such that (BVP1) has a positive solution which will be denoted as
uc(t) . Using uc(t) we define the following function

F1
(
u(t)

)
=

⎧⎪⎨⎪⎩
0, u′(t) < 0,

f
(
uc(t)

)
, u′(t) > u′c(t) > 0,

f
(
u(t)

)
, u′c(t) � u′(t) � 0,

(3.3)

where u(t) = max
{
0, min

(
u(t),uc(t)

)}
. Now consider the boundary value problem

u′′(t)+a(t)F1
(
u(t)

)
= 0 (3.4)

subject to (BC1), i.e. (1.2). Note that F1
(
u(t)

)
is uniformly bounded by a constant M1

which depends only on uc(t) , i.e.

M1 = max
{

f
(
u(t)

)
: 0 � u(t) � uc(t)

}
since 0 � u(t) � uc(t) . Therefore by Schauder’s fixed point theorem applied to a
bounded subset of P , we know that the boundary value problem (3.4),(1.2) has a
positive solution which we denote as u1(t) . We shall now show that u1(t) satisfies (i)
0 � u′1(t) � u′c(t) , and (ii) 0 � u1(t) � uc(t) . Suppose that v1(t) = u′c(t)− u′1(t) < 0
on an open interval (τ1,τ2) ⊆ [0,1],0 < τ1 � τ2 < 1. By definition (3.3) , we know
that v′1(t) ≡ 0 on (τ1,τ2) and v′1(t) = 0 whenever v1(t) < 0. Hence v1(t) equals to a
negative constant for all t ∈ [0,1] . Let v1(t) ≡ c1 < 0 for some negative constant c1 .
Using (1.2) , we note c1 = v1(1) = 〈β ,v1(ξ )〉+c−b , or (1−β )c1 = c−b > 0. Since
0 < β < 1, so c1 > 0. This contradiction proves that v1(t) � 0,t ∈ [0,1] . On the other
hand, u1(t) is a solution to (3.4), so u′′1(t) � 0 which implies u′1(0) � u′1(t) � u′1(1) .
Using (1.2) once again, we have

u′1(1) = 〈β ,u′1(ξ )〉+b � βu′1(1)+b

which gives (1−β)u′1(1) � b , so u′1(t) � u′1(1) � 0 since b � 0. This proves (i) and
so F1

(
u1(t)

)
= f
(
u1(t)

)
for all t ∈ [0,1] .

To prove (ii), we let w1(t) = u1(t)− uc(t) . Note that w′
1(t) = −v1(t) � 0 for all

t ∈ [0,1] so we have w1(0) � w1(t) so by (1.2) again we have

w(0) = 〈α,w(ξ )〉 � αw(0),
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which implies by 0 < α < 1 that w(0) = 0. Hence w(t) � 0 for all t ∈ [0,1] , so
uc(t) � u1(t) and u1(t) = u1(t) . This gives F1(u1(t)) = f (u1(t)) = f (u1(t)) , proving
that u1(t) is a positive solution to (BVP1) since it is now the same as (3.4), (1.2).

To complete the proof, we also need to prove that (BVP1) has a positive solution
when b = b∗ . From the definition of b∗ , we can choose a strictly increasing sequence
{bm : lim

m→∞
bm = b∗} such that (BVP1) has a positive solution for every bm . We de-

note such solutions by um(t) which satisfy 0 � r � ‖um‖ � R . Since um = A3um and
A3 is completely continuous, so {um} has a convergent subsequence {umi} such that
lim
i→∞

umi = u∗ . Thus A3u∗ = u∗ is a positive solution of (BVP1) satisfying boundary

condition (1.2) with b = b∗ . This completes the proof.

We now turn to (BVP2), i.e. (1.1) and (1.3). Here the integral operator A2 is given
by (2.5), (2.21) which by using (2.7) can be restated as

A2y(t) = G2(t)+ (1−α)−1〈α,G′
2(ξ )〉t

+(1−β)−1
{
〈β ,G2(ξ )〉− (1−〈β ,ξ 〉)

1−α
〈α,G′

2(ξ )〉+b

}
, (3.5)

where

G2(t) =
∫ 1

0
g2(t,s)a(s) f

(
y(s)

)
ds and G′

2(t) = −
∫ 1

0
a(s) f

(
y(s)

)
ds,

as given in (2.16).

THEOREM 3.2. Let 0 � α < 1, 0 < β < 1 . Suppose that f (y) satisfies

f0 <
1
2
Λ2 and f∞ > γ−1

2 Λ2, (3.6)

where

Λ−1
2 =

∫ 1

0
(1− s)a(s)ds+(1−β)−1〈β ,G2[a](ξ )〉

− (1−α)−1(1−β)−1{(1−〈β ,ξ 〉)〈α,G′
2[a](ξ )〉} , (3.7)

and

G2[a](ξ ) =
∫ 1

0
g2(ξ ,s)a(s)ds, G′

2[a](ξ ) = −
∫ ξ

0
a(s)ds

are vector-valued function of ξ = (ξ1,ξ2, · · · ,ξm) . Then there exists b∗ > 0 such that
for all b , 0 � b < b∗ , (BVP2) has a positive non-increasing solution and no positive
solution if b > b∗ .

Proof. We apply Theorem KG to the positive operator A2 defined by (2.5) or
(2.21) with j = 2, or alternatively (2.6), (2.7), (2.14), (2.15) (2.16). We first show that
A2 maps the subcone P2 ⊆ P defined by

P2 = {y(t) ∈ P : y(t) � γ2‖y‖,t ∈ [0,1]}
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into itself. For any y∈P , A2y(t) is a solution to u′′+h(t) = 0 with h(t) = a(t) f
(
y(t)
)
,

so by Lemma 2.2, A2y(t) � γ2‖A2y(t)‖ . This shows A2(P2) ⊆ P2 .
Next we prove that for b sufficiently small, (BVP2) has a positive solution. Since

f0 < 1
2Λ2 , we can choose r > 0 r sufficiently small such that f (y) � 1

2Λ2y for all
y ∈ [0,r] . Denote

Ω1 = {y ∈ P : ‖y‖ < r} and ∂Ω1 = {y ∈Ω1 : ‖y‖ = r} .

For y ∈ ∂Ω1 , we estimate (3.5) from above using (2.7), (2.16) and obtain

A2y(t) � 1
2
Λ2‖y‖

{
G2[a](0)+ (1−β)−1〈β ,G2[a](ξ )〉}

− (1−α)−1(1−β)−1{(β −〈β ,ξ 〉)〈α,G′
2[a](ξ )〉}+

b

1−β
(3.8)

by setting t = 1 in (3.5). By definition of Λ2 in (3.7), we obtain from (3.8) that

A2y(t) � 1
2
‖y‖+

b

1−β
.

We now choose b < 1
2 (1−β)r , and obtain ‖A2y‖� ‖y‖ for all y∈ P2∩∂Ω1 , verifying

the first part of Theorem KG in its expanded form. Here we use the fact that G′
2[a](t) �

0 so

G2[a](t) � G2[a](0) =
∫ 1

0
(1− s)a(s)ds.

To verify the second part of Theorem KG in its expanded form, we have from (3.6)
f∞ > γ−1

2 Λ2 so choose R > r > 0 such that f (y) � γ−1
2 Λ2y for all y � R . Let

Ω2 = {y ∈ P : ‖y‖ < R} and ∂Ω2 = {y ∈Ω2 : ‖y‖ = R} .

For y ∈ P2∩∂Ω2 evaluate A2y(0) by (3.5) and obtain

‖Ay‖ � A2y(0) � Λ2‖y‖
{∫ 1

0
(1− s)a(s)ds+(1−β)−1〈β ,G2[a](ξ )〉

}
− (1−α)−1(1−β)−1{(1−〈β ,ξ 〉)〈α,G′

2[a](ξ )〉}+
b

1−β
(3.9)

which implies ‖A2y‖ � ‖y‖ by definition of Λ2 in (3.7). Now both assumptions of
Theorem KG in its expanded form are satisfied, so A2 has a fixed point ŷ ∈ Ω2 \Ω1 ,
satisfying 0 < r � ‖ŷ‖ � R . by Lemma 2.2, ŷ(t) is a positive solution of (BVP2) when
b is sufficiently small, namely, 0 � b < 1

2 (1−β)r .
We now show that under superlinearity condition (3.6), (BVP2) has no positive

solution for sufficiently large b . Suppose the contrary that there exists a sequence {bn}
with lim

n→∞
bn = ∞ such that (BVP2) has a positive solution yn(t) for every n satisfying

(2.1) with b = bn By Lemma 2.2, we know that all such solutions are monotone non-
increasing in [0,1] and A2yn = yn for all n . Observe from (3.9),

‖yn‖ = yn(0) = Ayn(0) � G2(0) � bn/(1−β) → ∞, n → ∞. (3.10)
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Use (3.6) to choose R > 0 such that f (y) � γ−1
2 y for all y ∈ [γ2R,∞) . We evaluate

A2yn(0) for ‖yn‖ � R which is possible for large n by (3.10), so

‖yn‖ � Λ2 {G2(0)+D2[a]}‖yn‖+bn/(1−β), (3.11)

where D2[a] is given by (2.15) with G2(ξ ) , G′
2(ξ ) replaced by G2[a](ξ ) , G′

2[a](ξ )
as defined in (3.7). Using (3.7) in (3.11), we conclude ‖yn‖ � ‖yn‖+bn/1−β which
leads to a desired contradiction as n → ∞ . This proves that there exists b∗ > 0 such
that for b > b∗ , (BVP2) has no positive solution.

To complete the proof, we need to show that (BVP2) has a positive solution for
every b , 0 � b � b∗ . We follow the same approach as in the proof of Theorem 3.1 (c)
by first setting b∗ = sup{b : (BVP2) has a positive solution} which exists because of
the preceding arguments. For any b,0 � b < b∗ , there exists by the definition of b∗
a constant c,b < c < b∗ such that (BVP2) has a positive solution which b = c in its
boundary condition (2.2). We denote such a solution by uc(t) . Using uc(t) we define
the F2

(
u(t)

)
, a function similar to (3.3), by

F2
(
u(t)

)
=

⎧⎪⎨⎪⎩
0, u′(t) > 0,

f
(
uc(t)

)
, u′(t) < u′c(t) < 0,

f
(
u(t)

)
, u′0(t) � u′(t) � 0,

(3.12)

where 0 � u(t) = max
{
0, min

(
u(t),uc(t)

)}
� uc(t) . This function F2(u(t)) like

F1
(
u(t)

)
in (3.3) is also uniformly bounded by a constant

M2 = max
{

f
(
u(t)

)
: 0 � u(t) � uc(t)

}
,

where uc(t) is the solution of (BVP2) given above.
Now consider the boundary value problem:

u′′(t)+a(t)F2
(
u(t)

)
= 0, 0 < t < 1, (3.13)

subject to boundary condition (1.3) or in the form of (2.2). Since F2(u(t)) is uniformly
bounded by a constant M2 , we know by an application of Schauder’s fixed point theo-
rem to the operator equation associated with (3.13), (2.2) that it has a positive solution
which we denote it by u2(t) .

To show that u2(t) is a positive solution of (1.1) (2.2) we shall prove firstly (i)
F2
(
u2(t)

)
= f

(
u2(t)

)
and secondly (ii) u2(t) = u2(t) . Let v2(t) = u′c(t)− u′2(t) . We

claim v2(t) � 0 for all t ∈ [0,1] which proves F2
(
u2(t)

)
= f

(
u2(t)

)
. Suppose that

v2(t) > 0 for t ∈ (τ1,τ2) ⊂ [0,1], 0 < τ1 < τ2 < 1. Then by definition of F2
(
u(t)

)
in

(3.12), v′2(t) ≡ 0 in (τ1,τ2) so v2(t) ≡ c2 > 0 for t ∈ (τ1,τ2) . Again we can extend
the sub-interval (τ1,τ2) by continuity to the entire interval [0,1] so that v2(t) ≡ c2 for
all t ∈ [0,1] . Now boundary condition (2.2) show that c2 = v2(0) = 〈α,v(ξ )〉 = αc2 ,
so c2 = 0 since 0 � α < 1. This contradiction proves (i).

Next we let w2(t) = u2(t)− uc(t) and claim w2(t) � 0. Suppose otherwise that
w2(t) > 0 in (τ1,τ2) ⊆ [0,1],0 < τ1 < τ2 < 1. Then w′

2(t) = −v2(t) � 0 for all t ∈
[0,1] . Using boundary condition (2.2), we find

w2(1) = 〈α,w2(ξ )〉+b− c < αw2(1),
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which implies w2(1) < 0 since 0 � α < 1, so w2(t) � w2(1) < 0. This contradiction
proves w2(t) � 0. Hence u2(t) � uc(t) . Therefore, u2(t) = u2(t) and u2(t) is the
desired solution to (BVP2).

The proof that (BVP2) has a positive solution for b = b∗ in (2.2) is similar to that
given in the proof of Theorem 3.1 (c). This completes the proof of Theorem 3.2.

REMARK 3.1. We note that Theorem 3.1 improves Theorem C in two ways. It
shows that the condition that f (y) is non-decreasing in y is superfluous and it also
shows that the result is valid when α = 0 and including both b = 0 and b = b∗ .

REMARK 3.2. (BVP2) when b = 0 was studied in Ma and Castaneda [40] where
it was proved under the stronger assumption that f0 = 0 and f∞ =∞ . The finite bounds
on f0 , f∞ used in [40] are more stringent than (3.6) which bears a close resemblance
with the bounds used in Theorem 3.1.

We now study (BVP3) where the boundary condition (2.3) includes that of the
three-point problem (Eb) namely (1.6). Here the operator A3 defined by (2.5), (2.22),
or alternatively (2.6), (2.17), (2.18), takes the following form:

A3y(t) = G3(t)+
t
Λ
{
(1−α) [〈β ,G3(ξ )〉+b]− (1−β)〈α,G3(ξ )〉+b(1−α)

}
+

1
Λ
{
(1−〈β ,ξ 〉)〈α,G3(ξ )〉+ 〈α,ξ 〉〈β ,G3(ξ )〉+b〈α,ξ 〉},

where Λ= (1−α)(1−〈β ,ξ 〉)+(1−β)〈α,ξ 〉 . Like the case with (BVP2) the constant
C3 associated with t in (2.17) may be negative so A3 is a positive operator only if
C3 t +D3 � 0 for t ∈ [0,1] . The linear function satisfies

0 < m = min(D3,C3 +D3) � C3 t +D3 � max(D3,C3 +D) = M0.

Since G3(t) � 0,D3 > 0 by (2.18), and

C3 +D3 =
1
Λ

{
(β −〈β ,ξ 〉)〈α,G3(ξ )〉+(1−α+ 〈α,ξ 〉) [〈β ,G3(ξ )〉+b]

}
� 0,

this shows that A3 : P → P . We now state and prove:

THEOREM 3.3. Let 0 � α < 1,0 < 〈β ,ξ 〉 < 1 . Suppose that f (y) satisfies

f0 <
1
2
Λ3 and f∞ > Λ4,

where

Λ−1
3 =

1
Λ

{
(|1−α|+ 〈α,ξ 〉)

∫ 1

0
(1− s)a(s)ds

}
, (3.14)

Λ−1
4 =

γ3
Λ
{(1−α+αξ )〈β ,J[a](ξ )〉} , (3.15)
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γ3 is given by (2.27) and

J[a](ξ ) = (J(ξ1), · · · ,J(ξm)), J(ξi) = ξi

∫ 1

ξi

(1− s)a(s)ds.

Then there exists b∗ > 0 such that (BVP3) has a positive solution for all b,0 � b � b∗ ,
and has no positive solution for b > b∗ .

Proof. Define
P3 = {y ∈ P : inf

ξ1�t�1
y(t) � γ3‖y‖}

which is a subcone of P . Note that
(
A3y(t)

)′′ + a(t) f
(
y(t)
)

= 0 and A3y(t) satisfies
the boundary condition (2.3) so by Lemma 2.3 we conclude A3(P3) ⊂ P3 .

By assumption that f0 < 1
2Λ3 , there exists r > 0 so that f (y) � 1

2Λ3y for all
y ∈ [0,r] . Denote Ω1 = {y ∈ P0 : ‖y‖ < r} and ∂Ω1 = {y ∈Ω1 : ‖y‖ = r} .

To find an upper bound for f0 , it is more convenient to use that alternative repre-
sentation of A3 by replacing G3(t) in (2.6) and (2.19) by the integral operator I[y](t)
as defined by

I(t) = I[y](t) =
∫ t

0
(t− s)a(s) f (y(s))ds. (3.16)

Now we write
A3y(t) = G3(t)+C3t +D3 = −I(t)+B1t +B2. (3.17)

From (3.17) we find, upon setting t = 0 and t = 1, that

D3 = B2, C3 +D3 = −I(1)+B1 +B2.

Here B1,B2 are given by

B1 =
1
Λ
{
(1−α) [I(1)−〈β , I(ξ )〉+b]+ (1−β)〈α, I(ξ )〉},

B2 =
1
Λ
{〈α,ξ 〉 [I(1)−〈β , I(ξ )〉+b]− (1−〈β ,ξ 〉)〈α,(ξ )〉}, (3.18)

where Λ = (1−α)(1−〈β ,ξ 〉)+ (1−β)〈α,ξ 〉 . Note that I(t) � 0 implies by (3.17)
that

A3y(t) � max(B2,B1 +B2)

� 1
Λ
{(|1−α|+ 〈α,ξ 〉) [I(1)+b]} . (3.19)

For y ∈ ∂Ω1 , we obtain from (3.19) that

A3y(t) � 1
Λ

{
(|1−α|+ 〈α,ξ 〉)1

2
Λ3‖y‖

∫ 1

0
(1− s)a(s)ds+b

}
. (3.20)

Choose 0 � b � r
2Λ(|1−α|+ 〈α,ξ 〉)−1 , then using the definition of Λ3 in (3.14), we

obtain from (3.20) that ‖A3y‖ � ‖y‖ = r , for all y ∈ P3∩∂Ω1 .
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Next we apply f∞ >Λ4 to choose R > r > 0 so that f (y) �Λ4y for all y∈ [R,∞) .
Define

Ω2 = {y ∈C[0,1] : ‖y‖ < R} and ∂Ω2 = {y ∈Ω2 : ‖y‖ = R} .

For y ∈ P3∩∂Ω2 , we evaluate A3y(t) at t = 1 by (2.6) and use Lemma 2.3 and (2.17),
(2.18) to find

‖A3y‖ � A3y(1) � C3 +D3

=
1
Λ
{(1−α+ 〈α,ξ 〉) [〈β ,G3(ξ )〉+b]}

� 1
Λ
γ3Λ4‖y‖{(1−α+ 〈α,ξ 〉)〈β ,J[a](ξ )〉} . (3.21)

Using (3.15) in (3.21), we obtain ‖A3y‖ � ‖y‖ . We can apply Theorem KG to obtain a
fixed point ŷ ∈ P3∩ (Ω2 \Ω1) satisfying 0 < r < ‖y‖ < R . When ξ1 � t � 1, Lemma
2.3 shows that ŷ(t) � γ3‖ŷ‖� γ3r > 0. For 0 � t < ξ1 , we note that boundary condition
(2.3) implies ŷ(0) = 〈α, ŷ(ξ )〉 � 0. Observe that(

t−1ŷ(t)
)′

= t−2 (tŷ′(t)− ŷ(t)
)

= t−2g(t)

and that g′(t) = tŷ′′(t) � 0, g(0) = −ŷ(0) � 0, so
(
t−1ŷ(t)

)′ � 0 and t−1ŷ(t) �
ξ−1

1 ŷ(ξ1) > 0 for 0 � t < ξ1 . This proves that ŷ(t) > 0 and is a positive solution
of (BVP3) provided that b is sufficiently small.

We now prove that (BVP3) has no positive solution when b is sufficiently large.
Instead of repeating similar argument given in the proof of Theorem 3.1 (c), we adopt
a different argument suggested by Sun, Chen, Zhang, Wang [45]. Suppose that (y)(t)
is a positive solution of (BVP3), so A3y = y for all b � 0. Use f∞ > Λ4 to choose
R > 0 such that f (y) � Λ4y for all y ∈ [R,∞) . Form (3.21), we have y(1) = A3y(1) �
1
Λ (1−α + 〈α,ξ 〉)b . Choose b0 � Λ(1−α + 〈α,ξ 〉)−1R . Thus ‖y0‖ � y0(1) � R ,
where y0(t) is a solution of (BVP3) with b = b0 . Apply (3.21) once again, we find

‖y0‖ � y0(1) = C3 +D3 � 1
Λ
{
(1−α+ 〈β .ξ 〉)[〈β ,G3(ξ )+b]

}
� 1

Λ
Λ4γ3‖y0‖

{
(1−α+ 〈α,ξ 〉)〈β ,J[a](ξ )〉}+

1−α+ 〈α,ξ 〉
Λ

b0

� ‖y0‖+R

because of definition of Λ4 given in (3.15). This is the desired contradiction.
Turning to the last portion of Theorem 3.3. From the proofs given in previous

paragraphs, we can define b∗ = sup{b : (BVP3) has a positive solution} . We now prove
that for any b,0 � b < b∗ , (BVP3) has a positive solution. By the definition of b∗ , there
must exist c , b < c < b∗ such that (BVP3) has a positive solution satisfying (2.3) with
b = c and we note it by uc(t) . In terms of this solution uc(t) , we define

F3
(
u(t)

)
=

⎧⎪⎨⎪⎩
0, u(t) < 0,

f
(
uc(t)

)
, u(t) > u0(t),

f
(
u(t)

)
, 0 � u(t) � uc(t),

(3.22)
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and consider the boundary value problem

f (x) =

{
u′′ +a(t)F3

(
u(t)

)
= 0, 0 < t < 1,

u(0) = 〈α,u(ξ )〉,u(1) = 〈β ,u(ξ )〉+b.
(3.23)

From (3.22), we know the F3
(
u(t)

)
is uniformly bounded by

M3 = max
{

f
(
u(t)

)
: 0 � u(t) � uc(t)

}
,

a constant dependent only on the known function uc(t) . Now we can apply Schauder’s
fixed point theorem to (3.23) and obtain a positive solution u3(t) satisfying the bound-
ary condition (2.3). We shall prove that u3(t) is a positive solution of (BVP3) by
showing F3

(
u3(t)

)
= f
(
u3(t)

)
, hence (3.23) becomes (BVP3).

Let w(t) = u3(t)− uc(t) and we need to show that w(t) � 0 for all t ∈ [0,1] .
At first we suppose that w(t) > 0 on a sub-interval (τ1,τ2) , 0 < τ1 < τ2 < 1, with
w(τ1) = w(τ2) = 0. Note that w(t) > 0 implies by (3.22), (3.23) that w′′(t) = 0 which
in turn yields w(t)≡ 0 in (τ1,τ2) contradicting w(t) > 0 in (τ1,τ2) . Secondly, we note
that between any two ξi,ξi+ j , 1 � i, j � m− 1 at which w(ξ j) < 0 and w(ξi+ j) < 0,
there can be no intermitent ξ ′

ks such that w(ξ j) > 0, i < k < i+ j for otherwise this will
lead to the case where exists a subinterval (τ1,τ2)⊆ [0,1],0 < τ1,< τ2 < 1,w(t) > 0 in
(τ1,τ2) and w(τ) = w(τ2) = 0 which has just been ruled out.

There remain three separate cases : (1) w(t) > 0 for all t ∈ [0,1] , (2) w(t) > 0 for
t ∈ [0,τ3),0 < τ3 < 1, and (3) w(t) > 0 for t ∈ (τ4,1],0 < τ4 < 1. In case (1), since
w′′(t) ≡ 0 in [0,1] , so w(t) = [w(1)−w(0)]t +w(0) with w(0),w(1) > 0. Using the
boundary condition (2.3) at t = 0 with w(ξ ) = [w(1)−w(0)]ξ +w(0) , we have

w(0)(1−α+ 〈α,ξ 〉) = w(1)〈α,ξ 〉. (3.24)

Likewise with t = 1, in (2.3), we obtain

w(1) = 〈β , [w(1)−w(0)]ξ +w(0)〉+b− c

and since b < c , this leads to

w(1) = (1−〈β ,ξ 〉) < w(0)(β −〈β ,ξ 〉). (3.25)

Combining (3.24), (3.25), we obtain

(1−α+ 〈α,ξ 〉)(1−〈β ,ξ 〉) < 〈β ,ξ 〉(β −〈β ,ξ 〉)
which contradicts the non-resonance condition Λ > 0 which is implied by 0 � α <
1, 0 < 〈β ,ξ 〉 < 1.

In this case (2), w′′(t) ≡ 0 on [0,τ3] implies w(t) = w′(0)(t − τ3) with w(0) > 0
and w′(0) < 1. Let ξs = max{ξi : w(ξi) > 0} for some s = 1, · · · ,m−1. If no such s
exists, then this case reduces to Case (3). On the other hand, if s = m , then w(t) > 0
for all t ∈ [0,1] and it becomes case (1). Using boundary condition (2.3) at t = 0, we
observe

−w′(0)τ3 = w(0) =< α,w(ξ ) >�
s

∑
i=1

αiw(ξi) = w′(0)
s

∑
i=1

αi(ξi − τ3),
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which reduces to

−w′(0)τ3

(
1−

s

∑
i=1

αi

)
� w′(0)

s

∑
i=1

αiξi . (3.26)

Since −w′(0) > 0, and α < 1, so we obtain from (3.26), τ3 < 0 which is impossible.
Case 3. Suppose that w(t) > 0 on (τ4,1] some τ4 with w(τ4) = 1,0 < τ4 < 1.

We have by (3.22), (3.23) that w′′(t) ≡ 0 in [τ4,1] , so w(t) = w(1)(1− τ4)−1(t − τ4) .
Evaluating boundary condition (2.3) at t = 1, we find

w(1) = 〈β ,w(ξ )〉+b− c < 〈β ,w(1)(1− τ4)−1(ξ − τ4)〉. (3.27)

Since ξi−τ4 � ξi(1−τ4) , (3.27) reduces to w(1) < w(1)〈β ,ξ 〉 which contradicts the
assumption 0 < 〈β ,ξ 〉 < 1.

Now that these four cases exhaust all possibilities for w(t) > 0, we conclude that
w(t) � 0 or u3(t) � uc(t) . This proves that (BVP3) has a positive solution for every
b = b∗ . Finally, the proof that (BVP3) also has a positive solution for b = b∗ is similar
to that given in the proof of Theorem 3.1 (c). The completes the proof of Theorem 3.3.

REMARK 3.3. We remark that the conditions on α ′
i s,β ′

i s required by Theorems
3.1, 3.2, 3.3 are stronger than the usual non-resonance conditions for positive solutions.
In case of (BVP1), (BVP2), to ensure the boundary conditions (2.1), (2.2) with b = 0
do not give rise to nontrivial solutions for the base equation y′′ = 0, the non-resonance
condition is 
 = (1−α)(1− β ) > 0 which is implied by 0 � α < 1, 0 < β < 1
in Theorems 3.1 and 3.2. Likewise the condition that 0 � α < 1, 0 < 〈β ,ξ 〉 < 1 for
(BVP3) implies the non-resonance condition Λ= (1−α)(1−β ,ξ 〉)+(1−β)〈α,ξ 〉>
0. However, in all three theorems, we require β > 0, a condition required in the proofs
to ensure the solutions established are positive throughout the entire interval [0,1] .

REMARK 3.4. In all three Theorems, we require f0 < 1
2Λ j, j = 1,2,3 to accom-

modate b �= 0. When b � 0 is sufficiently small in (2.1), (2.2), (2.3), these assumptions
can be relaxed to f0 < Λ j, j = 1,2,3.

4. Optimal existence theorems. The Sublinear Case

Theorems in the previous section are intended as extensions of Theorem A when
the nonlinear function f (y) satisfies a superlinear condition given in Theorems 3.1,
3.2 and 3.3 but we say nothing about the situation when f (y) satisfies a sublinear
condition. In fact in a special case of (BVP2) when all α ′

i s are zero, Sun Chen, Zhang
and Wang [45 ; Theorem 1.2] stated without proof an analogous result when f0 = ∞
and f∞ = 0. This is incorrect as pointed out in our earlier work [29 ; p.3-4] by the
simple counterexample:

y′′(t)+1 = 0, y′(0) = 0, y(1) =
1
2
y(1/2)+b,

which has the unique solution y(t) = −t2/2+2b+7/8 which is positive for all b � 0.
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We observe that the superlinear conditions concerning (BVP1), (BVP2), (BVP3)
provide upper and lower bounds for f0 and f∞ . In the case of (BVP1), (BVP2) for
b = 0, we require

f0 < Λi < γ−1
i Λi < f∞, i = 1,2 (4.1)

and for (BVP3) with b = 0,

f0 < Λ3 < Λ4 < γ−1
3 Λ4 < f∞. (4.2)

Both (4.1) and (4.2) leave an interval between f0 and f∞ . For the simpler problem
(Eb) with b = 0, this is also the case amongst studies reported by Ma [36], Liu [31],
[32] Zhang and Wang [56]. In [29], we compare f0, f∞ with the smallest eigenvalue λ1

of the linear boundary value problem:

(R)

⎧⎪⎪⎨⎪⎪⎩
u′′ +λa(t)u = 0,

sinθu(0) = cosθu′(0),

u(1) =
m
∑
i=1

βiu(ξi)+b,

(4.3)

where βi > 0, i = 1,2, · · · ,m and b � 0 and proved

THEOREM E. (a ) Suppose that f0 < λ1 < f∞ . Then there exists a constant b∗ > 0
such that the boundary value problem BVP(R) has a positive solution for all b , 0 �
b � b∗ , and no positive solution for b > b∗ .

(b ) Suppose that f∞ < λ1 < f0 . Then the boundary value problem BVP(R) has a
positive solution for all b � 0 .

Theorem E was proved by using classical “shooting method” and Sturm’s Com-
parism Theorem. We note that this approach is unable to deal with boundary value
problems (BVP1), (BVP2), (BVP3) because the boundary conditions at t = 0 involves
interior boundary points. On the other hand, application of Theorem KG does not in-
volve the linear problem (R) , so we must find alternative methods.

Theorem B by Zhang and Sun [54] was proved by applying the Krein-Rutman
theorem together Krasnoselskii fixed point theorem via topological degree theory and
established optimal existence theorem for the three point homogeneous boundary value
problem (Eb) with b = 0. In this section, we intend to do the same for the more general
boundary value problems (BVP1), (BVP2), (BVP3).

We require the following variant of Krasnoselskii’s fixed point theorem stated in
the form using fixed point indices from topological degree theory, see e.g. Erbe [8],
Han[19], Webb [49], Webb and Lan [50], Zhang and Sun [54].

THEOREM K. Let X be a Banach space and P ⊆ X be an ordered cone. Sup-
pose that Ω is an open subset of X with non-empty interior. Let A : P∩Ω→ P be a
completely continuous operator.

(a) If there exists p ∈ P, p �= 0 such that u−Au �= μ p for all u ∈ P∩∂Ω , where ∂Ω
denotes the boundary of Ω , and all μ � 0 , then the fixed point index of A with
regard to P∩∂Ω satisfies i(A;P∩Ω,P) = 0;
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(b) If u �= μAu for all u ∈ P∩∂Ω and all μ ,0 � μ � 1 , then i(A,P∩Ω,P) = 1 .

We apply Theorem K to operators A1,A2,A3 as defined by (2.5) with kernels
Kj(t,s), j = 1,2,3 as given by (2.20), (2.21), (2.22) and prove existence of positive
solutions of (BVP1), (BVP2), (BVP3) in the sublinear case, i.e. f0 > f∞ . We note
that it is a standard argument to prove that A1,A2,A3 are completely continuous opera-
tors. A word of caution is required for operators A1,A2 since unlike the kernel function
K3(t,s) as given in (2.22) the kernel functions K1(t,s),K2(t,s) given by (2.20), (2.21)
are not continuous in (t,s) ∈ [0,1]× [0,1] . This is because g′1(t,s) , g′2(t,s) is discon-
tinuous along the lines s = ξi, i = 1,2, · · · ,m . However, we note that for t �= τ, j = 1,2∣∣∣∣∫ 1

0
(Kj(t,s)−Kj(τ,s))a(s) f

(
y(s)

)
ds

∣∣∣∣� B0

∫ 1

0
|Kj(t,s)−Kj(τ,s)|ds

and
|Kj(t,s)−Kj(τ,s)| � |g j(t,s)−g j(τ,s)|+B1|t− τ|, (4.4)

where B0 is a constant depending on continuous functions a(t), f (y) and

B1 = Max
0�s�1

{
1

1−β
[〈β ,g′1(ξ ,s)〉+b

]
,

1
1−α

〈α,g′2(ξ ,s)〉
}

.

Since |g j(t,s)− g j(τ,s)| � |t − τ| , and (4.4) holds uniformly for all s ∈ [0,1] hence
Kj(t,s) is equicontinuous, j = 1,2. This shows that A1,A2 are completely continuous
operators.

We need the following result of Krein-Rutman. See Zeildler [52, p.290, Theorem
7.C], Krein and Rutman [27]:

THEOREM K-R. (Krein and Rutman [25]) Let X be a Banach space with an or-
dered cone P and its interior int P is non-empty. Suppose that L is a linear operator
which maps P into itself. If L is completely continuous and strongly positive, i.e. Ly ∈
int P for every Ly ∈ int P, then L has a positive eigenvector ϕ corresponding to the
positive eigenvalue r(L) , where r(L) denotes the spectral radius of L.

We define the linear operators Lj associated with Aj, j = 1,2,3 by

Ljy(t) =
∫ 1

0
K0

j (t,s)a(s)y(s)ds, j = 1,2,3, (4.5)

where K0
j (t,s) equal to Kj(t,s) given by (2.20), (2.21), (2.22) with b = 0. Clearly

since Aj
′s are completely continuous, so are the Lj

′s . To apply Theorem K-R to Lj ,
we need to show that they are strongly positive.

Note that C1,D1 � 0, so K0
1 (t,s) � g1(t,s) > 0 all t,s ∈ (0,1) . Since a(t) �≡ 0 in

[0,1] , there exists t0 ∈ (0,1) such that a(t) > 0 in (τ1,τ2),0 < τ1 < τ2 < 1. Now for
y(t) > 0, t ∈ [0,1] , we have

L1y(t) �
∫ τ2

τ1
K0

1 (t,s)a(s)u(s)ds > 0 (4.6)
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showing that L1 is strongly positive.
For L2 , we note that C2 � 0 since G′

2(ξi) � 0, i = 1,2, · · · ,m in (2.14), so D2 �
C2 +D2 . Furthermore,

C2 +D2 =
1

1−β

{
〈β ,G2(ξ )〉− (β −〈β ,ξ 〉)

1−α
〈α,G′

2(ξ )〉+b

}
� 0,

because β � 0,α � 0,b � 0. Thus K0
2 (t,s) � g2(t,s) > 0 all t,s ∈ (0,1) , and a similar

argument applies proving that L2 is strongly positive.
Turning to L3 , we know from the proof of A3(P3) ⊆ P3 that both C3,D3 � 0, so

K0
3 (t,s) � g3(t,s) . Clearly g3(t,s) > 0 for all t,s,∈ (0,1) , again by a similar argument

as (4.6), we can show that L3y(t) > 0 whenever y(t) > 0 for all t ∈ [0,1] . Thus, L3 is
also strongly positive.

Now we are in position to apply Theorem K-R to the three linear operators Lj, j =
1,2,3 given in (4.5). Denote μ j the corresponding positive eigenvalue of the linear
boundary value problem

u′′ + μa(t)u = 0 (4.7)

subject to homogeneousboundary conditions (2.1), (2.2), (2.3) with b= 0 for j = 1,2,3
respectively.

THEOREM 4.1. Let 0 < α < 1,0 � β < 1 . Suppose that f (y) satisfies f∞ < μ1 <
f0 , where μ1 is the smallest eigenvalue of the boundary value problem (4.7) for j = 1 ,
then the (BVP1) has a positive solution for every b � 0 .

REMARK 4.1. We remark that Theorem 4.1 improves upon Theorem D substan-
tively in two directions. To see this, let ϕ1 , be the positive eigenvector μ1 , i.e. ϕ1 =
μ1L1ϕ1 . Using K0

1 (t,s) given by (2.20) with b = 0, we find

ϕ1(t) = μ1

∫ 1

0
K0

1 (t,s)a(s)ds � μ1Λ−1
1 ‖ϕ1‖

for all t ∈ [0,1] . Taking t ∈ [0,1] such that ϕ1(t) = ‖ϕ1‖ we obtain Λ1 � μ1 . On
the other hand, since ϕ1 is a solution of (4.7), satisfying boundary condition (2.1) with
b = 0 then ϕ1(t) � γ1‖ϕ1‖ by Lemma 2.1. Observe that

‖ϕ1‖ � ϕ1(1) = μ1

∫ 1

0
K0

1 (l,s)a(s)ϕ1(s)ds � μ1Λ−1
1 γ1‖ϕ1‖,

so μ1 � γ−1
1 Λ1 . Thus condition (3.1), and f0 = ∞, f∞ = 0 in Theorem D, both imply

f∞ < μ1 < f0 . Furthermore, Theorem D assumes α > 0 and b > 0, but the proof of
Theorem 4.1 shows that either α > 0 or b > 0 will suffice but not both.

PROOF OF THEOREM 4.1 Let P1 = {y(t) ∈ P : y(t) � γ1‖y‖} , where γ1 is given
by (2.23). When we note from the fact that A1y(t) is a solution to u′′ +h(t) = 0 with
h(t) = a(t) f

(
y(t)
)

and satisfying boundary condition (2.1) so by Lemma 2.1, A1(P1)⊆
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P1 . Now since C1,D1 � 0 so we have K0
1 (t.s) � g1(t,s) > 0 for all t ∈ (0,1) . Referring

to the argument relating to (4.6), we conclude that L1 is strongly positive. Let μ1 be
the smallest eigenvalue of the boundary value problem{

u′′ + μa(t)u = 0, 0 < t < 1,

u(0) = 〈α,u(ξ )〉, u′(1) = 〈β ,u′(ξ )〉. (4.8)

By assumption that f0 > μ1 , we can find r > 0 such that f (y) � μ1y for all
y∈ [0,r] . Define Ω1 = {y∈C[0,1] : ‖y‖< r} and ∂Ω1 = {y∈Ω1 : ‖y‖= r} . To verify
condition (a) of Theorem K, we suppose the contrary that there exists y0 ∈ P1 ∩ ∂Ω1

such that y0 = A1y0 +σ0ϕ1 , for some σ0 > 0. (If σ0 = 0, then y0 ∈ P1 is a fixed point
of A1 which is a positive solution of (BVP1). ) Define σ∗ = sup{σ : y0 � σϕ1} . Since
A1 is positive so σ0 � σ∗ and σ∗ exists. Observe that y0 � σ∗ϕ1 implies

y0 = A1y0 +σ0ϕ1 � μ1L1y0 +σ0ϕ1

� μ1σ∗L1ϕ1 +σ0ϕ1 = (σ∗ +σ0)ϕ1,

which contradicts the definition of σ∗ . Now by Theorem K (a), i(A1;P1∩Ω1,P1) = 0.
Turning to the second part of Theorem K, we use the assumption that f∞ < μ1

to choose R > r > 0 so that f (y) � μ1y if y ∈ [R,∞) . Suppose that condition (b) of
Theorem K does not hold, then the set W = {v ∈ P1 : v = σA1v,0 � σ � 1} is non-
empty. We shall show that the set W is bounded. Let v ∈W . and v = σA1v for some
σ , 0 � σ < 1. (Note that if σ = 1, then v is a fixed point of A1 , hence it is a positive
solution of (BVP1) because v ∈ P1 ). We now use the Hammerstein operator A1 to
estimate v(t) ,

v(t) = σA1v(t) = σ
{∫

E
+
∫

Ec

}
K1(t,s)a(s) f

(
v(s)

)
ds+σ

b
D

, (4.9)

where E = {s ∈ [0,1] : v(s) � R} and Ec = [0,1]\E . Define v(t) = min{v(t),R} . We
obtain form (4.9),

v(t) � σ
∫

Ec
K1(t,s)a(s) f

(
v(s)

)
ds+σ

∫ 1

0
K1(t,s)a(s) f

(
v(s)

)
ds+

b
D

� σμ2

∫ 1

0
K1(t,s)a(s)v(s)ds+M +

b
D

, (4.10)

where

M = sup
0�t�1

∫ 1

0
K1(t,s)a(s) f

(
v(s)

)
ds+

b
D

< ∞

is a finite constant depending on max
0�u�R

f (u) but independent of v(t) . From (4.10) we

have

v � σμ1L1v+M1, v ∈W, (4.11)
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where M1 = M+ b
D . Denote the linear operator Lσ = σμ2L1 and by Gelfand’s formula

for spectral radius r(Lσ ) we have

r(Lσ ) = lim
n→∞

‖(σμ1L1)n‖1/n = σμ1 lim
n→∞

‖Ln
1‖1/n

= σμ1r(L1) = σ < 1. (4.12)

Write (4.11) as (I − Lσ )v � M1 . By (4.12), we know that (I − Lσ )−1 exists so we
conclude v � (I − Lσ )−1M1 = Mσ where Mσ is a constant independent of v ∈ W .
Thus supW � Mσ <∞ . We define Ω2 = {v : ‖v‖� R1} , where R1 > max (R,supW ) .
For y ∈ P2 ∩ ∂Ω2 , we have ‖y‖ = R > supW so y �= σA1y for all 0 � σ � 1. This
shows that condition (b) of Theorem K holds, so i(A1;P1 ∩Ω2,P1) = 1. Finally, by
additivity of the index function

i
(
A1;(P1 ∩Ω2)\ (P1∩Ω1)

)
= i(A1;P1∩Ω2,P1)− i(A1;P1∩Ω1,P1) = 1.

It follows that A1 has a fixed point ŷ1 ∈ P1∩ (Ω2 \Ω1) satisfying 0 < r � ‖ŷ1‖ � R1 .
By (2.26) in Lemma 2.2, ŷ1(t) > 0 for t ∈ [0,1] and is a positive solution of (BVP1).
This completes the proof.

REMARK 4.2. The use of spectral radius of the linear operators Lj given by (4.5)
in the study of multi-point boundary value problems was initiated by Gupta and Trofim-
chuk [17] followed by many others, e.g. [56], [46], [19].

Similarly, we state and can prove

THEOREM 4.2. Let 0 � α < 1,0 < β < 1 . Suppose that f∞ < μ2 < f0 , where μ2

is the smallest positive eigenvalue of (4.7) for j = 2 , then the (BVP2) has a positive
solution for every b � 0 .

Since the proof of Theorem 4.2 is similar to that of Theorem 4.1, we leave the details
to the readers.

THEOREM 4.3. Let 0 � α < 1,0 � 〈β ,ξ 〉 < 1 . Suppose that f (y) satisfies f∞ <
μ3 < f0 , where μ3 is the smallest positive eigenvalue of (4.7) for j = 3 , then the
(BVP3) has a positive solution for every b � 0 .

Proof. Let
P3 = {y(t) ∈ P : inf

ξ1�t�1
y(t) � γ3‖y‖},

where γ3 is given by (2.27). Note that for any given y(t) ∈ P3 , A3y(t) is a solution
to u′′ +h(t) = 0 with h(t) = a(t) f

(
y(t)
)

and in addition A3y(t) satisfies the boundary
condition (3). So by Lemma 2.3 we conclude A3(P3) ⊆ P3 .

Like a similar argument in (4.6), we know that L3 is strongly positive. We can
now apply Krein-Rutman theorem to L3 and P3 and conclude that r(L3) > 0 and μ3 =
[r(L3)]−1 is the smallest eigenvalue of the linear boundary value problem (4.7) for
j = 3.
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We again apply Krasnoselskii’s Theorem K to A3 with regard to P3 and use the
sublinearity condition f∞ < μ3 < f0 to verify conditions (a) and (b) in much the same
way as Theorem 4.1 to conclude that A3 has a fixed point ŷ3 ∈ P3 ∩ (Ω2 \Ω1) where
Ω2,Ω1 are defined similar to that given in the proof of Theorem 4.1, so 0 < r � ‖ŷ3‖�
R1 . Since ŷ3(t) � γ3‖y‖ for t ∈ [ξ1,1] , together with ŷ3(0) = 〈α, ŷ3(ξ )〉 � 0 and
concavity of ŷ3(t) , we conclude that ŷ3(t) > 0 on (0,1] and is a solution of (BVP3).
( ŷ3(t) > 0 for all t ∈ [0,1] if in addition α > 0). This completes the proof.

REMARK 4.3. Theorem 4.3 extends Theorem B which deals with a special case
of (BVP3) with α = 0 and b = 0. In addition, Theorem B requires 0 � β < 1 which
is stronger than 0 � 〈β ,ξ 〉 < 1.

REMARK 4.4. Similar to Remark 4.1 we can also show for (BVP2), Λ2 � μ2 �
γ−1
2 Λ2 ; and for (BVP3), Λ3 � μ3 � γ−1

3 Λ4 . It is perhaps useful to state these conclu-
sions separately below as corollaries to Theorems 4.1, 4.2 and 4.3.

COROLLARY 4.1. Let 0 � α < 1,0 � β < 1 . If f (y) satisfies

f∞ � Λ1 < μ1 < γ−1
1 Λ1 � f0, (4.13)

then (BVP1) has a positive solution for every b � 0 .

COROLLARY 4.2. Let 0 < α < 1,0 � β < 1 . If f (y) satisfies

f∞ � Λ2 < μ2 < γ−1
2 Λ2 � f0, (4.14)

then (BVP2) has a positive solution for every b � 0 .

COROLLARY 4.3. Let 0 � α < 1,0 � 〈β ,ξ 〉 < 1 . If f (y) satisfies

f∞ � Λ3 < μ3 < γ−1
3 Λ4 � f0, (4.15)

then (BVP3) has a positive solution for every b � 0 .

5. Examples and discussion

Because of the laborious calculations involved in determining the upper and lower
bounds of f0, f∞ as defined by (1.5), we found few examples in literature. However,
we first select two examples from papers by Liu [31], [32] and compare the estimates
on f0, f∞ using results reported in this paper with that of Liu’s.

EXAMPLE 5.1. Consider the three point problem

y′′ +3ty

(
1+

c
1+ y2

)
= 0, 0 < t < 1, (5.1)

y′(0) = 0, y(1) =
1
4
y(1/3)+b, (5.2)
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where c is a positive constant and b � 0. This example was given by Liu [31; p.27,
Example 5.5] where b = 0. Here f0 = 1 + c and f∞ = 1. In [31], it was reported
that if c > 9593/208 = 46.12 then the (BVP) (5.1),(5.2) has a positive solution with
b = 0. This problem is a special case of (BVP2) in the sublinear case, and we can apply
Corollary 4.2 with γ2,Λ2 given by (2.24),(3.7). Here γ2 = 2

11 ,Λ2 = 1656/1458> f∞ =
1, and f0 = 1+c > γ−1

2 Λ2 = 18238/2916, so c > 5.2469 which is an improvement up
on c > 46.12. In addition, we proved that BVP(5.1),(5.2) has a positive solution for all
b � 0.

EXAMPLE 5.2. Consider the boundary value problem

y′′ +
1
3

aye2y

c+ ey + e2y = 0, 0 < t < 1, (5.3)

y(0) = 0, y(1) = 2y(1/3)+b, (5.4)

which was studied in Liu [32; p210-211, Ex. 4.3] with b = 0. Here f0 = a/(c+2), f∞ =
a and the problem is a special case of (BVP3), with α1 = 0,β1 = 2,ξ1 = 1/3. Suppose
that a > 0,c > −1, then it is in the superlinear case and Theorem 3.3 is applicable.
According to Liu [32; p.208, Corollary 3.1], existence of positive solution requires
f0 < 
1, f∞ > γ−1

3 
2 where γ3 = min{ξ1,β1ξ1,
β1(1−ξ1)
1−β1ξ1

} given by (2.27) and


1 = (1−β1ξ1)
{∫ 1

0
(1− s)a(s)ds

}−1

,


2 = (1−β1ξ1)
{
ξ1γ3

∫ 1

ξ1

(1− s)a(s)ds

}−1

.

Here 
1 = 2,
2 = 81/2, and γ3 = 1
3 , so f∞ = a > 243/2 and f0 = a/c + 2 < 2.

Liu [32] concluded that for c > 235/4 = 58.75 and a > 243/2, the boundary value
problem (5.3), (5.4) has a positive solution for b = 0.

To apply Theorem 3.3, we compute Λ3,Λ4 according to (3.14), (3.15). Here Λ3 =

1 = 2 and Λ = 1/3. By (3.15) and (2.27), we require f∞ = a > γ−1

3 Λ4 = 27/4 and
c > 65/8 which improves upon that reported in [32], c > 58.75.

We now give two other examples to illustrate the versatility of the results given in
previous two sections.

EXAMPLE 5.3. Consider the boundary value problem

y′′ +
a+ cy+ siny

1+ y
y = 0, 0 < t < 1, (5.5)

y(0) =
1
2
y(1/2), y′(1) = b � 0. (5.6)

Here f0 = a, f∞ = c and the (BVP) (5.5),(5.6) is superlinear if 0 < a < c and sublinear
if a > c > 0. It is a special case of (BVP1).
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When a < c , we apply Theorem 3.1 with γ1,Λ1 given by (2.23), (3.1). Here
α1 = 1

2 ,ξ1 = 1
2 , so γ1 = 1

3 and Λ1 = 4/5. So if a < 4/5,c > 12/5 then there exists
b∗ > 0 such that the (BVP) (5.5), (5.6) has a positive solution for any b,0 � b � b∗ and
no solution for b > b∗ . However, since f (y) is not monotone for any set of values a,c
because

f ′
[
(2n+1)π

]
=
[
1+(2n+1)π

]−2[
c−a− (1+(2n+1)π

)]
< 0

for large values of n and f ′(0) = c− a + 1, f ′(∞) = c . Hence Theorem C is not
applicable to this example.

In the sublinear case a > c . We can use Corollary 4.1 and determine the smallest
positive eigenvalue of the linear boundary value problem y′′ +λy = 0, (5.6). Here the
eigen functions satisfying (5.6) take the form cos

√
λ (1− t) and the eigenvalues are

zeros of the 4x2 − x− 2 = 0, x = cos
√
λ/2, yielding λ1 = 1.2897. This shows from

(4.14) of Corollary 4.1

c = f∞ <
4
5

< 1.2897 <
12
5

< f0 = a.

Indeed, Theorem 4.1 proves that whenever c < 1.2897 < a , then the (BVP) (5.5), (5.6)
has a positive solution for every b � 0.

EXAMPLE 5.4. Consider the boundary value problem

y′′ +
c log(y+1)+a
log(y+1)+1

y = 0, 0 < t < 1, (5.7)

y(0) =
1
2
y(1/3), y(1) =

1
3
y(1/2)+b, (5.8)

with a,b,c � 0, which is a special 4-point case of (BVP3). Here α1 = 1
2 ,ξ1 = 1

3 ,β2 =
1
3 ,ξ2 = 1

2 ; and γ3 = 1
6 by (2.27), f0 = a, f∞ = c and Λ = 19/36.

When c > a > 0 in the superlinear case, we find from (3.14),(3.15) that Λ3 =
19/12,Λ4 = 12.19 = 228. So if 0 < a < 19/12, c > 228, then there exists b > 0 such
that the (BVP) (5.7), (5.8) has a positive solution for any b , 0 � b � b∗ and no positive
solution if b > b∗ .

In the sublinear case when f0 = a > f∞ = c . We can avail to Theorem 4.3 and
obtain optimal condition in terms of the smallest eigenvalue λ1 of the linear problem
y′′ +λy = 0 subject to boundary condition (5.8). We find by numerical methods, λ1 =
5.3163775 with the corresponding eigen function sin{(2.3057271)t + 0.4971368} .
Hence if a > 5.316775 > c , then the boundary value problem (5.7),(5.8) has a posi-
tive solution for all b � 0.

REMARK 5.1. We note that the bounds Λ3,Λ4 given in (3.14), (3.15) of Theorem
3.3 are not the best possible using Theorem KG when compared with Theorems 3.1 and
3.2. Instead of Λ3,Λ4 , we can introduce the following “sharper bounds”

Λ−1
3 = max{D3[a],C3[a]+D3[a]},

Λ−1
4 = min{D3[a],C3[a]+D3[a]}.
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In the case of Example 5.4, we have

D3[a] =
1
Λ
{(1−β2ξ2)α1G3(ξ1)+α1ξ1[β2G3(ξ2)+b]}

C3[a]+D3[a] =
1
Λ
{(β2−β2ξ2)α1G3(ξ1)+ (1−α1 +α1ξ1)[β2G3(ξ2)+b]}.

Note that

G3(t) = t
∫ 1

t
(1− s)a(s)ds+(1− t)

∫ t

0
sa(s)ds,

so G3( 1
3 ) = 1

9 , G3( 1
2 ) = 1

8 since a(t) ≡ 1. Thus, we obtain

D3[a] = 69/342, C3[a]+D3[a] = 12/171,

and can conclude that if 0 < a = f0 < 1
2Λ3 = 1

2D3[a]−1 = 171
69 = 2.4782, and c > Λ4 =

(C3[a]+D3[a])−1 = 171/12 = 14.25 which improve upon the estimates on a,c given
in Example 5.4.

We now close our discussion with additional remarks and problems for further
research.

REMARK 5.2. (uniqueness and non-resonance) Consider the simple linear equa-
tion u′′ + h(t) = 0 with h(t) ∈C[0,1] , h(t) � 0 subject to boundary conditions (2.1),
(2.2), (2.3) with b = 0. It is easy to show that these particular boundary value prob-
lems have a unique solution if and only if u′′ = 0 has no non-trivial solutions satisfy-
ing (2.1), (2.2), (2.3). In this case, (BVP1), (BVP2), (BVP3) are commonly referred
to as non-resonant cases. Alternatively, uniqueness of the zero solution is equivalent
to the solvability of the 2× 2 system of linear algebraic equations with unknowns
Cj,Dj, j = 1,2,3. This in turn is equivalent to the condition 
 = (1−α)(1−β ) �= 0
for (BVP1),(BVP2) and Λ= (Λ= (1−α)(1−〈β ,ξ 〉)+(1−β)〈α,ξ 〉 �= 0 for (BVP3).

REMARK 5.3. Robin boundary condition at t = 0. In section 4, we discuss The-
orem E which deals with the Robin boundary condition at t = 0, i.e. (4.4), which
included both the Dirichlet

(
θ = π

2

)
and Neumann (θ = 0) conditions. When the

boundary conditions involves both the solution y(t) and its derivative y′(t) at a bound-
ary point, say t = 0,1, or ξi , they are known as mixed boundary conditions. The
method introduced in this paper is unable to handle problems involving mixed bound-
ary conditions. In addition, Theorem E shows that for b , 0 < b < b∗ , there are at least
two positive solutions, when b = 0, b∗ there is one positive solution. There exists large
literature on the subject of multiplicity. We refer the reader to [43], [44], [39], [29] on
earlier results. As far as we know, there is no result on multiplicity of solutions for
(BVP1), (BVP2), (BVP3) and problems with Robin boundary condition.

REMARK 5.4. (sign-changing nonlinearities) Our discussion is confined to prov-
ing existence of positive solutions with non-negative nonlinear function f (y) . There
are also many papers on existence theorems with sign changing nonlinearities. We
refer the reader to recent work of Kong and Kong [24], [25] and the references therein.
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REMARK 5.5. (higher order equations and others) One can obviously consider
more general equations than (1.1) such as Ly+a(t) f (y) = 0, where Ly = y′′+ p(t)y or
Ly = y(n) , the nth derivative of y . There are also many papers involving p−Laplacians
in the form Ly =

(
Φp(y′)

)′
, where Φp(u) = |u|p−2u, p > 1. We contend by listing a

few recent publications on these subjects in References for the interested reader, [38],
[19], [6], [9], [26], [10], [13], [55], [34], [35].

REMARK 5.6. We introduce the notion of scalar product formulation of (BVP1),
(BVP2), (BVP3) which heuristically treats the interior boundary points (ξ1,ξ2, · · · ,ξm)
as one vector in R

m . By this approach, (BVP1), (BVP2), (BVP3) can be viewed as
corresponding three-point problems. On the other hand, the boundary conditions at
interior points can also be viewed as special cases of certain integral boundary condi-
tions involving Stieltjes integrals. We refer the reader to recent papers on second order
boundary value problem with integral conditions, e.g. Webb and Infante [51], Ma and
An [41].
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