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EXISTENCE OF NON–RADIALLY SYMMETRIC VISCOSITY SOLUTIONS

TO SEMILINEAR DEGENERATE ELLIPTIC EQUATIONS WITH

RADIALLY SYMMETRIC COEFFICIENTS IN THE PLANE, PART II

KENJI MARUO AND NAOKI YAMADA

(Communicated by Y. Naito)

Abstract. We study continuous viscosity solutions for a semilinear degenerate elliptic equation
with radially symmetric coefficients in the plane. If the equation satisfies certain relations with
respect to the behavior of coefficients at the infinity, then it is known that there exist many
solutions. Our purpose is to construct many non radially symmetric solutions satisfying the
similar behavior with radial symmetric solutions at the infinity. The solutions are obtained as a
small perturbation from a radially symmetric solution. We construct super- and sub-solution by
using the series expansion of rα− jβ cosnθ ( j,n = 1,2, . . .) , where (r,θ ) is the polar coordinate
and α and β are certain positive constants.

1. Introduction

We consider the following semilinear degenerate elliptic equation:

L u = −g(|x|)Δu(x)+u(x)|u(x)|p−1− f (|x|) = 0 in R
2 , (1)

where g : [0,∞) → [0,∞) is a differentiable and non-negative function and p > 1 is a
constant. We assume that g(T0) = 0 for some T0 > 0 and g(t) > 0 for any t > T0 .
Moreover, we assume that f ,g ∈C∞((T0,∞))∩C2(R) satisfy

lim
t→∞

g(t)
t�

= 1, lim
t→∞

f (t)
tα p = κ p,

where κ > 0, � > 2 and α =
�−2
p−1

. The case 0 < � � 2 has already considered in [6].

In this case the solution of (1) exists uniquely and radially symmetric.
In the preceding paper [4], under certain assumptions of f (t) and g(t) , we have

shown the existence of non-radially symmetric viscosity solutions of (1) satisfying

lim
|x|→∞

u(x)
|x|α − lim

|x|→∞

u(x)
|x|α > 0.
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Our purpose of this paper is to show the existence of non-radially symmetric solutions
which are different from those in [4].

The solution obtained in [4] has the phase at infinity as the solution of Laplace-
Beltrami equation associated with (1). On the contrary, we show the existence of a small
perturbed solution from a radially symmetric solution. We are looking for a solution
which has the asymptotic

lim
|x|→∞

u(x)
|x|α = lim

|x|→∞

u(x)
|x|α .

To prove our assertion we shall construct super- and sub-solutions that suit our
purpose and apply the comparison theorem developed in [4] to (1). We are then able to
obtain the desired results. We assume that f and g have power series expansion with
respect to the radius t = |x| . First we construct a radially symmetric solution of the
power series form by using these expansion. Then next we add a small perturbation of
power series which has osscillation with respect to the angular variable θ . In these ar-
guments, we have to make sure that the coefficients of this power series are determined
recurcively from the coefficients of f and g . This is the main caluculation of this paper.

The outline of the present paper is as follows. In section 2, we state the assump-
tions and our theorem. In sections 3, 4 we show the existence of asymptotically radi-
ally symmetric and non-radially symmetric solutions of (1) respectively. Section 5 is
devoted to the study of the existence of super- and sub-solution of (1) for large t . In
Section 6 our theorem is proved.

2. Assumptions and main theorem

In this section we list the detailed assumptions of f (t), g(t) ∈ C∞((T0,∞)) ∩
C2([0,∞)) and state the theorem. Recall that κ > 0, � > 2 and α =

�−2
p−1

and

lim
t→∞

g(t)
t�

= 1, lim
t→∞

f (t)
tα p = κ p > 0.

We consider the following algebraic equation:

X |X |p−1−κ p−α2X = 0. (2)

We assume that (2) has a positive single root ω+ and negative single roots ω0 and ω− ,
where ω− < ω0 < 0 < ω+ .

We assume the following two assumptions.

(H-1) Constants p , α and ω0 satisfy α2− p|ω0|p−1 > 1.

Let N = [α −√p|ω0|p−1] , where [x] is the maximum integer which does not
exceed x .

(H-2) Functions f (t) and g(t) behave near t → ∞ as follows:

f (t) = tα p
(
κ p + τ1t−1 + τ2t−2 + · · ·+ τNt−N +O

(
t−α+

√
p|ω0|p−1−ε

))
,
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g(t)−1 = t−�
(
1+σ1t

−1 +σ2t
−2 + · · ·+σNt−N +O

(
t−α+

√
p|ω0|p−1−ε

))
,

where ε > 0.

We will introduce some notation often used in this paper:

rn = α−
√

p|ω0|p−1 +n2, rε = α−
√

p|ω0|p−1 + ε,

r0 = α−
√

p|ω0|p−1, X p = X |X |p−1,

N =
[
α−

√
p|ω0|p−1

]
, N0 =

[√
α2 − p|ω0|p−1

]
,

Mn =

[
α−√p|ω0|p−1

α−√p|ω0|p−1 +n2

]
,

a∨b = max{a, b}, a∧b = min{a, b}.

Note that rε = α −√p|ω0|p−1 + ε + o(ε) for sufficiently small ε > 0, because
ω0 �= 0 since κ > 0. We use this fact frequently.

It is known by [6], Theorem 4.1, that there exist radially symmetric solutions of
(1) satisfying lim|x|→∞ y(|x|)/|x|α = ω0 . The next theorem states that there exist non-
radially symmetric solutions near y(|x|) . More precisely, the main theorem of this
paper is the following.

THEOREM 2.1. Let y(|x|) be any radially symmetric solution of (1) such that

lim
|x|→∞

y(|x|)
|x|α = ω0.

Assume (H-1), (H-2) and rN0 > 0 . Then for any n = 1, . . . ,N0 , there exist a constant
δ > 0 and N continuous viscosity solutions {un(x)} of (1) such that

lim
|t|→∞

un(t,θ )− y(t)

|t|
√

p|ω0|p−1+n2
= Cn cosnθ (0 � θ < 2π), (3)

where x = (t,θ ) is the polar coordinate, Cn are any constants satisfying |Cn|< δ . The
convergence is uniformly with respect to θ .

REMARK 2.1. In order to avoid complicated calculation and to close the argu-
ment in the framework of the power order with respect to t , we prove the theorem by
assuming an additional condition (H-3).

(H-3) For any n = 1, . . . ,N0 , there are no pairs of non-negative integers (k, j) satisfying
krn + j = r0 .

We will mention in Remark 6.1 below for an argument without (H-3).
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REMARK 2.2. We mention the role of constants r0 , rε , rN0 , Mn , N and N0 . The
r0 plays an important role when we construct an asymptotically non-radially symmetric
solution of (1). The rε is used to control reminder terms. The assumption rN0 >
0 in Theorem 2.1 is needed to construct a non-radially symmetric solution satisfying
limt→∞ un(t,θ )/tα = 0. Note that this condition is equivalent to N0 < α < N0 + 1. If
(H-3) is satisfied, then Mnrn + j �= r0 , krn + j �= r0 and j �= r0 (n = 1,2, . . .N0) for any
nonnegative integers k, j . Note also that Mn , N satisfy Mnrn < r0 < (Mn + 1)rn and
N < r0 < N +1.

REMARK 2.3. Although the equation (1) is treated in R
2 it is enough to consider

the equation (1) in R
2\BT0 , where BT0 = {x∈ R

2; |x|< T0} . Indeed, if g ∈C2([0,∞)) ,
then there exists the continuous viscosity solution in R

2 by combining continuous vis-
cosity solutions on R

2\BT0 and that in BT0 . The boundary condition on ∂BT0 is auto-
matically determined by the degeneracy of the g(t) such that lim|x|→T0

u(x) = ϕ(T0) ,
where ϕ(T0)|ϕ(T0)|p−1 = f (T0) ([5], Lemma 4.3). Also, it has been shown that a con-
tinuous viscosity solution in BT0 exists uniquely and is radially symmetric (see [5],
Theorem 2). Moreover, it is known that a continuous viscosity solution in R

2\BT0 is
C∞(R2\BT0) from the existence and regularity theorem of C∞(BT\BT0+ε) solution of
(1) and the comparison theorem, where T is sufficiently large number.

In the following, we study the equation (1) in R
2\BT0 . Let n be a fixed integer

such that 1 � n � N and we denote r = rn for the simplicity.
To prove the theorem we construct the super- and sub-solution in R

2\BT0 of (1)
satisfying (3) as an asymptotic solution of the variable t . Then the result follows by the
comparison theorem. We need some asymptotic formulae of t which are derived from
(H-2):

tα p−α

g(t)
=

1
t2

(
1+

N

∑
i=1

σit
−i +O

(
t−α+

√
p|ω0|p−1−ε

))
,

f (t)t−α

g(t)
=

tα p−α

t�

((
κ p +

N

∑
i=1

τit−1
)(

1+
N

∑
i=1

σit
−i
)

+O
(
t−α+

√
p|ω0|p−1−ε

))

=
1
t2

(
κ p +

N

∑
i=1

fit
−i +O

(
t−α+

√
p|ω0|p−1−ε

))
,

where { fi}N
i=1 are constants depending only on {κ p,τ j,σ j; j = 1,2, . . . ,N} .

Let w(t,θ ) be such that u(x) = u(t,θ ) = tα(ω0 +w(t,θ )) and define

L̃ w(t,θ ) =−
(
∂ 2

∂ t2
+

2α+1
t

∂
∂ t

+
α2 − p|ω0|p−1

t2
+

1
t2

∂ 2

∂θ 2

)
w(t,θ )

+
1
t2

( N

∑
i=0

σit
−i
)(

(ω0 +w)p−ω p
0 − p|ω0|p−1w

)
+

1
t2

N

∑
i=1

(σi p|ω0|p−1)t−iw+
1
t2

N

∑
i=1

(σiω p
0 − fi)t−i.
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Here we set σ0 = 1. Then it follows from (1) and the relation ω p
0 −α2ω0 − κ p = 0

that
L̃ w = O

(
t−α+

√
p|ω0|p−1−ε−2

)
(4)

for a sufficiently large t . In section 5 we construct the super- and sub solution by using
this ω(t,θ ) .

3. Asymptotically radially symmetric solution

In this section we construct an asymptotically radially symmetric solution h−1(t)
of (4) for sufficiently large t . That is, h−1(t) satisfies the following equation:

L̃ h−1(t)

= −
(
∂ 2

∂ t2
+

2α+1
t

∂
∂ t

+
α2 − p|ω0|p−1

t2

)
h−1(t)

+
1
t2

( N

∑
i=0

σit
−i
)(

(ω0 +h−1)p −ω p
0 − p|ω0|p−1h−1

)
(5)

+
1
t2

( N

∑
i=1

σi p|ω0|p−1t−i
)
h−1 +

1
t2

N

∑
i=1

(σiω p
0 − fi)t−i = O(t−rε−2).

We construct h−1(t) such as

h−1(t) =
N

∑
k=1

c−1,kt
−k. (6)

Our purpose in this section is to decide the coefficients of h−1(t) as to satisfy the
equation (5). Remark that N < rε < N +1 for sufficiently small ε > 0. Note that since
the equation (5) contains the order term O(t−rε−2) , it is sufficient to calculate h−1 in
the modulus O(t−rε ) .

LEMMA 3.1. Let q be an integer such that q � 2 . Then it follows that

h−1(t)q =
N

∑
k=q

fq,k(c−1,1,c−1,2, . . . ,c−1,k−(q−1))t
−k +O(t−rε ), (7)

where fq,k(c−1,1,c−1,2, . . . ,c−1,k−(q−1)) are homogeneous q-th degree polynomials in
{c−1,1,c−1,2, . . . ,c−1,k−(q−1)} .

Proof. We use the induction with respect q . Let q = 2. As N < rε < N + 1 it
holds that

h−1(t)2 =
( N

∑
k1=1

c−1,k1t
−k1

)( N

∑
k2=1

c−1,k2t
−k2

)
+O(t−rε )
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=
N

∑
k1,k2=1

c−1,k1c−1,k2t
−(k1+k2) +O(t−rε )

=
N

∑
k=2

( k−1

∑
k1=1

c−1,k1c−1,k−k1

)
t−k +O(t−rε )

=
N

∑
k=2

f2,k(c−1,1,c−1,2, . . . ,c−1,k−(2−1))t
−k +O(t−rε ),

where we changed the variables from (k1,k2) to (k,k1) such that k = k1 +k2 . Then (7)
is proved for q = 2.

Suppose that (7) is true for q . Then the change of variables yields

h−1(t)q+1

=
( N

∑
k2=1

c−1,k2t
−k2

)( N

∑
k1=q

fq,k1(c−1,1,c−1,2, . . . ,c−1,k1−(q−1))t
−k1

)
+O(t−rε )

=
N

∑
k=q+1

( k−1

∑
k1=q

c−1,k−k1 fq,k1

)
t−k +O(t−rε ).

Since q � k1 � k−1, it follows that

k1− (q−1) � k−1− (q−1)= k−q and k− k1 � k−q .

Then c−1,k−k1 fq,k(c−1,1,c−1,2, . . . ,c−1,k−(q−1)) are homogeneous q+1-st degree poly-
nomials in {c−1,1,c−1,2, . . . ,c−1,k−q} . Thus, we obtain that

h−1(t)q+1 =
N

∑
k=q+1

fq+1,k(c−1,1,c−1,2, . . . ,c−1,k−(q+1−1))t
−k +O(t−rε ).

This completes the proof. �

LEMMA 3.2. It holds

N

∑
i=0

σit
−i ((ω0 +h−1)p−ω p

0 − p|ω0|p−1h−1
)

=
N

∑
j=2

Fj,1(c−1,1,c−1,2, . . . ,c−1, j−1)t− j +O(t−rε ), (8)

where Fj,1(c−1,1,c−1,2, . . . ,c−1, j−1) are sum of homogeneous q-th (2 � q � N) degree
polynomials in variables {c−1,1,c−1,2, . . . ,c−1, j−1} .

Proof. Let

I(t) =
N

∑
i=0

σit
−i ((ω0 +h−1)p −ω p

0 − p|ω0|p−1h−1
)
.
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Note that by Taylor’s theorem, there exist constants eq(q = 2,3, . . . ,N) satisfying

(ω0 +h−1)p −ω p
0 − p|ω0|p−1h−1 =

N

∑
q=2

eqh−1(t)q +O(t−rε ).

Then it follows that

I(t) =
N

∑
i=0

σit
−i

N

∑
q=2

eqh−1(t)q +O(t−rε )

=
N

∑
q=2

( N

∑
i=0

σieqt
−i
)
h−1(t)q +O(t−rε ).

Lemma 3.1 yields that

I(t) =
N

∑
q=2

( N

∑
i=0

( N

∑
k=q

σieq fq,k(c−1,1,c−1,2, . . . ,c−1,k−(q−1))t
−(k+i)

))
+O(t−rε ).

By the change of variables from (i,k) to ( j,k) such that j = i+ k and exchanging the
order of sum with respect to q and j , it follows

I(t) =
N

∑
q=2

( N

∑
j=q

( j

∑
k=q

σ j−keq fq,k

))
t j +O(t−rε )

=
N

∑
j=2

( j

∑
q=2

( j

∑
k=q

σ j−keq fq,k

))
t j +O(t−rε ).

Let Fj,1 = ∑ j
q=2(∑

j
k=qσ j−keq fq,k) . Note that⋃

2�q� j, q�k� j

{c−1,1,c−1,2, . . . ,c−1,k−(q−1)} ⊂ {c−1,1,c−1,2, . . . ,c−1, j−1}

and ∑ j
k=qσ j−keq fq,k are the sum of homogeneous q -th degree polynomials in

{c−1,1,c−1,2, . . . ,c−1,k−(q−1)}.
Then Fj,1 is the sum of homogeneous q -th degree polynomials in

{c−1,1,c−1,2, . . . ,c−1, j−1}
such that 2 � q � j . The assertion is proved. �

LEMMA 3.3. The following equality holds:( N

∑
i=1

σit
−i
)

p|ω0|p−1h−1 =
N

∑
j=2

Fj,2(c−1,1,c−1,2, . . . ,c−1, j−1)t− j +O(t−rε ), (9)

where Fj,2 are homogeneous polynomial of degree 1 in {c−1,1,c−1,2, . . . ,c−1, j−1} .
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Proof. Put

II(t) =
( N

∑
i=1

σit
−i
)

p|ω0|p−1h−1.

The change of variables yields

II(t) =
N

∑
i=1

N

∑
k=1

(σi p|ω0|p−1)ckt
−(k+i) +O(t−rε )

=
N

∑
j=2

( j−1

∑
k=1

(σ j−k p|ω0|p−1)ck

)
t− j +O(t−rε ).

By putting Fj,2 = ∑ j−1
k=1(σ j−k p|ω0|p−1)ck we have the assertion. �

By combining the above arguments, the following property holds.

LEMMA 3.4. The coefficients c−1, j of h−1 =∑N
j=1 c−1, jt− j are represented by α ,

ω0 , σi and fi (i � j � N) .

Our goal of this section is the following Proposition.

PROPOSITION 3.1. h−1(t) = ∑N
j=1 c−1, jt− j defined as above satisfies the equa-

tion (5) .

Proof. Let Fj be

Fj(c−1,1,c−1,2, . . . ,c−1, j−1)
= Fj,1(c−1,1,c−1,2, . . . ,c−1, j−1)+Fj,2(c−1,1,c−1,2, . . . ,c−1, j−1),

where Fj,1 and Fj,2 are those in Lemmas 3.2 and 3.3, respectively. Then,

I(t)+ II(t) =
N

∑
j=2

Fj(c−1,1,c−1,2, . . . ,c−1, j−1)t− j +O(t−rε ).

By substituting this into L h−1 in (5), and moving the linear part to the left hand side,
it holds:(

∂ 2

∂ t2
+

2α+1
t

∂
∂ t

+
α2− p|ω0|p−1

t2

)
h−1(t)

=
N

∑
j=1

(
(α− j)2− p|ω0|p−1)c−1, jt

− j−2

=
N

∑
j=2

Fj(c−1,1,c−1,2, . . . ,c−1, j−1)t− j−2 +
N

∑
j=1

(σ jω p
0 − f j)t− j−2 +O(t−rε−2). (10)
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By comparing the coefficients of t− j−2 in the both sides of (10), we have:(
(1−α)2− p|ω0|p−1)c−1,1 = −(σ1ω p

0 − f1)(
( j−α)2− p|ω0|p−1)c−1, j = −(σ jω p

0 − f j) (11)

+Fj(c−1,1,c−1,2, . . . ,c−1, j−1),

where 2 � j � N . Note that (1−α)2 − p|ω0|p−1 �= 0 by (H-1). By applying (H-3),
assume α−N >

√
p|ω0|p−1 . Then α− j−

√
p|ω0|p−1 > α− j− (α−N) = N− j �

0 for j = 1,2, . . . ,N . Thus α − j −
√

p|ω0|p−1 > 0. Therefore the equations (11)
are the recursive system. Hence all {c−1, j : j = 1,2, . . . ,N} can be determined as we
desire. �

4. Asymptotically non-radially symmetric solutions

In this section we construct an asymptotically non-radially symmetric solution
w(t,θ ) of (4) in order to compose a super-solution of (1). Fix n = 1, . . . ,N0 . Let
M = Mn for the simplicity. Recall that r = rn .

We shall construct the solution in the form

w(t,θ ) = h−1(t)+
M

∑
s=0

hs(t)cos(snθ ).

Here, h−1 be the asymptotically radially symmetric solution in the previous section.
The coefficients h0(t) and hs(t) are polynomials defined by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h0(t) =
M

∑
k=2

[r0−rk]

∑
j=0

c0,k, jt
−kr− j,

hs(t) =
M

∑
k=s

[r0−rk]

∑
j=0

cs,k, jt
−kr− j, s = 1, . . . ,M ,

(12)

where c0,k, j,cs,k, j are certain constants.
If h1(t) �= 0 is constructed, then our assertion is proved. Our strategy in this section

is as follows.

(1) We prove that there is an appropriate self contained relation in the set of cs,k, j

(Proposition 4.1 and Lemmas 4.2, 4.3).

(2) We introduce a dictionary-like order relation in the set of (s, j,k) and represent
the relation above to a system of equations.

(3) We calculate the Jacobian of the system (Lemmas 4.7, 4.8). The Jacobian has
simple form by using the order relation.

(4) By the implicit function theorem and Lemma 4.9, we can establish the existence
of the coefficients cs,k, j (Lemma 4.10). The non-triviality of cs,k, j is guaranteed
by the fact c1,1,0 �= 0 in Proposition 4.2.
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REMARK 4.1. We regard cs,k1, j1 t
−k1r− j1 and cs,k2, j2 t

−k2r− j2 as different terms in
case of k1r+ j1 = k2r+ j2 and k1 �= k2 , where s = 0,1, . . . ,M .

Let S be a set of coefficients in the polynomials h0(t) and hs(t) in (12). Denote
Fq(S) by

Fq(S) = { f ≡ 0}∪{ f ; homogeneous q -th degree polynomials in {cs,k, j} ∈ S},
where q = 1,2, . . . ,M .

LEMMA 4.1. Let q be 2 � q � M. Then there exist polynomials Es,k, j,q(S) ∈
Fq(S) such that

( M

∑
s=0

hs(t)cossnθ
)q

=
M

∑
k=q

[r0−kr]

∑
j=0

E0,k, j,q(S)t−kr− j

+
M

∑
s=1

( M

∑
k=s∨q

[r0−kr]

∑
j=0

Es,k, j,q(S)t−kr− j
)

cossnθ +O(t−rε ).

Proof. We use the induction with respect to q . Let q = 2. Then it follows( M

∑
s=0

hs(t)cossnθ
)2

= h0(t)2 +2h0(t)
( M

∑
s=1

hs(t)cossnθ
)

+
( M

∑
s=1

hs(t)cossnθ
)2

= I1 + I2 + I3.

For I1 the following representation holds:

I1 =
M

∑
k1=2

[r0−k1r]

∑
j1=0

M

∑
k2=2

[r0−k2r]

∑
j2=0

c0,k1, j1c0,k2, j2t
−r(k1+k2)−( j1+ j2). (13)

If r(k1 + k2)+ j1 + j2 > r0 , then t−r(k1+k2)−( j1+ j2) = O(t−rε ) . Moreover, by using the
change of variables from (k1,k2) to (k = k1 + k2,k2) and ( j1, j2) to ( j = j1 + j2, j2) ,
respectively, it holds

I1 =
M

∑
k=4

[r0−kr]

∑
j=0

( k−2

∑
k2=2

j

∑
j2=0

c0,k−k2, j− j2c0,k2, j2

)
t−rk− j +O(t−rε ) (14)

=
M

∑
k=2

[r0−kr]

∑
j=0

E1
0,k, j,2(S)t−rk− j +O(t−rε ).

Here we defined E1
0,k, j,2 by the terms inside the parentheses in the upper line, and

E1
0,k, j,2(S) = 0 for k = 2,3. Then it follows that E1

0,k, j,2(S) belong to F2(S) .
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Next consider I2 by the similar method for the case I1 . I2 is written as follows.

I2 =
M

∑
s=1

( M

∑
k1=2

[r0−k1r]

∑
j1=0

M

∑
k2=s

[r0−k2r]

∑
j2=0

2c0,k1, j1cs,k2, j2t
−r(k1+k2)−( j1+ j2)

)
cossnθ (15)

=
M

∑
s=1

(I2,1)cossnθ .

Here we defined I2,1 by the terms inside the parentheses in the upper line. Then the
change of variables of (14) and s∨2 < s+2 imply that

I2,1 =
M

∑
k=s+2

k−2

∑
k2=s

[r0−kr]

∑
j=0

j

∑
j2=0

2c0,k−k2, j− j2cs,k2, j2 t
−rk− j +O(t−rε )

=
M

∑
k=s+2

[r0−kr]

∑
j=0

( k−2

∑
k2=s

j

∑
j2=0

2c0,k−k2, j− j2cs,k2, j2

)
t−rk− j +O(t−rε )

=
M

∑
k=s∨2

[r0−kr]

∑
j=0

E2
s,k, j,2(S)t−rk− j +O(t−rε ),

where E2
s,k, j,2(S) = 0 if k = s∨ 2, . . . ,s+ 1. Then E2

s,k, j,2(S) belong to F2(S) . More-
over, it follows

I2 =
M

∑
s=1

M

∑
k=s∨2

[r0−kr]

∑
j=0

E2
s,k, j,2(S)t−rk− j cossnθ +O(t−rε ).

Consider I3 . I3 is also rewritten as:

I3 =
M

∑
s1,s2=1

( M

∑
k1=s1

[r0−k1r]

∑
j1=0

M

∑
k2=s2

[r0−k2r]

∑
j2=0

cs1,k1, j1cs2,k2, j2 t
−r(k1+k2)−( j1+ j2)

)
coss1nθ coss2nθ (16)

=
M

∑
s1,s2=1

(I3,1)coss1nθ coss2nθ .

Here we defined I3,1 by the terms inside the parentheses in the upper line. From s1,s2 �
1, it follows that (s1 + s2)∨2 = s1 + s2 . Then the change of variables of (14) yields

I3,1 =
M

∑
k=s1+s2

[r0−kr]

∑
j=0

2
( k−2

∑
k2=s2

j

∑
j2=0

cs1,k−k2, j− j2cs2,k2, j2/2
)
t−rk− j +O(t−rε )

=
M

∑
k=(s1+s2)∨2

[r0−kr]

∑
j=0

2E3
s1,s2,k, j,2

(S)t−rk− j +O(t−rε ).
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Here we defined E3
s1,s2,k, j,2

by the terms inside the parentheses in the upper line. Since
coss1nθ coss2nθ = (cos(s1 + s2)nθ + cos(s1 − s2)nθ )/2, it follows that

I3 =
M

∑
s1,s2=1

( M

∑
k=(s1+s2)∨2

[r0−kr]

∑
j=0

E3
s1,s2,k, j,2

(S)t−rk− j
)

cos(s1 + s2)nθ

+
M

∑
s1,s2=1

( M

∑
k=(s1+s2)∨2

[r0−kr]

∑
j=0

E3
s1,s2,k, j,2(S)t−rk− j

)
cos(s1 − s2)nθ +O(t−rε )

= I3,2 + I3,3 +O(t−rε ).

Here we defined I3,2 , I3,3 by the first and the second terms in the upper line, respec-
tively. Then E3

s1,s2,k, j,2
(S) belongs to F2(S) . By using the change of variable from

(s1,s2) to (s = s1 + s2,s2) for I3,2 , it follows

I3,2 =
M

∑
s=2

( M

∑
k=s∨2

[r0−kr]

∑
j=0

(
s−1

∑
s2=1

E3
s−s2,s2,k, j,2(S))t−rk− j

)
cossnθ +O(t−rε )

=
M

∑
s=1

( M

∑
k=s∨2

[r0−kr]

∑
j=0

E3,2
s,k, j,2(S)t−rk− j

)
cossnθ +O(t−rε ), (17)

where E3,2
s,k, j,2(S) = 0 if s = 1.

Next, divide I3,3 into three terms as follows:

I3,3 =
M

∑
1�s2<s1�M

(I3,1)cos(s1 − s2)nθ +
M

∑
1�s2=s1�M

I3,1

+
M

∑
1�s1<s2�M

(I3,1)cos(s1 − s2)nθ

= I3,3,1 + I3,3,2 + I3,3,3.

By using the change of variables from (s1,s2) to (s = s1 − s2,s2) for I3,3,1 and noting
1 � s2 � Ms if s1 + s2 � k � M , it follows

I3,3,1 =
M−2

∑
s=1

Ms

∑
s2=1

( M

∑
k=s+2s2

[r0−kr]

∑
j=0

E3
s+s2,s2,k, j,2(S)t−rk− j

)
cossnθ +O(t−rε ), (18)

where Ms = [(M− s)/2] . Since s+2s2 � s∨2, redefine E3
s+s2,s2,k, j,2

by E3
s+s2,s2,k, j,2

=
0 if s∨2 � k < s+2s2 . Then it follows

I3,3,1 =
M−2

∑
s=1

M

∑
k=s∨2

[r0−kr]

∑
j=0

( Ms

∑
s2=1

E3
s+s2,s2,k, j,2

(S)
)
t−rk− j cossnθ +O(t−rε )

=
M

∑
s=1

M

∑
k=s∨2

[r0−kr]

∑
j=0

E3,3,1
s+s2,s2,k, j,2

(S)t−rk− j cossnθ +O(t−rε ),
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where {
E3,3,1

s,k, j,2(S) = 0 if s = M−1, M

E3,3,1
s,k, j,2(S) = ∑Ms

s2=1 E3
s+s2,s2,k, j,2

(S) otherwise.

Hence it holds

I3,3,1 =
M

∑
s=1

M

∑
k=s∨2

[r0−kr]

∑
j=0

E3,3,1
s,k, j,2(S)t−rk− j cossnθ +O(t−rε ).

Redefine E3
s2,s2,k, j,2

in I3,3,2 by E3
s2,s2,k, j,2

= 0 if 2 � k < 2s2 . Then E3,3,2
0,k, j,2(S) ∈ F2(S)

such that

I3,3,2 =
M

∑
s2=1

M

∑
k=2s2

[r0−kr]

∑
j=0

2E3
s2,s2,k, j,2(S)t−rk− j

=
M

∑
k=2

[r0−kr]

∑
j=0

(
2

M

∑
s2=1

E3
s2,s2,k, j,2

(S)
)
t−rk− j

=
M

∑
k=2

[r0−kr]

∑
j=0

E3,3,2
0,k, j,2(S)t−rk− j.

The change of variables from (s1,s2) to (s2,s1) for I3,3,3 yields

I3,3,3 = ∑
1�s1<s2�M

( M

∑
k=s1+s2

[r0−kr]

∑
j=0

E3
s1,s2,k, j,2(S)t−rk− j

)
cos(s1− s2)nθ (19)

= ∑
1�s2<s1�M

( M

∑
k=s1+s2

[r0−kr]

∑
j=0

E3
s2,s1,k, j,2

(S)t−rk− j
)

cos(s1− s2)nθ .

By the same change of variables as (18) it follows

I3,3,3 =
M−2

∑
s=1

Ms

∑
s2=1

( M

∑
k=s+2s2

[r0−kr]

∑
j=0

(E3
s2,s+s2,k, j,2(S))t−rk− j

)
cossnθ +O(t−rε ).

Let E3
s2,s+s2,k, j,2

(S) = 0 if s∨2 � k < s+2s2 and s = M−1,M . By putting

E3,3,3
s,k, j,2(S) =

Ms

∑
s2=1

E3
s2,s+s2,k, j,2(S),

it holds

I3,3,3 =
M

∑
s=1

M

∑
k=s∨2

[r0−kr]

∑
j=0

E3,3,3
s,k, j,2(S)t−rk− j cossnθ +O(t−rε ).

Denote E0,k, j,2 and Es,k, j,2 (s = 1, . . . ,M) by{
E0,k, j,2 = E1

0,k, j,2 +E3,3,2
0,k, j,2

Es,k, j,2 = E2
s,k, j,2 +E3,2

s,k, j,2 +E3,3,1
s,k, j,2 +E3,3,3

s,k, j,2.
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Then it follows

I1 + I2 + I3 =
M

∑
k=2

[r0−kr]

∑
j=0

E0,k, j,2(S)t−rk− j

+
M

∑
s=1

( M

∑
k=s∨2

[r0−kr]

∑
j=0

Es,k, j,2(S)t−rk− j
)

cosnθ +O(t−rε ).

Moreover, it is trivial to Es,k, j,2 ∈ F2(S) for s = 0,1, . . . ,M . Therefore the assertion is
true for q = 2.

We skip the proof of the case q > 2 until the appendix since the idea is similar and
the calculation is rather long. �

In order to proceed the calculation smoothly, redefine Es,k, j,q(S) by⎧⎪⎨⎪⎩
E0,k, j,q(S) = 0 if 2 � k < q,

Es,k, j,q(S) = 0 if s∨2 � k < s∨q and s > 0,

Es,k, j,q(S) = same as in Lemma 4.1 otherwise.

The following lemma holds.

LEMMA 4.2. Let q be q � 2 . Then it holds

(
h0(t)+

M

∑
s=1

hs(t)cossnθ
)q

=
M

∑
k=2

[r0−kr]

∑
j=0

E0,k, j,q(S)t−rk− j

+
M

∑
s=1

M

∑
k=s∨2

[r0−kr]

∑
j=0

Es,k, j,q(S)t−rk− j cossnθ +O(t−rε ),

where Es,k, j,q(S) ∈ Fq(S) .

PROPOSITION 4.1. Let w(t,θ ) be w = h−1(t)+∑M
s=0 hs(t)cossnθ . Then,( N

∑
j=0

σ jt
− j
)(

(ω0 +w)p−ω p
0 − p|ω0|p−1w

)
=
( N

∑
j=0

σ jt
− j
)(

(ω0 +h−1)p−ω p
0 − p|ω0|p−1h−1

)
(20)

+
M

∑
k=2

[r0−kr]

∑
j=1

( j−1

∑
j1=0

c∗∗j− j1c0,k, j1

)
t−kr− j (21)

+
M

∑
s=1

M

∑
k=s

[r0−kr]

∑
j=1

( j−1

∑
j1=0

c∗∗j− j1cs,k, j1

)
t−kr− j cossnθ (22)

+
M

∑
k=2

[r0−kr]

∑
j=0

H0,k, j(S)t−kr− j (23)
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+
M

∑
s=1

( M

∑
k=s∨2

[r0−k]

∑
j=0

Hs,k, j(S)t−kr− j
)

cossnθ (24)

+O(t−rε ),

where H0,k, j(S) and Hs,k, j(S) are the linear combination of terms E0,k, j,q(S) and
Es,k, j,q(S) about q � 2 , respectively. Moreover, it follows that Hs,k, j(S) belong to⋃M

q=2 Fq(S) and {c∗∗j } are constants depending on {c−1, j} .

Proof. Denote F =
⋃M

q=2 Fq(S) for the simplicity. Remark that the coefficients
{c−1, j} of h−1(t) are given in Proposition 3.1.

First consider the case M > N . By the Taylor expansion it follows that

(ω0 +w)p−ω p
0 − p|ω0|p−1w =

M

∑
q=2

eqw(t,θ )q +O(t−rε ),

where eq are constants depending on q -th derivative at ω0 of (ω0 + w)p . Denote
Y (t,θ ) by Y (t,θ ) =∑M

s=0 hs(t)cossnθ . Then it follows that w(t,θ ) = h−1(t)+Y (t,θ ) .
The binomial expansion yields

(ω0 +w)p−ω p
0 − p|ω0|p−1w

=
M

∑
q=2

eqh−1(t)q +
M

∑
q=2

qeqh−1(t)q−1Y (t,θ )

+
M

∑
q=2

q

∑
q1=2

(
q
q1

)
eqh−1(t)q−q1Y (t,θ )q1 +O(t−rε )

= I1 + I2 + I3 +O(t−rε ). (25)

Since M � N and h−1(t)q = O(t−rε ) if q > N, it follows

M

∑
q=2

eqh−1(t)q =
N

∑
q=2

eqh−1(t)q +O(t−rε ).

From ∑M
q=2 eqh−1(t)q = (ω0 +h−1)p −ω p

0 − p|ω0|p−1h−1 +O(t−rε ) , it follows

I1 = (ω0 +h−1)p−ω p
0 − p|ω0|p−1h−1 +O(t−rε ).

Then (20) is equal to I1 .
Since hq−1

−1 (t) =∑N
j=q−1 c j,q−1t− j +O(t−rε ) from Proposition 3.1, there exist con-

stants {c∗j} such that

M

∑
q=2

qeqh−1(t)q−1 =
N

∑
j=1

c∗jt
− j +O(t−rε ).
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Therefore it holds

I2 =
( N

∑
j1=1

c∗j1t
− j1
)( M

∑
k=2

[r0−kr]

∑
j2=0

c0,k, j2t
−kr− j2

)
+
( N

∑
j1=1

c∗j1t
− j1
)( M

∑
s=1

( M

∑
k=s

[r0−kr]

∑
j2=0

cs,k, j2t
−kr− j2

)
cossnθ

)
+O(t−rε )

= I2,1 + I2,2 +O(t−rε ).

On the other hand it follows that( N

∑
j1=0

σ j1t
− j1
)( N

∑
j2=1

c∗j2t
− j2
)

=
N

∑
j=1

c∗∗j t− j +O(t−rε ).

By the change of variable of (14) it follows( N

∑
j1=0

σ jt
− j1
)
I2,1 =

M

∑
k=2

( N

∑
j1=1

[r0−kr]

∑
j2=0

c∗∗j1 c0,k, j2 t
−kr−( j2+ j1)

)
+O(t−rε )

=
M

∑
k=2

( [r0−kr]

∑
j=1

( j−1

∑
j2=0

c∗∗j− j2c0,k, j2

)
t−kr− j

)
+O(t−rε )

= I2,1,1 +O(t−rε ).

Hence I2,1,1 is equal to (21). By using the same method as I2,1 for I2,2 it follows( N

∑
j=0

σ jt
− j
)
I2,2

=
( N

∑
j1=0

c∗∗j1 t
− j1
)( M

∑
s=1

( M

∑
k=s

[r0−kr]

∑
j2=0

cs,k, j2 t
−kr− j2

)
cossnθ

)
+O(t−rε )

=
M

∑
s=1

M

∑
k=s

( N

∑
j=0

( [r0−kr]

∑
j2=0

c∗∗j− j2cs,k, j2

)
t−kr− j

)
cossnθ +O(t−rε )

= I2,1,2 +O(t−rε ).

Then I2,1,2 is equal to (22).
From hq−q1

−1 (t) = ∑N
j=q−q1

c∗∗j,q−q1
t− j , it follows( N

∑
k=0

σkt
−k
)
eqeq,q1h

q−q1
−1 (t) =

N

∑
j=q−q1

c∗q,q1, jt
− j +O(t−rε ),

where {c∗q,q1, j
} are constants depending on the coefficients σk and of h−1(t) . On the

other hand, Lemma 4.2 implies that

Yq1(t,θ ) =
M

∑
k=2

[r0−kr]

∑
j=0

E0,k, j,q1t
−kr− j
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+
M

∑
s=1

M

∑
k=s∨2

[r0−kr]

∑
j=0

Es,k, j,q1t
−kr− j cossnθ +O(t−tε )

=I3,1,q1 + I3,2,q1 +O(t−rε ).

Then I3 is represented as:( N

∑
j=0

σ jt
− j
)
I3 =

M

∑
q=2

q

∑
q1=2

( N

∑
j=0

c∗q,q1, jt
− j
)
(I3,1,q1 + I3,2,q1)+O(t−rε ). (26)

Thus, it holds

M

∑
q=2

q

∑
q1=0

( N

∑
j=0

c∗q,q1, jt
− j
)
I3,1,q1

=
M

∑
q=2

q

∑
q1=2

N

∑
j1=0

M

∑
k=2

[r0−kr]

∑
j2=0

c∗q,q1, j1E0,k, j2,q1t
−kr− j1− j2 +O(t−rε )

= I3,1 +O(t−rε ).

By using the change variables from ( j1, j2) to ( j = j1 + j2, j2) ,( N

∑
j=0

σ jt
− j
)
I3,1 =

M

∑
q=2

q

∑
q1=2

M

∑
k=2

[r0−kr]

∑
j=0

j−1

∑
j2=0

c∗q,q1, j− j2E0,k, j2,q1t
−kr− j +O(t−rε )

=
M

∑
k=2

[r0−kr]

∑
j=0

( M

∑
q=2

q

∑
q1=2

j−1

∑
j2=0

c∗q,q1, j− j2E0,k, j2,q1

)
t−kr− j +O(t−rε ).

Define H0,k, j by

H0,k, j =
M

∑
q=2

q

∑
q1=1

j−1

∑
j2=0

c∗q,q1, j− j2E0,k, j2,q1 .

Since {E0,k, j3, j1} ⊂ F , we see {H0,k, j} ⊂ F . Moreover it holds

( N

∑
j=0

σ jt
− j
)
I3,1 =

M

∑
k=2

[r0−kr]

∑
j=0

H0,k, jt
−kr− j +O(t−rε ).

This implies (23). By using the similar method of I3,1,q1 for I3,2,q1 and putting

Hs,k, j =
M

∑
q=2

q

∑
q1=2

j−1

∑
j2=0

c∗q,q1, j− j2Es,k, j2,q1 ,

it follows that there exist Hs,k, j ∈ F satisfying

I3,2 =
M

∑
s=1

( M

∑
k=s∨2

[r0−kr]

∑
j=0

Hs,k, jt
−kr− j

)
cossnθ +O(t−rε ).
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This yields (24).
Let M < N . In this case (25) holds if we replace M by N . The term I1 is trivial.

We have r > 1 since M < N . Then we can replace N in I2 and I3 by M since kr +
[r0 − kr]+ r > rε . The terms I1 and I2 can be treated by the same argument. For I3 ,
note that (26) holds by replacing q by qM = q∧M . Then we can argue as the previous
case. Hence we complete the proof. �

LEMMA 4.3. Let w(t,θ ) = h−1(t)+∑M
s=0 hs(t)cossnθ . Then

N

∑
j1=1

σ j1 p|ω0|p−1t− j1w(t,θ )

=
N

∑
j1=1

σ j1 p|ω0|p−1t− j1h−1(t)+
M

∑
k=2

[r0−kr]

∑
j=1

( j−1

∑
j2=0

σ j− j2 p|ω0|p−1c0,k, j2

)
t−kr− j

+
M

∑
s=1

M

∑
k=s

[r0−kr]

∑
j=1

( j−1

∑
j2=0

σ j− j2 p|ω0|p−1cs,k, j2

)
t−kr− j cossnθ +O(t−rε ).

Proof. Let Ii (i = 1,2,3) be defined by

N

∑
j1=1

σ j1 p|ω0|p−1t− j1w(t,θ )

=
N

∑
j1=1

σ j1 p|ω0|p−1t− j1h−1(t)+
N

∑
j1=1

σ j1 p|ω0|p−1t− j1h0(t)

+
( N

∑
j1=1

σ j1 p|ω0|p−1t− j1
)( M

∑
s=1

hs(t)cossnθ
)

+O(t−rε )

= I1 + I2 + I3 +O(t−rε ).

The change of variables of (14) and the definition of h0(t) imply that

I2 =
M

∑
k=2

[r0−kr]

∑
j=1

( j−1

∑
j2=0

σ j− j2 p|ω0|p−1c0,k, j2

)
t−kr− j.

By the change of variables of (14) and the interchange of the order of summation in I3 ,
it follows

I3 =
M

∑
s=1

M

∑
k=s

[r0−kr]

∑
j=1

( j−1

∑
j2=0

σ j− j2 p|ω0|p−1cs,k, j2

)
t−kr− j cossnθ .

Then the proof is complete. �
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LEMMA 4.4. Let h0(t), hs(t) be the polynomials in (12) . Then it follows that

( ∂ 2

∂ t2
+

2α+1
t

∂
∂ t

+
α2− p|ω0|p−1

t2
+

1
t2

∂ 2

∂θ 2

)( M

∑
s=0

hs(t)cossnθ
)

=
1
t2

M

∑
k=2

[r0−kr]

∑
j=0

(
(α− kr− j)2 − p|ω0|p−1)c0,k, jt

−kr− j

+
1
t2

M

∑
s=1

M

∑
k=s

[r0−kr]

∑
j=0

(
(α− kr− j)2 − p|ω0|p−1− s2n2)cs,k, jt

−kr− j cossnθ .

Proof. Since the proof is a combination of above lemmas, we omit the detail. �

LEMMA 4.5. Suppose kr+ j < r0 with k � 1 , j � 0 . Then it holds

(α− kr− j)2 − p|ω0|p−1− s2n2 �= 0

except (s,k, j) = (1,1,0) . Moreover it follows (α− kr− j)2− p|ω0|p−1 �= 0 .

Proof. We argue by contradiction. Let (α − kr− j)2 = p|ω0|p−1 + s2n2 , where
k � 1, j � 0. Then from 0 < α− r0 < α− kr− j � α− r , it follows

0 � (α− kr− j)2− (α− r)2 = (s2 −1)n2.

If s � 2, then a contradiction occurs. In the case s = 1 except (1,1,0) , we get a
contradiction 0 > (α − kr− j)2 − (α − r)2 = 0 by α − kr− j < α − r . The above
inequalities are mutually contradicted except (s,k, j) = (1,1,0) . Then (α− kr− j)2 �=
p|ω0|p−1+s2n2 except (s,k, j) = (1,1,0) . Since α−kr− j >α−(α−√p|ω0|p−1

)
=√

p|ω0|p−1 , it follows (α− kr− j)2− p|ω0|p−1 > 0. The proof is complete. �

Let w(t,θ ) = h−1(t) +∑M
s=0 hs(t)cossnθ . Substitute w into (4). By applying

Propositions 3.1, 4.1 and Lemma 4.3, it holds

L̃ w(t,θ )

= −
(
∂ 2

∂ t2
+

2α +1
t

∂
∂ t

+
α2 − p|ω0|p−1

t2
+

1
t2

∂ 2

∂θ 2

) M

∑
s=0

hs(t)cossnθ (27)

+
1
t2

M

∑
k=2

[r0−kr]

∑
j=1

( j−1

∑
j1=0

c∗∗j− j1c0,k, j1

)
t−kr− j (28)

+
1
t2

M

∑
s=1

M

∑
k=s

[r0−kr]

∑
j=1

( j−1

∑
j1=0

c∗∗j− j1cs,k, j1

)
t−kr− j cossnθ (29)

+
1
t2

M

∑
k=2

[r0−kr]

∑
j=0

H0,k, j(S)t−kr− j (30)
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+
1
t2

M

∑
s=1

( M

∑
k=s∨2

[r0−kr]

∑
j=0

Hs,k, j(S)t−kr− j
)

cossnθ (31)

+
1
t2

M

∑
k=2

[r0−kr]

∑
j=1

( j−1

∑
j1=0

σ j− j1 p|ω0|p−1c0,k, j1

)
t−kr− j (32)

+
1
t2

M

∑
s=1

M

∑
k=s

[r0−kr]

∑
j=1

( j−1

∑
j1=0

σ j− j1 p|ω0|p−1cs,k, j1

)
t−kr− j cossnθ (33)

+O(t−rε−2)

= I(27) + I(28) + I(29) + I(30) + I(31) + I(32) + I(33) +O(t−rε−2).

We treat each of I(27) – I(33) separately. Lemma 4.4 yields that

I(27) =
1
t2

M

∑
k=2

[r0−kr]

∑
j=0

(
p|ω0|p−1− (α− kr− j)2)c0,k, jt

−kr− j (34)

+
1
t2

M

∑
s=1

M

∑
k=s

[r0−kr]

∑
j=0

(
p|ω0|p−1 + s2n2− (α− kr− j)2)cs,k, jt

−kr− j cossnθ . (35)

Define ∑−1
j=0{· · ·} = 0 in this section for the convenience.

From (28), (30), (32), and (34), define the system of equations {D0,k, j(S)} of the
coefficients of t−kr− j such that

D0,k, j(S) =− ((α− kr− j)2− p|ω0|p−1)c0,k, j

+
j−1

∑
j1=0

(c∗∗j− j1 +σ j− j1 p|ω0|p−1)c0,k, j1 +H0,k, j(S), (36)

where k = 2,3, . . . ,M and j = 0, . . . , [r0 − kr] . Next, let s , k , j be s � 1,k � s , j � 0
except (s,k, j) = (1,1,0) . As the same method as (36) define the system of equations
{Ds,k, j(S)} of the coefficients of t−kr− j cossnθ satisfying

Ds,k, j(S) =− ((α− kr− j)2− p|ω0|p−1− s2n2)cs,k, j

+
j−1

∑
j1=0

(
c∗∗j− j1 +σ j− j1 p|ω0|p−1)cs,k, j1 +Hs,k, j(S) (37)

from (29), (31), (33), and (35). Denote

D1,1,0(S) = −((α− r)2− p|ω0|p−1−n2)c1,1,0.

There exists the term t−r cosnθ in (27). However, this term does not appear in (28)-
(33). Then it follows

D1,1,0(S) = 0. (38)

Since (α − r)2 − p|ω0|p−1 − n2 = 0 by the definition of r , the equality (38) holds for
any c1,1,0 ∈ R .
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Define a set W (Int) with the order relation by

W (Int) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩(s,k, j) :

s, k, j are integers,

1 � s � M, s � k � M, 0 � j � [r0 − kr],
or

s = 0, 2 � k � M, 0 � j � [r0 − kr],

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where the order relation ≺ is defined by⎧⎪⎪⎪⎨⎪⎪⎪⎩

(s1,k1, j1) ≺ (0,k2, j2) if 1 � s1,

(s1,k1, j1) ≺ (s2,k2, j2) if 1 � s1 < s2,

(s1,k1, j1) ≺ (s1,k2, j2) if k1 < k2,

(s1,k1, j1) ≺ (s1,k1, j2) if j1 < j2.

Note that this order relation is the dictionary order except for the case (s1,k1, j1) ≺
(0,k2, j2) . Then S = {cs,k, j; (s,k, j) ∈W (Int)} . Consider the recursive system of equa-
tions such that

Ds,k, j(S) = 0, (s,k, j) ∈W (Int), (39)

where the order of equations follows the order in W (Int) . Note that by the order in
W (Int) , the terms of degree one of cs, j,k in (36), (37) appear in the lower triangle part
in the coefficient of (39). By finding all elements in S satisfying (39) and constructing
hs (s = 0, . . . ,M) by elements in S, it follows that w(t,θ ) = h−1(t)+∑M

s=0 hs(t)cossnθ
satisfies (4).

Since (38) is the identity, we may consider the following recursive system of equa-
tions without (38);

Ds,k, j(S) = 0 for any (s,k, j) ∈W (Int)\{(1,1,0)} . (40)

For the simplicity denote W1(Int) = W (Int)\{(1,1,0)} and S1 = S\{c1,1,0} .

LEMMA 4.6. Let 0=(0,0, . . . ,0) . Then 0 ∈ S and

Ds,k, j(0) = 0 for any (s,k, j) ∈W1(Int) .

Proof. 0 ∈ S is obvious. From Hs,k, j ⊂ F it follows Hs,k, j(0) = 0. Then (36) and
(37) yield the assertion. �

LEMMA 4.7. Let (s1,k1, j1) ∈W1(Int) and cs2,k2, j2 ∈ S1 . Then it follows

∂Hs1,k1, j1

∂cs2,k2, j2
(0) = 0.

Proof. Since Hs1,k1, j1 ∈ F ,
∂Hs1,k1, j1

∂cs2,k2, j2
(S) are polynomials which does not contain

0-th degree terms in variables S. Then the proof is complete. �
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LEMMA 4.8. Let (s1,k1, j1), (s2,k2, j2)∈W1(Int) satisfy (s1,k1, j1)≺ (s2,k2, j2) .
Then

∂Ds1,k1, j1

∂cs2,k2, j2
(0) = 0.

Moreover for any (s1,k1, j1) ∈W1(Int) it holds

∂Ds1,k1, j1

∂cs1,k1, j1
(0) = −((α− k1r− j1)2 − p|ω0|p−1− s2

1n
2) .

Proof. From Lemma 4.7, (36) and (37) imply

∂Ds1,k1, j1

∂cs2,k2, j2
(0) = −((α− k1r− j1)2 − p|ω0|p−1− s2

1n
2) ∂cs1,k1, j1

∂cs2,k2, j2
(41)

+
j1−1

∑
q=0

(c∗j1−q +σ j1−qp|ω0|p−1)
∂cs1,k1,q

∂cs2,k2, j2
. (42)

= I(41) + I(42).

The term I(41) is zero if (s1,k1, j1) �= (s2,k2, j2) . If (s1,k1, j1) = (s2,k2, j2) it follows
that

I(41) = −((α− k1r− j1)2− p|ω0|p−1− s2
1n

2) .
Also I(42) is zero if (s1,k1,q) �= (s2,k2, j2) . Suppose (s1,k1,q) = (s2,k2, j2) . Since
q � j1 − 1, it follows (s1,k1,q) ≺ (s1,k1, j1) . Then (s2,k2, j2) ≺ (s1,k1, j1) . This is
a contradiction. Hence (s1,k1,q) �= (s2,k2, j2) . Therefore, I(42) is zero. The proof is
complete. �

LEMMA 4.9. Let (s1,k1, j1) and cs2,k2, j2 be (s1,k1, j1) ∈W1(Int) and cs2,k2, j2 ∈
S1 , respectively. Then the determinant of the Jacobian matrix(

∂ (Ds1,k1, j1)
∂ (cs2,k2, j2)

(0)
)

is not zero.

Proof. From Lemma 4.8, the Jacobian matrix is a lower triangular matrix. Then(
∂ (Ds1,k1, j1)
∂ (cs2,k2, j2)

(0)
)

= ∏
(s1,k1, j1)∈W1(Int)

(
p|ω0|p−1 + s2

1n
2− (α− k1r− j1)2) .

Hence Lemma 4.5 yields that the determinant is not zero. �

LEMMA 4.10. Consider the recursive system of equations

{Ds,k, j(S) = 0; (s,k, j) ∈W1(Int)},
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then there exist a positive constant δ > 0 and functions

{φs1,k1, j1 ∈C1([−δ ,δ ]); (s1,k1, j1) ∈W1(Int)}

which satisfy the following properties:⎧⎪⎪⎪⎨⎪⎪⎪⎩
|c1,1,0| � δ ,

cs1,k1, j1 = φs1,k1, j1(c1,1,0) ∈ S1 for any (s1,k1, j1) ∈W1(Int),
Ds,k, j(c1,1,0,φ1,1,1(c1,1,0), . . . ,φs1,k1, j1(c1,1,0), . . .) = 0,

f or any (s,k, j) ∈W1(Int).

(43)

Proof. From Lemmas 4.6 and 4.9, the implicit function theorem implies the asser-
tion. �

We construct a function w(t,θ ) satisfying (4). Let cs1,k1, j1 be constants satisfying
(43) in Lemma 4.10. Define functions {hs(t)}s=0,...,M and w(t,θ ) by

h0(t) =
M

∑
k=2

[r0−kr]

∑
j=0

c0,k, jt
−kr− j,

hs(t) =
M

∑
k=s

[r0−kr]

∑
j=0

cs,k, jt
−kr− j

and

w(t,θ ) = h−1(t)+
M

∑
s=0

hs(t)cossnθ .

By combining (27)-(33), (36)-(39) and Lemma 4.10, it follows that { the left hand side
of (4)} = O(t−rε−2) . Thus, the following proposition holds.

PROPOSITION 4.2. It holds L̃ w(t,θ ) = O(t−rε−2) for t → ∞ .

5. Super- and sub-solutions

In this section we show the existence of the super- and sub-solution of (1). Let D
be a large positive number and t be also sufficiently large. Denote u+(t,θ ) by

u+(t,θ ) = tα
(
(ω0 +w(t,θ ))+Dt−rε

)
.

Then,

g(t)−1t−αL u+(t,θ ) = L̃ (w(t,θ )+Dt−rε )

= L̃ w(t,θ )
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+Dt−rε−2
(

2ε
√

p|ω0|p−1− ε2
)

+
( N

∑
i=0

σit
−i
)
t−2

× ((ω0 +w(t,θ )+Dt−rε )p− (ω0 +w(t,θ ))p− p|ω0|p−1Dt−rε
)

+
( N

∑
i=1

σi p|ω0|p−1t−i
)
Dt−rε−2

= V1 +V2 +V3 +V4

If ε > 0 is sufficiently small, then it follows

V2 � ε
√

p|ω0|p−1Dt−rε−2. (44)

Proposition 4.2 implies that there exist large numbers T2,1 and M1 such that

V1 � −M1t
−rε−2

for any t � T2,1 . Let D be a large number satisfying

ε
√

p|ω0|p−1D > 4M1.

Then it follows that

|V1| � ε
√

p|ω0|p−1

4
Dt−rε−2. (45)

On the other hand the Taylor expansion yields

|V3| � C(|w|+Dt−rε )Dt−rε−2

for some constant C > 0. From |w(t,θ )| � C1(t−1 + t−r + t−rε ) , it follows that

|w+Dt−rε | � C2(t−1 + t−r) for any t � T2,2 ,

where C2 is a constant independent of t . Then there exists T2,3 � T2,2 satisfying

|V3| � ε
√

p|ω0|p−1

4
Dt−rε−2 (46)

for t � T2,3 . Also there exists T2,4 such that

|V4| � ε
√

p|ω0|p−1

4
Dt−rε−2 for any t � T2,4. (47)

Let T2 = max(T2,1,T2,3,T2,4) . The inequalities (44), (45), (46) and (47) yield

V1 +V2 +V3 +V4 � ε
√

p|ω0|p−1

4
Dt−rε−2 for any t > T2 .

Then it follows L u+(t,θ ) � 0 for any t > T2 . Thus, u+(t,θ ) is the super-solution
of (1). Let u−(t,θ ) be u−(t,θ ) = tα(ω0 +w(t,θ )−Dt−rε ) . If the similar method of
the proof of the existence of the super-solution is used, it is shown that the function
u−(t,θ ) is the sub-solution of (1) for any t > T2 . �
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6. Proof of the main theorem

In this section we complete the proof of the theorem by applying the similar
method of section 4 in [4]. If we construct super- and sub-solution of (1), the exis-
tence of the non-radially symmetric solution of (1) is proved by using the following
proposition due to E. S. Noussair and C. A. Swanson [7].

PROPOSITION 6.1. Let ũ+ , ũ− be super- and sub-solution of (1) such that

ũ+(t,θ ) � ũ−(t,θ ) and ũ± ∈C2(R2\BT0)∩C(R2\BT0) .

Then there exists a solution u(t,θ ) ∈C2(R2\BT0)∩C(R2\BT0) of (1) satisfying

ũ+(t,θ ) � u(t,θ ) � ũ−(t,θ ). (48)

We construct the super- and sub-solutions ũ±(t,θ ) ∈ C2(R2\BT0)∩C(R2\BT0) satis-
fying ũ+(T0,θ ) = ũ−(T0,θ ) . By the thory of viscosity solutions (see [1], [2]) there
exists a continuous viscosity solution in R

2\BT0 . We can get the regurarity for this
solution in any compact interval of t by the thoery of semilinear elliptic equations (see
[3]). As mentioned in the Remark 2.3, the proof of the Theorem 2.1 is completed by
these construction. Let u±(t,θ ) be the super- and sub-solution, respectively, which are
constructed in section 5. Then,

lim
t→∞

u+(t,θ )− tα(ω0 +h−1(t))

t
√

p|ω0|p−1+n2

= lim
t→∞

u−(t,θ )− tα(ω0 +h−1(t))

t
√

p|ω0|p−1+n2
= c1,1,0 cosnθ . (49)

Let y± be solutions of (1) satisfying lim
t→∞

y±(t)
tα

= ω± , respectively (See [6]). Define

ũ±(t,θ ) by

ũ±(t,θ ) = c2(t)u±(t,θ )+ c1(t)y±(t)±A log
t
T0

.

Here c1 , c2 ∈C2([T0,∞)) are functions satisfying

c1(t) =

{
1 for T0 < t < T1,

0 for T1 +1 < t,
c2(t) =

{
0 for T0 < t < T2,

1 for T2 +1 < t,

and A is a positive number.
By applying the similar method in section 4 in [4], ũ±(t,θ ) become the super-

and sub-solutions, respectively. By noting (48) and (49), we obtain the existence of the
solution u(t,θ ) satisfying

lim
t→∞

u(t,θ )− tα(ω0 +h−1(t))

t
√

p|ω0|p−1+n2
= c1,1,0 cosnθ .
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Remark that by the same method in section 5, y±(t) = tα{(ω0 + h1(t))±Dt−rε} be-
come super- and sub-solution, respectively. Hence there exists a radially symmetric
solution y(t) of (1) satisfying y(t)− tα(ω0 + h1(t)) = O(t−rε ) . Let y1(t) and y2(t)
be solutions of the equation (1) satisfying y1(t) > y2(t) . Define wi(t) by yi(t) =
tα(ω0 +wi(t)) for i = 1,2. Then it follows that there exists a sufficiently large num-
ber t1 such that 2max(|w1(t)|, |w2(t)|) < ε for any t > t1 , where ε is a small positive
number. Since it holds

t�

g(t)
p|ω0 + τw1(t)+ (1− τ)w2(t)|p−1 � (p|ω0|p−1 + ε),

for some 0 < τ < 1 which depends on the Taylor expansion of y1(t)p − y2(t)p , it fol-
lows

y1(t)− y2(t) � y1(t1)− y2(t1)+ t1
d(y1− y2)

dt
(t1) log

t
t1

+(p|ω0|p−1 + ε)
∫ t

t1

1
s

∫ s

t1

1
ξ

(y1(ξ )− y2(ξ ))dξ .

Let Z(t) be a solution satisfying:

d2Z
dt2

(t)+
1
t

dZ
dt

(t) =
p|w0|p−1 + ε

t2
Z(t),

dZ
dt

(t1) =
d(y1 − y2)

dt
(t1),

Z(t1) = (y1− y2)(t1).

Then (y1 − y2)(t) � Z(t) for any t � t1 . Therefore,

(y1− y2)(t) � Ct
√

p|ω0|p−1+ε .

Hence,

lim
t→∞

y1(t)− y2(t)

t
√

p|w0|p−1+n2
= 0,

where y(t) is any radially symmetric solution of (1). By putting un(t,θ ) = u(t,θ ) , the
proof of the theorem is complete. �

REMARK 6.1. We proceed the proof of the theorem without (H-3). Assume that
there exist k , j � 0 satisfying krn + j = r0 .

Define h−1(t) , h0(t) and hs(t) in (6), (12) by

h−1(t) =
N−1

∑
j=1

c−1, jt
− j + c−1,Nt−N logt

h0(t) = ∑
2�k�M, 0� j�[r0−kr], (k, j) �∈J0

c0,k, jt
−kr− j + ∑

(k, j)∈J0

c0,k, jt
−kr− j logt,
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hs(t) = ∑
1�k�M, s� j�[r0−kr], (k, j) �∈J0

cs,k, jt
−kr− j + ∑

(k, j)∈J0

cs,k, jt
−kr− j log t,

where J0 = {(k, j); 1 � k, j = r0− kr} . Then we can construct w(t,θ ) by using these
functions. It follows that

−
(
∂ 2

∂ t2
+

2α+1
t

∂
∂ t

+
α2 − p|ω0|p−1

t2
∂ 2

∂θ 2

)
t−r0 logt

= −(2(α− r0)+α2− p|ω0|p−1)t−r0−2.

Note that the coefficient of the right hand side is not 0. Next, by using the estimate
t−r0 log t(t−r + t−1 + t−r0) = O(t−rε ) , we can take in all terms that contain t−r0 log t in
the expression

1
t2

( N

∑
i=0

σit
−i
)
{(ω0 +w)p−ω p

0 − p|ω0|p−1}

+
1
t2

N

∑
i=1

(σi p|ω0|p−1w)+
1
t2

N

∑
i=1

(σiω p
0 − fi)t−i,

into the order term O(t−rε ) . Therefore

L̃ w(t,θ ) = I(27) + I(28) + · · ·+ I(33) +O(t−rε )

without the assumption (H-3). This completes the proof.

REMARK 6.2. We can replace the assumption (H-2) by the following:{
f (t) = tα p(1+O((t−α logt)p)),

g(t) = t�(1+O((t−α log t)p)).

In this case, we assume assumption (H-1). By combining the result of [4], theorem 2.1
and remark 6.1, we obtain that there exist 2m kinds of sets of non-radially symmetric
solutions of (1).

7. Appendix

We continue the proof of Lemma 4.1.
Suppose that our assertion is true in case of q � 2. By using the similar method

of the proof of q = 2 we show our assertion for q+ 1. Let G(q) be G(q) = (h0(t)+
∑M

s=1 hs(t)cossnθ )q . By applying the assumption of the induction to G(q) and noting
G(1) = h0(t)+∑M

s=1 hs(t)cossnθ it holds

G(q+1) = G(1)G(q)

= h0(t)
( M

∑
k2=q

[r0−k2r]

∑
j2=0

E0,k2, j2,q(S)t−k2r− j2
)
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+h0(t)
( M

∑
s2=1

M

∑
k2=s2∨q

[r0−k2r]

∑
j2=0

Es2,k2, j2,q(S)t−k2r− j2 coss2nθ
)

+
( M

∑
s1=1

hs1(t)coss1nθ
)( M

∑
k2=q

[r0−kr]

∑
j2=0

E0,k2, j2,q(S)t−k2r− j2
)

+
( M

∑
s1=1

hs1(t)coss1nθ
)( M

∑
s2=1

M

∑
k2=s2∨q

[r0−k2r]

∑
j2=0

Es2,k2, j2,q(S)

× t−k2r− j2 coss2nθ
)

+O(t−rε )

= Iq,1 + Iq,2 + Iq,3 + Iq,4 +O(t−rε ).

By replacing c0,k2, j2 in (13) by E0,k2, j2,q(S) in Iq,1 and using the similar change of
variables of (14) for Iq,1 , it follows

Iq,1 =
M

∑
k=2+q

[r0−kr]

∑
j=0

( k−2

∑
k2=q

j

∑
j2=0

c0,k−k2, j− j2E0,k2, j2,q(S)
)
t−rk− j +O(t−rε )

=
M

∑
k=q+1

[r0−kr]

∑
j=0

E1
0,k, j,q+1(S)t−rk− j +O(t−rε ). (50)

Here E1
0,k, j,q+1(S) are denoted by

E1
0,k, j,q+1(S) =

⎧⎪⎨⎪⎩
k−2

∑
k2=q

j

∑
j2=0

c0,k−k2, j− j2E0,k2, j2,q(S) if k � q+2

0 if k = q+1.

Thus E1
0,k, j,q+1(S) belong to Fq+1(S) from c0,k−k2, j− j2Fq(S) ⊂ Fq+1(S) .

By regarding 2cs,k2, j2 in (15) as Es1,k2, j2,q(S) in Iq,2 , by the similar method for I2 ,
there exists E2

s,k, j,q+1(S) ∈ Fq+1(S) satisfying

Iq,2

=
M

∑
k1=2

[r0−k1r]

∑
j1=0

M

∑
s2=1

M

∑
k2=s2∨q

[r0−k2r]

∑
j2=0

c0,k1, j1Es2,k2, j2,q(S)t−(k1+k2)r−( j1+ j2) coss2nθ

+O(t−rε )

=
M

∑
s=1

M

∑
k=2+s∨q

[r0−k1r]

∑
j=0

( k−2

∑
k2=s∨q

j

∑
j2=0

c0,k−k2, j− j2Es,k2, j2,q(S)
)
t−kr− j cossnθ

+O(t−rε ).

Note that 2+ s∨q = (q+2)∨ (s+2) > (q+1)∨ s . By setting

E2
s,k, j,q+1(S) =

⎧⎪⎨⎪⎩
k−2

∑
k2=q

j

∑
j2=0

c0,k−k2, j− j2Es,k2, j2,q(S) if k � s∨q+2,

0 if s∨ (q+1) � k < s∨q+2,
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E2
s,k, j,q+1 satisfies

Iq,2 =
M

∑
s=1

M

∑
k=s∨(q+1)

[r0−k1r]

∑
j=0

E2
s,k, j,q+1(S)t−kr− j cossnθ +O(t−rε ), (51)

where E2
s,k, j,q+1 ∈ Fq+1(S) .

By using the similar method for Iq,2 to Iq,3 , it holds

Iq,3

=
M

∑
s1=1

M

∑
k1=s1

[r0−k1r]

∑
j1=0

M

∑
k2=q

[r0−k2r]

∑
j2=0

cs1,k1, j1E0,k2, j2,q(S)t−(k1+k2)r−( j1+ j2) coss1nθ

+O(t−rε )

=
M

∑
s=1

M

∑
k=s+q

[r0−k1r]

∑
j=0

( k−s

∑
k2=q

j

∑
j2=0

cs,k−k2, j− j2E0,k2, j2,q(S)
)
t−kr− j cossnθ

+O(t−rε ).

Since s+q � s∨(q+1) from s � 1, we can find E3
s,k, j,q+1(S)∈Fq+1(S) satisfying

Iq,3 =
M

∑
s=1

M

∑
k=(q+1)∨s

[r0−kr]

∑
j=0

E3
s,k, j,q+1(S)t−kr− j cossnθ +O(t−rε ), (52)

where E3
s,k, j,q+1(S) = 0 if s∨ (q+ 1) � k < s+ q . Moreover, it holds E3

s,k, j,q+1(S) ∈
Fq+1(S) .

By replacing cs2,k2, j2 in (16) by Es2,k2, j2,q in Iq,4 , it follows

Iq,4 =
M

∑
s1=1

M

∑
s2=1

(Iq,4,1)coss1nθ coss2nθ ,

where

Iq,4,1 =
M

∑
k1=s1

[r0−k1r]

∑
j1=0

M

∑
k2=s2∨q

[r0−k2r]

∑
j2=0

cs1,k1, j1Es2,k2, j2,qt
−r(k1+k2)−( j1+ j2).

By the change of variables of (14) we can find E4
s1∨s2,k, j,q+1 satisfying

Iq,4,1

=
M

∑
k=s1+s2∨q

[r0−kr]

∑
j=0

( k−s1

∑
k2=q

j

∑
j2=0

cs1,k1, j1Es2,k2, j2,q(S)
)
t−r(k1+k2)−( j1+ j2) +O(t−rε )

=
M

∑
k=s1+s2∨q

[r0−kr]

∑
j=0

2E4
s1,s2,k, j,q+1(S)t−rk− j +O(t−rε ).
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Then it follows that E4
s1,s2,k, j,q+1(S) belong to Fq+1(S) .

Let V0 = {(s1,s2); 1 � s1 � M, 1 � s2 � M and s1 + s2 � M.}
From (s1,s2)∈V0 it follows s1+s2∨q � (s1+s2)∨(q+1) . Set E4

s1,s2,k, j,q+1(S)=
0 for (s1 + s2)∨ (q+1) � k < s1 + s2∨q . Then Iq,4 is rewritten as:

Iq,4 =∑
V0

M

∑
k=(s1+s2)∨(q+1)

[r0−kr]

∑
j=0

E4
s1,s2,k, j,q+1(S)t−rk− j cos(s1 + s2)nθ (53)

+∑
V0

M

∑
k=(s1+s2)∨(q+1)

[r0−kr]

∑
j=0

E4
s1,s2,k, j,q+1(S)t−rk− j cos(s1− s2)nθ +O(t−rε )

= Iq,4,2 + Iq,4,3 +O(t−rε ).

By using the same change of variables as (17) we can find E4,2
s,k, j,q+1(S) satisfying

Iq,4,2 =
M

∑
s=2

( M

∑
k=s∨(q+1)

[r0−kr]

∑
j=0

( s−1

∑
s2=1

E4
s−s2,s2,k, j,q+1(S)

)
t−rk− j

)
cossnθ +O(t−rε )

=
M

∑
s=1

( M

∑
k=s∨(q+1)

[r0−kr]

∑
j=0

E4,2
s,k, j,q+1(S)t−rk− j

)
cossnθ +O(t−rε ), (54)

where E4,2
s,k, j,q+1(S) = 0 if s = 1. Here, we see that E4,2

s,k, j,q+1(S) belong to Fq+1(S)
since E4

s1,s2,k, j,q+1(S) ∈ Fq+1(S) .
In order to study Iq,4,3 , redefine

E4
s1,s2,k, j,q+1(S) = 0 if |s1 − s2| ∨ (q+1) � k < (s1 + s2)∨ (q+1)

and divide the set V0 as follows:

V0 = {(s1,s2); s1 − s2 > 0, s2 � 1, s1 + s2 � M}
∪{(s1,s2); s1 − s2 = 0, s2 � 1, s1 + s2 � M}
∪{(s1,s2); s1 − s2 < 0, s1 � 1, s1 + s2 � M}

= V1∪V2∪V3.

Then Iq,4,3 is rewritten as

Iq,4,3 (55)

=
3

∑
i=1
∑
Vi

( M

∑
k=|s1−s2|∨(q+1)

[r0−kr]

∑
j=0

E4
s1,s2,k, j,q+1(S)t−rk− j

)
cos(s1 − s2)nθ

+O(t−rε )

= Iq,4,3,1 + Iq,4,3,2 + Iq,4,3,3 +O(t−rε ).
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By the change of variables of (17) there exists E4,3,1
s,k, j,q+1(S) ∈ Fq+1(S) satisfying

Iq,4,3,1 =
M−2

∑
s=1

Ms

∑
s2=1

( M

∑
k=s∨(q+1)

[r0−kr]

∑
j=0

E4
s+2s2,s2,k, j,q+1(S)t−rk− j

)
cossnθ

=
M−2

∑
s=1

M

∑
k=s∨(q+1)

[r0−kr]

∑
j=0

( Ms

∑
s2=1

E4
s+2s2,s2,k, j,q+1(S)

)
t−rk− j cossnθ

=
M

∑
s=1

M

∑
k=s∨(q+1)

[r0−kr]

∑
j=0

E4,3,1
s,k, j,q+1(S)t−rk− j cossnθ , (56)

where ⎧⎪⎨⎪⎩E4,3,1
s,k, j,q+1(S) =

Ms

∑
s2=q

E4
s+2s2,s2,k, j,q+1(S) if 1 � s � M−2

E4,3,1
s,k, j,q+1(S) = 0 if s > M−2.

For Iq,4,3,2 , let E4
2s2,s2,k, j,q+1 = 0 if q+ 1 � k < 2s2 ∨ (q+ 1) . Then there exists

E4,3,2
0,k, j,q+1(S) ∈ Fq+1(S) satisfying

Iq,4,3,2 =
M0

∑
s2=1

( M

∑
k=q+1

[r0−kr]

∑
j=0

E4
2s2,s2,k, j,q+1(S)t−rk− j

)
=

M

∑
k=q+1

[r0−kr]

∑
j=0

( M0

∑
s2=1

E4
2s2,s2,k, j,q+1(S)

)
t−rk− j

=
M

∑
k=q+1

[r0−kr]

∑
j=0

E4,3,2
0,k, j,q+1(S)t−rk− j, (57)

where M0 = [M/2] .
Next consider Iq,4,3,3 . By the change of variables of (17) from (s1,s2) to (s2,s1) ,

it follows

Iq,4,3,3 =
M−2

∑
s=1

Ms

∑
s2=1

( M

∑
k=s∨(q+1)

[r0−kr]

∑
j=0

E4
s2,s+2s2,k, j,q+1(S)t−rk− j

)
cossnθ .

By using the similar method as (54) it follows that there exists E4,3,3
s,k, j,q+1(S) satisfying

Iq,4,3,3 =
M

∑
s=1

M

∑
k=s∨(q+1)

[r0−kr]

∑
j=0

E4,3,3
s,k, j,q+1(S)t−rk− j cossnθ . (58)

Define E4
s,k, j,q+1(S) by

E4
s,k, j,q+1(S) = E4,2

s,k, j,q+1(S)+E4,3,1
s,k, j,q+1(S)+E4,3,3

s,k, j,q+1(S)
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E4
0,k, j,q+1(S) = E4,3,2

0,k, j,q+1(S).

Then by combining (53)–(58) it holds

Iq,4 =
M

∑
s=1

M

∑
k=s∨(q+1)

[r0−kr]

∑
j=0

E4
s,k, j,q+1(S)t−kr− j cossnθ (59)

+
M

∑
k=q+1

[r0−kr]

∑
j=0

E4
0,k, j,q+1(S)t−kr− j +O(t−rε ).

Define Es,k, j,q+1(S) = ∑4
i=1 Ei

s,k, j,q+1 for s = 0,1, . . . ,M . From (50)-(52) and (59), it
follows (

h0(t)+
M

∑
s=1

hs(t)cossnθ
)q+1

=
M

∑
k=q+1

[r0−kr]

∑
j=0

E0,k, j,q+1(S)t−rk− j

+
M

∑
s=1

M

∑
k=s∨(q+1)

( [r0−kr]

∑
j=0

Es,k, j,q+1(S)t−rk− j
)

cossnθ +O(t−rε ).

This is nothing but the case q+1. Therefore the proof is complete. �

RE F ER EN C ES

[1] M. G. CRANDALL, H. ISHII AND P. -L. LIONS, User’s guide to viscosity solutions of second order
partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1–67.

[2] S. KOIKE, A Beginner’s Guide to the Theory of Viscosity Solutions, MSJ Memoirs 13, Math. Soc. Japan,
2004.

[3] D. GILBERG AND N. S. TRUDINGER,Elliptic Partial Differential Equations of Second Order, Springer-
Verlag, 1983.

[4] K. MARUO AND N. YAMADA, Existence of non-radially symmetric viscosity solutions to semilinear
elliptic equations with radially symmetric coefficients in the plane, Part I, J. Math. Anal. Appl., 345
(2008), 743–753.

[5] K. MARUO AND Y. TOMITA, Radial viscosity solutions of the Dirichlet problem for semilinear degen-
erate elliptic equations, Osaka J. Math., 38 (2001), 737–757.

[6] K. MARUO AND Y. TOMITA, Unbounded radially symmetric viscosity solutions of semilinear degener-
ate elliptic equations, Sci. Math. Japonicae, 58 (2003), 107–123.

[7] E. S. NOUSSAIR AND C. A. SWANSON, Positive solution of quasilinear elliptic equations in exterior
domains, J. Math. Anal. Appl., 75 (1980), 121–133.

(Received March 10, 2009)

(Revised December 12, 2009)

Kenji Maruo
Department of Maritime Transportation Systems

Faculty of Maritime Sciences
Kobe University

Japan
e-mail: maruo@maritime.kobe-u.ac.jp

Naoki Yamada
Department of Applied Mathematics

Faculty of Science
Fukuoka University

Japan
e-mail: nyamada@fukuoka-u.ac.jp

Differential Equations & Applications
www.ele-math.com
dea@ele-math.com


