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EXISTENCE OF NON-RADIALLY SYMMETRIC VISCOSITY SOLUTIONS
TO SEMILINEAR DEGENERATE ELLIPTIC EQUATIONS WITH
RADIALLY SYMMETRIC COEFFICIENTS IN THE PLANE, PART II

KENJI MARUO AND NAOKI YAMADA

(Communicated by Y. Naito)

Abstract. We study continuous viscosity solutions for a semilinear degenerate elliptic equation
with radially symmetric coefficients in the plane. If the equation satisfies certain relations with
respect to the behavior of coefficients at the infinity, then it is known that there exist many
solutions. Our purpose is to construct many non radially symmetric solutions satisfying the
similar behavior with radial symmetric solutions at the infinity. The solutions are obtained as a
small perturbation from a radially symmetric solution. We construct super- and sub-solution by
using the series expansion of %/ cosn@ (j,n=1,2,...), where (r,6) is the polar coordinate
and a and f3 are certain positive constants.

1. Introduction

We consider the following semilinear degenerate elliptic equation:
Lu=—g(Ix)Au(x) +u(x)|u(x)[" = f(]x) =0 in R, (D

where g : [0,00) — [0,0) is a differentiable and non-negative function and p > 1 is a
constant. We assume that g(7p) = 0 for some Tp > 0 and g(¢) > 0 for any ¢t > Ty.
Moreover, we assume that f, g € C((Tp,)) NC>(R) satisfy

@ _

t
limﬁzl, lim —= =k

t—oo t—oo tOP ’

-2
where Kk >0, ¢>2and o = 1 The case 0 < £ < 2 has already considered in [6].

In this case the solution of (1) exists uniquely and radially symmetric.
In the preceding paper [4], under certain assumptions of f(¢) and g(z), we have
shown the existence of non-radially symmetric viscosity solutions of (1) satisfying

lim ulx) lim @>O.
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378 KENJI MARUO AND NAOKI YAMADA

Our purpose of this paper is to show the existence of non-radially symmetric solutions
which are different from those in [4].

The solution obtained in [4] has the phase at infinity as the solution of Laplace-
Beltrami equation associated with (1). On the contrary, we show the existence of a small
perturbed solution from a radially symmetric solution. We are looking for a solution
which has the asymptotic

— u(x) i u(x)

= 11 .
e i

To prove our assertion we shall construct super- and sub-solutions that suit our
purpose and apply the comparison theorem developed in [4] to (1). We are then able to
obtain the desired results. We assume that f and g have power series expansion with
respect to the radius ¢ = |x|. First we construct a radially symmetric solution of the
power series form by using these expansion. Then next we add a small perturbation of
power series which has osscillation with respect to the angular variable 6. In these ar-
guments, we have to make sure that the coefficients of this power series are determined
recurcively from the coefficients of f and g. This is the main caluculation of this paper.

The outline of the present paper is as follows. In section 2, we state the assump-
tions and our theorem. In sections 3, 4 we show the existence of asymptotically radi-
ally symmetric and non-radially symmetric solutions of (1) respectively. Section 5 is
devoted to the study of the existence of super- and sub-solution of (1) for large 7. In
Section 6 our theorem is proved.

2. Assumptions and main theorem

In this section we list the detailed assumptions of f(z), g(t) € C*((Tp,>°)) N

C?([0,0)) and state the theorem. Recall that k >0, £>2 and o = and
t t
lim&:L m&:K”>0.
t—oo tt f—oo |
We consider the following algebraic equation:
X|X[P ' — kP —0?X =0. 2)

We assume that (2) has a positive single root @, and negative single roots wy and @_,
where 0_ < 0y <0 < 0.
We assume the following two assumptions.

(H-1) Constants p, o and wy satisfy a® — p|ap[P~' > 1.

Let N = [a@ — «/plao|P~!], where [x] is the maximum integer which does not
exceed x.

(H-2) Functions f(¢) and g(¢) behave near r — oo as follows:

f@t)=1r (Kp+m—l+th—2+,,,+TNt—N+O<I_Q+W_e>>7
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gty =1" (1 +ou +o oyt N0 (t*‘”v 1"‘”0"’7"‘9» :

where € > 0.

We will introduce some notation often used in this paper:

=0 —\/plwo[P~t +n?, re = o —/plao|P~! +e,
ro= o~ \Jplaolr1, XP = X[x]P,
N= [a— p|wo|w} No— [\/062—17@0”1],

o— wp|P~1
M, — plo|
o —/play|P~t +n?

aVb=max{a, b}, aANb=min{a, b}.

Note that r, = o — /plwo|P~! + & +o(€) for sufficiently small € > 0, because
wp # 0 since K > 0. We use this fact frequently.

It is known by [6], Theorem 4.1, that there exist radially symmetric solutions of
(1) satisfying limy_.., y(|x|)/|x|* = @ . The next theorem states that there exist non-
radially symmetric solutions near y(|x|). More precisely, the main theorem of this
paper is the following.

THEOREM 2.1. Let y(|x|) be any radially symmetric solution of (1) such that

y(x)

= .
e %

Assume (H-1), (H-2) and ry, > 0. Then for any n=1,...,Ny, there exist a constant
0 >0 and N continuous viscosity solutions {u,(x)} of (1) such that

un(t,6) —y(t)

lim —=——=—= =C,cosnf (0= 6 <2m), (3)
Fl= || V/Ple [P~ 402 ( )

where x = (t,0) is the polar coordinate, C, are any constants satisfying |C,| < 8. The
convergence is uniformly with respect to 0.

REMARK 2.1. In order to avoid complicated calculation and to close the argu-
ment in the framework of the power order with respect to ¢, we prove the theorem by
assuming an additional condition (H-3).

(H-3) Forany n=1,..., Ny, there are no pairs of non-negative integers (k, j) satisfying
krp+j=rg.

We will mention in Remark 6.1 below for an argument without (H-3).
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REMARK 2.2. We mention the role of constants rg, e, rn,, My, N and Ny. The
ro plays an important role when we construct an asymptotically non-radially symmetric
solution of (1). The r¢ is used to control reminder terms. The assumption 7y, >
0 in Theorem 2.1 is needed to construct a non-radially symmetric solution satisfying
limy o uy(2,0)/t* = 0. Note that this condition is equivalent to Ny < @ < No+ 1. If
(H-3) is satisfied, then M,r,+ j # ro, krp+j#ro and j#£ry (n=1,2,...Ny) forany
nonnegative integers k, j. Note also that M,,, N satisfy M,r, < ry < (M, + 1)r, and
N<rg<N+1.

REMARK 2.3. Although the equation (1) is treated in R? it is enough to consider
the equation (1) in R?\By,, where By, = {x € R%; |x| < Ty} . Indeed, if g € C?([0,)),
then there exists the continuous viscosity solution in R? by combining continuous vis-
cosity solutions on RZ\BT0 and that in By, . The boundary condition on GBTO is auto-
matically determined by the degeneracy of the g(¢) such that limy_7, u(x) = ¢(Tp),
where ¢(Ty)|@(To)|P~! = f(Ty) ([5], Lemma 4.3). Also, it has been shown that a con-
tinuous viscosity solution in By, exists uniquely and is radially symmetric (see [5],
Theorem 2). Moreover, it is known that a continuous viscosity solution in RZ\BT0 is
C~(R?\By,) from the existence and regularity theorem of C*(Br\Br,+.) solution of
(1) and the comparison theorem, where T is sufficiently large number.

In the following, we study the equation (1) in Rz\BTO. Let n be a fixed integer
such that 1 £n < N and we denote r = r;, for the simplicity.

To prove the theorem we construct the super- and sub-solution in RZ\BT0 of (1)
satisfying (3) as an asymptotic solution of the variable 7. Then the result follows by the
comparison theorem. We need some asymptotic formulae of ¢+ which are derived from
(H-2):

top—a

1 N . =
==(1 ot i+ 0 <t7a+ plao|? *8) >,
0 z2< +i:21 T

f%a N f”“;‘“ <(Kp+érit_l> (1 +é(f,~t—i> +0 (t—a+\/W_8>>

1 N P e i
:t—2<x1’+§fz~t ‘+0<t ot/ ploglr! 8))

where {f;}% | are constants depending only on {k”,7;,0;;j=1,2,...,N}.
Let w(t,0) be such that u(x) = u(t,0) =1*(wy+ w(z,0)) and deﬁne

—~ > 20+19 o —ploplP~!t 1 97
jfw(t,@):—<ﬁ+ p E—’— t2 +ﬁw> (l 6)

0t~ ) ((@0+w)? = f — plo|”~'w)

|
N/'\
Ih =

1

1 N
3 (oiplawol” ) w+ —22 ool — fi)t~

M=

i=1
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Here we set op = 1. Then it follows from (1) and the relation a)(’)’ — 02wy — kP =0
that
=01V T-e2) @

for a sufficiently large 7. In section 5 we construct the super- and sub solution by using
this w(z,0).

3. Asymptotically radially symmetric solution

In this section we construct an asymptotically radially symmetric solution /_y(7)
of (4) for sufficiently large 7. That is, h_;(¢) satisfies the following equation:

ZLh_\(t)
> 20+19 o —plag/P!
_—<w+ p E—’_ 2 )hl(t)
1/ .
+ t—2<20,-t”) ((wo+h_y)” —wg—p|wo\1’*1h_1) 5)

Il
=]

Qz

+
=

I

—_

1 & re
th|w0‘p 't ) _22 le() ft = ( ¢ 2)'

%)
[
O
=
o
»

We construct h_i(r)

N
= Zc—l,kt_k- (6)
k=1

Our purpose in this section is to decide the coefficients of h_;(¢) as to satisfy the
equation (5). Remark that N < re < N+ 1 for sufficiently small € > 0. Note that since
the equation (5) contains the order term O(t”f’z), it is sufficient to calculate 4#_; in
the modulus O(r~'*).

LEMMA 3.1. Let q be an integer such that q = 2. Then it follows that
< k
=Y fak(cor,6212, -y jogr))t + 0@, (7
k=q

where fyi(c_11,¢-12,..- ,C,Lk,(q,l)) are homogeneous q-th degree polynomials in
{6—1,176—1,27 s ,C,Lk,(q,])}.

Proof. We use the induction with respect g. Let g=2. As N <re <N—+1 it
holds that

(S et ) (3 o) 06 )

k=1 k=1
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N
— (k1 +k —re
2 C—1k C—1kpt (et 2)+0(t rﬁ)
ky =1
N

k—1
= ( > C—l,k1c—1,k—k1>t_k+0(t_rg)

=2 M=1
N
=Y frkleor1,610, e en)tFHOET),

where we changed the variables from (k,k>) to (k,k;) such that k = k; 4+ k; . Then (7)
is proved for g =2.
Suppose that (7) is true for g. Then the change of variables yields

h,l(t)q'H

( i C—1,k2l_k2>( i Sk (€=1,1,€-125 s €1 gy —(g—1))t _kl> +0(")

k=1 ki=q
N k=1 .
=2 (2 C*17k7k1fq,kl>17 +0(:7").
k=q+1 “ki=q

Since g £ ky < k— 1, it follows that
ki—(gq—1)<k—1—(¢q—1)=k—gand k—k; <k—q.
Then ¢y g, fgu(c-1,1,€-12;--,€_1 k—(4—1)) are homogeneous g+ 1-st degree poly-

nomials in {¢_y 1,c_12,...,¢_1t—q}. Thus, we obtain that

1_ —k —re
hoy (1)1 2 Sorrklce—11,¢c-12,. C—1J<—(q+1—1))l +0(17').
k=g+1

This completes the proof. [

LEMMA 3.2. It holds

P_ p—1
s _
201 (@0 +h1)? — plao[P~ hy)

N
=Y Fiilc—i1,6210, -, c-1j-1)t 7+ 007"), (8)
j=2
where Fj1(c_1,1,c-12,...,c—1,j—1) are sum of homogeneous q-th (2= q < N) degree
polynomials in variables {c_y 1,c_12,...,¢_1 j-1}.

Proof. Let

201 "((wo+h-1)" — of — plao/”'hy).
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Note that by Taylor’s theorem, there exist constants e;(qg = 2,3,...,N) satisfying
(@0 +h-1)" — of — plao|’~'h-y = 2 egh—1(1)7+0(™").
q=2
Then it follows that

zia, Ze hoy(t)7+0(t7")

i=0

= 3 (B e Yroat+ 06

q=
Lemma 3.1 yields that

N N N _
I(t) = 2 <2 ( 2 Gieqfq’k(C,Ll,C,l?zw.. ,C_Lk_(q_l))l_(kﬂ))) +0(7").

g=2 “i=0 “k=q

By the change of variables from (i,k) to (j,k) such that j =i+ k and exchanging the
order of sum with respect to ¢ and j, it follows

2 (2 (za, alqs) )/ +06")

q=2 " j=q “k=q

- 2 (2 (gaj algs) )1/ +0G).

= q=2
Let Efvl = 24:2 (Eizq Gj_keqfq’k) . Note that

U {eai,em1,. - 7C—1,k—(q—1)} Clen,eo10,- 011}
22¢%j, qSks)

and 2£= 4 Oi—keéq Jfqk are the sum of homogeneous g-th degree polynomials in

{eciem12, e 1 p—(g-1) }-

Then F;; is the sum of homogeneous g-th degree polynomials in

{coi,cc12, 021 j1}

such that 2 < g < j. The assertion is proved. [

LEMMA 3.3. The following equality holds:
<2 Gil_l>l7\wo|p_lh71 = 2 Fisr(c_11,6-12,- e j—1)t 7 +0@17"¢),  (9)
i=1 j=2

where Fj, are homogeneous polynomial of degree 1 in {c_11,c_12,...,¢_1j-1}.
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Proof. Put
N .
() = (zoifl)mwov’*lh,l.
i=1

The change of variables yields

(1) (oiplao|” e~ ")+ 0 )

Il
M=
M=

Il
—_
~
I
-

ji—1

(05 4plool" )y )7 +0(7").
1

T

(o8]
o
i

I
TM=
VN

~

By putting Fj, = Zi;i (0j_kp|wo|P~")cx we have the assertion. [
By combining the above arguments, the following property holds.

LEMMA 3.4. The coefficients c_1j of h—1 = ijyzl c_17jt’j are represented by .,
wo, 0y and fi (i< j=N).

Our goal of this section is the following Proposition.

PROPOSITION 3.1. h_(t) = 27:1 c_1,t7 defined as above satisfies the equa-
tion (5). .

Proof. Let Fj be

Fi(c_11,¢-12,---5¢1,j-1)
=Fji(c_11,6-12,--50-1,j—1) FFja(c_11,6212, . ,c1,j-1)5

where F; | and F;, are those in Lemmas 3.2 and 3.3, respectively. Then,

I(I)+II(I) = F,'(C_171,C_172,...,C_17j_1)l_j+0(t_r5).

.
L=

By substituting this into Zh_; in (5), and moving the linear part to the left hand side,
it holds:

> 20+19 a®—plagP!
(ﬁJr TR 2 )hl(t)

I
M=

((o—j)* = plwolP~") ey o772

~.
Il
_

N
Fi(c—1,1,6-12,.--,¢-1,j-1) Z o;0f — f;)t 2+ 07 7%). (10)

|
"MZ

T
S5}
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By comparing the coefficients of /=2 in the both sides of (10), we have:

(1= a)*=plag” e =—(c10§ — f1)
((j—a)? = plaoP™) e_1 ;= —(c;0f — £;) (11)
+Fi(co11,¢-12,---5C1,j-1),

where 2 < j < N. Note that (1 — a)? — p|ap|?~! # 0 by (H-1). By applying (H-3),
assume o —N > +/p|ap|P~1. Then a— j—/plap|P~' >a—j—(a—N)=N—j=
0 for j=1,2,...,N. Thus o — j— +/p|we|?~! > 0. Therefore the equations (11)

are the recursive system. Hence all {c_;;:j=1,2,...,N} can be determined as we
desire. [

4. Asymptotically non-radially symmetric solutions

In this section we construct an asymptotically non-radially symmetric solution
w(t,0) of (4) in order to compose a super-solution of (1). Fix n=1,...,Ny. Let
M = M, for the simplicity. Recall that r = r;,.

We shall construct the solution in the form

w(t,0 +2h )cos(sn0).

Here, h_; be the asymptotically radially symmetric solution in the previous section.
The coefficients ho(7) and hs(¢) are polynomials defined by

M [ro—rk] i
ho(t) = > copjt 7,
k=2 j=0
M [ro—rk] e
Z copjt ", s=1,...,M,
k=s j=

12)

where co j,Csk,j are certain constants.
If 1 (¢) # 0 is constructed, then our assertion is proved. Our strategy in this section
is as follows.

(1) We prove that there is an appropriate self contained relation in the set of ¢,y ;
(Proposition 4.1 and Lemmas 4.2, 4.3).

(2) We introduce a dictionary-like order relation in the set of (s, j,k) and represent
the relation above to a system of equations.

(3) We calculate the Jacobian of the system (Lemmas 4.7, 4.8). The Jacobian has
simple form by using the order relation.

(4) By the implicit function theorem and Lemma 4.9, we can establish the existence
of the coefficients ¢y ; (Lemma 4.10). The non-triviality of ¢, ; is guaranteed
by the fact ¢ 1 ¢ # 0 in Proposition 4.2.
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REMARK 4.1. We regard ¢y, j,t %177/ and ¢y, j,t %"~/ as different terms in
case of kyr+ ji = kpyr+ jp and k| # ky, where s =0,1,... .M.

Let S be a set of coefficients in the polynomials %o(¢) and k(7)) in (12). Denote
Fy(S) by

Fy(S) = {f =0} U{f; homogeneous g-th degree polynomials in {c,z ;} €S},

where g =1,2,...,.M

LEMMA 4.1. Let q be 2= q =< M. Then there exist polynomials E ;,(S) €
Fy(S) such that

M M [ro—kr]

(2}1 ) cossn@) D 2 Eopjq(S)t 7
5s=0 k=q j=
M [ro—kr] ,
+) ( 2 2 Esrjql k”’) cossnf + O(r7'¢).
s=1 "k=sVq j=
Proof. We use the induction with respect to g. Let g = 2. Then it follows
M 2
( D hs(t)cossn6>
s=0
M M 2
= ho(t)? + 2ho(1) ( D h_y(t)cossn6> + ( Y h_y(t)cossn6>
s=1 s=1
=hL+L+15.

For I; the following representation holds:

M [ro—kir] M [ro—kar]

=% ¥ ¥ ¥ cuglonpt UL, (13)
k=2 j1=0 k=2 jr=0

If r(ky +ka) + j1 + j2 > ro, then ¢~"kitk2)=(1+72) = O(+~"). Moreover, by using the
change of variables from (kj,k;) to (k =k +kp,kz) and (j1,j2) to (j = ji+ j2,j2),
respectively, it holds

M [ro—kr] J '
2 Z ( 2 Z €0,k—ka,j—j2 €0, kzuz) _rk_j"'o(t_rg) (14)
k=4 j k2 2]2 0
[ro—kr] s -
_2 2 EOsz " ,+0(t re).
k=2 j=

Here we defined E(}Jﬂ j» by the terms inside the parentheses in the upper line, and
E(}kj »,(S) =0 for k=2,3. Then it follows that E&k,,;z(s) belong to F»(S).
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Next consider I, by the similar method for the case I;. I, is written as follows.

M [ro—kir] M [ro—kar]

2(2 2 2 Z 2€0,ky,jy Cs ky,jol (k1+k2)—(/1+j2)>cossn6 (5)

2]10](2\]20

(Ir,1)cossnB.

"ME

—

Here we defined I, ; by the terms inside the parentheses in the upper line. Then the
change of variables of (14) and sV 2 < s+ 2 imply that

k=2 [ro—kr] j

hy= 2 2 2 zchk ka,j—j2Cska, ot ke ,+0( )

k=s4+2ky=s j=0 jr=
M [ro—kr] k=2

= 2 2 <2 Z 2COJ<—/<2’J'—J'2CS~,/<2’J'2>t_rk_j+0(t_rg)

k=s+2 j=0 kzisj2=0

M [ro—kr] )
=y > E.?,k,j,z(s)f_rk_j‘f’O(I_rg)»
k=sv2 j=0

where Esz,k,j,z(s) =0ifk=sVv2,...,5+1. Then Esz,k,j,z(s) belong to F>(S). More-
over, it follows

M M
12:2 2 . E.?k,j,z(s)frkﬁcossnﬂ+0(f’€).

Consider I3. I3 is also rewritten as:

[ro=kir] M [ro—kor]

M ( M
sp2=1 “ki=s1 j1=0 ky=s3 jo=0

Csy ki csZ’kzh,'zt*’(k'+k2)*(~“+~’2)) cos s n0 cossynd (16)

I

M
= Y (I,)cossindcossynb.

s1,50=1

Here we defined I3 | by the terms inside the parentheses in the upper line. From sy,s 2
1, it follows that (s; +s2) V2 = 51 + 5. Then the change of variables of (14) yields

M [ro—kr] k=2 J

L= 2 2 2( 2 2 CSl7k*k27./'*jzc-\'27k27j2/2>t7rk7j+0(t7r€)

k=s1+sy j=0 ky=s7 jo=0
M [ro—kr]

= Y > 2Es31 ,.vz,k,j,2(s)t_rk_j +O0(t7").

k=(s1+s2)Vv2 j=0
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Here we defined E_fl 2k by the terms inside the parentheses in the upper line. Since
coss1n6 cossond = (cos(sy +s52)n0 + cos(s; —s2)n0)/2, it follows that

M M [ro—kr]

L= 2 2 2 E} ok, ',2(S)frk7j cos(sy +s2)n0
1552,5K,]

s1,8=1 “k=(s;+s2)V2 j=0

M [ro—kr]

M
+ Z Z 2 Egmz’kJﬂz(S)t_’k_f) cos(s; —s2)n@+0(17'¢)
s1,80=1 “k=(s;+s7)Vv2 j=0

= 1372 -‘1-1373 + 0([7”‘).

Here we defined 555, L33 by the first and the second terms in the upper line, respec-
tively. Then ESl skj2(S) belongs to F>(S). By using the change of variable from
(81,52) to (s =s1+52,52) for I35, it follows

M[rokrs1

132_2( > Y (XE a2 ()T ) cossnd + 0(")

k=sv2 j=0 sp=1

M [ro—kr]
:2( D 2 Sei2 ST ) cossnd +0(7), a7
s=1 "k=sV2 j=

where EJ1(8) =0 if s=1.
Next, divide /I3 3 into three terms as follows:

M M

Ly= Y (Bai)cos(si—s)nb+ Y hy
1Ssh<s1EM 1Ssy=s1=M
M
+ 2 (1371)COS(S1 —S2)n9
1§.\'1<.\'2§M

=h31+h32+133.

By using the change of variables from (s1,s2) to (s =s; —s2,52) for 33 and noting
1 <55 S My if s;+55 S k< M, it follows

M-2 My M [ro—kr]

=% 3 (Y 3 B2 ") cossnb +0("),  (18)

s=1 so=1 "k=s+2s, j=

where M, = [(M —s)/2]. Since s+2s, = 5\ 2, redefine E>
0 if sV2 <k <s+2s;. Then it follows

s+52,50,k.j,2 by E\+\27827k j2 =

M—2 M [ro—kr]

L= Z 2 Z ( Z Es+s2,sz,k J:2 ))t_rk_jcossne +0(t_rg)

s=1 k=sv2 j=0 sr=1
M [ro—kr]

M

331 y _

22 2 2 S+5252k712 S)t™ rk TcossnO+0( "),
s=1k=sV2 j=
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where
Ef,}f,’,-l,z(s)=0 ifs=M—1,M
331 M, )
E.y,'k,j,z(s) = 2S2'=1ES3+S2152’,<’ ;2(8) otherwise.
Hence it holds
M M [ro—kr] 31 ‘
Bii=), Z 2 Ein(8 17 cossnf + O(17"¢).
s=1k=sV j=0
Redefine E) | ., in l3p by EX |, =0if 2 <k <2s. Then Eg 7, (S) € Fa(S)
such that
[ro—kr] o
13 327 2 2 2 2E52,S2,kj2 ) "
sp=1k=2sp j=

M [ro—kr] M

=3 Y (23 ELwal®)

=2 j=0 " s=1

The change of variables from (s;,s2) to (s2,51) for I3 33 yields

M [ro—kr]

B3z= 2 ( 2 2 sl,sz,k/, 7rk7~f>c0s(51—sz)n6 (19)

1S51<50SM “k=s1+s57  j=

M [ro—kr]

- 2 ( 2 2 sz,shk j2 rk—j) cos(s; — s2)nf.

1Sso<s1SM k=s1+s2  j=
By the same change of variables as (18) it follows

M=2 M M [ro—kr]

L33 = 2 2 ( 2 2 sz,s+szk,12 S))t*’ki") cossnf+ O(t7'¢).

s=1 sp=1 "k=s+2sp j=0

Let E) o 1 i2(S)=0if sV2 <k <s+2s and s =M —1,M. By putting

M,
33,3
E-Y77€7.f72(s) = 2 ES32’S+S2J<J~,2(S)’

S2=1

it holds

[ro—kr]

M M
Laz=), 2 2 Ef,ifz )t~ cossn@ + Ot %),
s=1k=sV

Denote Eqy j» and Es,k,j,2 (s =1,...,M) by

33,2
E0k12 EOk,2+E0k,2
33,1 333

2
E‘ka_Eskj2+Eskj2+Eskj2+Eskj2
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Then it follows

M [ro—kr]

L+bh+5L= Z Z Eoxj2(S —rk=j

[ro—kr] )
+2 ( 2 2 Esrj2(S ’k’f> cosnf+O(t7"¢).
k=sV2 j=

Moreover, it is trivial to Eyy j» € F>(S) for s =0,1,...,M. Therefore the assertion is
true for g = 2.

We skip the proof of the case g > 2 until the appendix since the idea is similar and
the calculation is rather long. [J

In order to proceed the calculation smoothly, redefine E j ,(S) by

Eo,jq(S)=0 if2<k<gq,

Es1jq(S)=0 ifsV2<k<sVgands>O0,
Ek j.4(S) =same asin Lemma4.1 otherwise.

The following lemma holds.

LEMMA 4.2. Let q be q = 2. Then it holds

M M [ro—kr]
<h0(t)+ Y k() cossn@) Z 2 Eopjq(S)—*
s=1

M M [ro kr]

+ 2 2 2 Esrjq(S ’k*~fcossn6+0(t*r€),

s=1k=sV2 j=
where E j 4(S) € Fy(8S).

PROPOSITION 4.1. Let w(t,0) be w=h_y(t)+3M  h(t)cossnO. Then,

N
( D O'jfj) ((wo +w)? — &f — plao’~'w)
Jj=0

N
=(Z07) (n b = 0 = planl” o) 0)
ro—kr] i—1
. M [021 J e ] o
=1 €0.k,j1 (21)
k=2 j=1 Jj1=0
M M [ro—kr] '
ZZ D c, “csk’jl> —kr=Jcossn6 (22)
=lk=s j=1"j;=0

ko (23)
k=2 j=0
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M [ro—k '
Z Hs,k,j(S)t_k’_/> cossn6 (24)

where Hoy j(S) and Hyy j(S) are the linear combination of terms Eoy j4(S) and
Esx jq(S) about q 2 2, respectively. Moreover, it follows that Hyy j(S) belong to
Uy:z Fy(S) and {c}*} are constants depending on {c_1,;}.

Proof. Denote F = Ug/lzz F4(S) for the simplicity. Remark that the coefficients
{c_1,j} of h_(t) are given in Proposition 3.1.
First consider the case M > N. By the Taylor expansion it follows that

M
(wp+w)? — a)g — p|a)0|p_1w = Z eaw(t,0)74+0(t7"),
q=2
where e, are constants depending on g-th derivative at wy of (wp+ w)”. Denote
Y(,0) by Y(t,0) = XM, hy(t) cossn@ . Then it follows that w(t,0) =h_1(t)+Y(£,0).

The binomial expansion ylelds

(o +w)P —of — plaoP~w

M M
= 2 egh1 (1) + Y gegh—1(1)7 'Y (2,0)

q=2

+ 3 3 () et v o +ou
q=2q1=2
=L +L+L+0(7"). (25)

Since M 2 N and h_;(t)? = O(¢t ) if ¢ > N, it follows
M
Zeqh Zeq )94+ 0@7").
q=2

From Z Loeqh1(t)? = (wo+h_1)? — o — plao|P~ h_y +O(t7"¢), it follows

I = (@0 +h-1)" — &f — plao|”'h_1+0(™").

Then (20) is equal to I;.
Since h’fll (t)= ZI}’: 4—1€ i.q—11"7 +0(t7"¢) from Proposition 3.1, there exist con-
stants {c}} such that

M N '
D gegh—1 (1) = D it T+ O0(t7").
q=2

Jj=1



392 KENJI MARUO AND NAOKI YAMADA

Therefore it holds

ro—kr]

N ) M [ .
= (Y (Y X cxp™ )
J1=1 k=2 j»=0
[ro—kr]

N M, M
+ ( D c;‘-lt_j1> (Z <2 2 Cs ko jol k’_j2> cossn@) +0(t7")
J1=1 =s Jo=
=hLi+hLo+0(17").

On the other hand it follows that
( D Gjlt*“>< D cjzt*”) =Y T +o0).
J1=0 =1 Jj=1

By the change of variable of (14) it follows

M N [ro—kr]

N
< Z Gjt_jl>l271 = Z ( Z Z le Cok,jpt UZHI)) +0(t7")
J1=0

k=2 "ji1=1 j»=0
M [ro—kr]  j—1

=3 (2 (T peoni)i ™) +007)

=2 " j=1 j=0
=h11+001 ).

Hence I 11 is equal to (21). By using the same method as I, ; for I ; it follows

N .
( 2 O'jl‘ij>1272
j=0

M M [ro—kr]

= ( i cf;:‘t_j1> (2 (Z D csﬁk’ht—k’_h) cossn@) +0(t7")

j1=0 s=1 Vk=s j»=0
[ro—kr] i
= 2 2 (2 < 2 Cj 2, kdz) ri”) cossn + O(t ")
s=lk=s j=0 " j»=0
=h12+0(7").
Then I 1> is equal to (22).
From h? "' (1) = ZIJV g—a) Crgq !~ it follows
N . N
(20;4’ )eqeqqn = X Cuat IO,
k=0 j=a-a

where {c 2.a1, } are constants depending on the coefficients oy and of h_;(¢). On the
other hand, Lemma 4.2 implies that

M [ro—kr]

Y9(z,0) 2 2 Eokjat b

k=2 j=0
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M M [ro—kr]

+3 Y N Ejpjgt ¥ cossnd+0( ")

s=lk=sv2 j=0
=B1q, + 1524 +00").

Then I3 is represented as:

N , M g
(Zoiffj)h_ 2 2 (Zcqqu ) I 17q1+132q1)+0( ).
Jj=0 4=2q,=2

Thus, it holds
[ro—kr]

By using the change variables from (i, j2) to (j = j1 + j2,j2)
M [ro—kr] j—1

M q
<ZGJI j>131_2 2 2 Z Z quw nEokjat - T+0")

4=2q1=2k=2 j=0 jr=0
[ro—kr] q Jj-1

4=2q1=2 j2=0
Define Hy ; by

Ho,j = 2 2 2 da1i-i B0k a1

Since {Egy j;,;, } CF, wesee {Hyy ;} C F. Moreover it holds

N ' M [ro—kr] .
(2 O'jt7J>I371 = 2 2 H()7k7jl‘7kr7] +0(t7r‘°‘).
=0 =2 j=0

This implies (23). By using the similar method of 15 4, for I35 4, and putting

Hyyj = 2 Z Z Ca.q1.j-J Eskjrars

q=2q1=2 j=0

it follows that there exist Hy ; € F satisfying

M [ro—kr]

132_2< SN Hy J)cossn@—i—O( Te).

k=sVv2 j=0

kr—i _
2 C;qujszEQszﬂl)t TTHO@).

393

(26)
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This yields (24).

Let M < N. In this case (25) holds if we replace M by N. The term /; is trivial.
We have r > 1 since M < N. Then we can replace N in I, and Iz by M since kr+
[ro — kr] +7 > re. The terms I; and I can be treated by the same argument. For I,

note that (26) holds by replacing g by gy = g AM . Then we can argue as the previous
case. Hence we complete the proof. [

LEMMA 4.3. Let w(t,0) = h_1(t) + XM hs(t) cossn6. Then

N
> o, plan” 't w(t,0)
J1=1
N ' [ro—kr] -1 .
= Z O'jlp|a)0\p_lt_“h +Z Z (Z 0j— sz‘wo‘ COku)t_kr_j
J1=1 j=1 Jj2=0

M M [ro—kr] | j—1

+YY X (2 oj—jpp|wol”” Cskn) kr=icossn@ + O(17"¢).

s=lk=s j=1 " j=0

Proof. Let I; (i =1,2,3) be defined by
N

> gy plool’ ' w(r,6)
J1=1

N N
= ¥ ojplool” 't hoy(6)+ Y, oy, plaolP "t ho(r)

J1=1 Jj1=1
N M
+ ( D Gjlp\wo\p_lt_“> (Zhs(t)cossrﬁ) +0(t7")
j1=1 s=1

=L+L+L+0(").
The change of variables of (14) and the definition of %((¢) imply that

M [ro—kr]  j—1

Z ) (Z Gj—jzp\woIp_1C07k.,jz>f_kr_j~

=1 " j=0

By the change of variables of (14) and the interchange of the order of summation in /3,
it follows

j—1

M M [ro—
= 2 Z Z ( Y, 0j-jplao’” Cs,k,j2>t_kr_jcossn6.
s=1k=s =

J2=0

Then the proof is complete. [J
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LEMMA 4.4. Let hy(t), hy(t) be the polynomials in (12). Then it follows that

> 20+19 052—p|a)0|1"1 1 92\ ¥
(ﬁ* TR 12 t2862>(zh Cossn6>

[ro—kr]

1
2

—kr—j

(o0 —kr—j)* = plax”™") cot

Mz
M

~

k

HM§ L

2]

[ro—kr]
Z (o —kr— j)* = plaw|P~ ' — s*n?) ey g jt " cossnB.

|\.>|’—‘

Proof. Since the proof is a combination of above lemmas, we omit the detail. [
LEMMA 4.5. Suppose kr+ j <ry with k 21, j 2 0. Then it holds
(a—kr— j)* = plaolP ™" —s*n* £0
except (s,k, j) = (1,1,0). Moreover it follows (ot —kr— j)* — p|awg|P~! # 0.

Proof. We argue by contradiction. Let (o — kr — j)? = p|ap|P~! +s>n?, where
k21, j20.Thenfrom 0 < a—ry<o—kr—j< a—r,itfollows

02 (a—kr—j)*—(a—r)* = (s*— 1)n?

If s = 2, then a contradiction occurs. In the case s = 1 except (1,1,0), we get a
contradiction 0 > (ot —kr — j)> — (¢ —r)> =0 by o —kr— j < a —r. The above
inequalities are mutually contradicted except (s,k,j) = (1,1,0). Then (o — kr — j)? #
plwolP~! +52n* except (s,k, j) = (1,1,0). Since at —kr—j > ot — (ot —/p|wp[P~T) =
\/plawo|P~1, it follows (ot — kr — j)> — p|wo|P~! > 0. The proof is complete. [

Let w(t,0) = h_1(t) + XM hy(t)cossn@. Substitute w into (4). By applying
Propositions 3.1, 4.1 and Lemma 4.3, it holds

ZLw(t,0)
2 20+19 o®—plopP™t 1 9%\ Y
= — ?-F P E‘f’ 2 +13W) Zz)hs(t)cossne 27)
1 M [ro—kr]  j—1 i
53 3 (X eteonn ) 28)

< D c;‘-fjlcsﬁk’h)t_kr_jcossne (29)
1=0

M
Tp 2 X Ho S0 (30)
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1 M [I’Q kr] )
ﬁ Z < 2 Z H;, k,j kr—;) cossnf (31)
1 M okl ] | o
_2 2 2 oj—j planl’™ Co,k,h)f ~J (32)
k=2 j=1"j1=0
1 M M [ro—kr] -1 o
ta ZU; 2 < ZOGJ —iplool’ esry )t_ "/ cossn0 (33)
S= =, : J1=
+0(" )

= 1(27) +I(28) +I(29) +I(30) +I(31) +I(32) +I(33) + O(I_rg_z).

We treat each of I(57)—133) separately. Lemma 4.4 yields that

\
x~

7]

(plon|P~ = (00— kr— j)*) copt (34)

[ro

1
2

ME
gl

lo7) =

~

k

HM§ L

2]

lM
D>

ro -

2 (p\wo\p_l +5°n% — (o —kr— j)*) eyt ¥ cossn6. (35)

Define 2710{ -} = 0 in this section for the convenience.

From (28), (30), (32), and (34), define the system of equations {D ;(S)} of the
coefficients of ¥~/ such that

Doz ;(S) =— ((oc —kr—j)* = plaol” ") o
+ Z i+ 05y pleo” eo, + Hox j(S), (36)
J1=0

where k=2,3,....M and j=0,...,[ro—kr]. Next,let s, k, jbe s= 1,k=s, j=0
except (s,k,j) = (1,1,0). As the same method as (36) define the system of equations
{Dy;(S)} of the coefficients of X"~/ cossn6 satisfying

Dy j(8) == (ot —kr— j)* = plan|” ™" = *n%) cou.
j—1
+ 2 ( j J1 + Cj— /1p|w0|p )C.\',k,jl +H\,k/(s) (37)
J1=0
from (29), (31), (33), and (35). Denote

D17170(S) = — ((OC — r)2 —p|(1)()|p_1 —nz) €1,1,0-

There exists the term ¢~ cosn6 in (27). However, this term does not appear in (28)-
(33). Then it follows
Dy 10(S)=0. (38)

Since (o —r)? — p|lao|P~' —n? = 0 by the definition of 7, the equality (38) holds for
any c1,1,0 € R.
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Define a set W (Int) with the order relation by

s, k, j are integers,

1<s<M, sSkEM, 0 )< [ro—krl,
or

5=0,2Sk <M, 0= j < [ro— ki,

W(Int) = < (s,k, j) :

where the order relation < is defined by

(s1,k1,j1) < (0,ka, j2)  if 1 <51,
(s1,k1,J1) < (s2,k2,2)  if 1 =51 <2,
(s1,k1,J1) =< (s1,k2, j2)  ifky <k,
(s1,k1,j1) < (s1,ki, j2) if j1 < jo.

Note that this order relation is the dictionary order except for the case (s1,k1,j1) <
(0,k2, j2). Then S = {c,x j; (5,k, j) € W(Int)}. Consider the recursive system of equa-
tions such that

an,j(s) =0, (skj)eW(nt), (39

where the order of equations follows the order in W (Int). Note that by the order in
W (Int), the terms of degree one of ¢, ;4 in (36), (37) appear in the lower triangle part
in the coefficient of (39). By finding all elements in S satisfying (39) and constructing
hy (s=0,...,M) by elements in S, it follows that w(t,0) = h_1(t) + 3™ hs(t) cossn6
satisfies (4).

Since (38) is the identity, we may consider the following recursive system of equa-
tions without (38);

D j(S)=0 forany (s,k,j) € W(Inr)\{(1,1,0)}. (40)
For the simplicity denote W (Int) = W (Int)\{(1,1,0)} and S; =S\{ci.10}.
LEMMA 4.6. Let 0=(0,0,...,0). Then 0 € S and

Dy j(0) =0 forany (s,k,j) € Wi(Int).

Proof. 0 €S is obvious. From Hy ; C F it follows H,y j(0) = 0. Then (36) and
(37) yield the assertion. [

LEMMA 4.7. Let (s1,k1,j1) € Wi(Int) and cs, 4, j, € S1. Then it follows

a[{"lvkl J1 (0) =0.

acfszsz

JH; . . .

a'i’kl“ (S) are polynomials which does not contain
Csaka,jn

0-th degree terms in variables S. Then the proof is complete. [

Proof. Since Hy 4, i, €F,
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LEMMA 4.8. Let (s1,k1,j1), (52,ka, jo) € Wi (Int) satisfy (s1,k1,j1) < (s2,k2, j2).
Then

aD-\'hkl W1 (0) =0.
ac-\'zJCsz

Moreover for any (s1,k1, j1) € Wi(Int) it holds

Dy, 1, .j . -
5 SLKLLJL (0)2—((0(—k1r—]1)2—p‘w0|p l_s%n2).
Csp k1,1

Proof. From Lemma 4.7, (36) and (37) imply

JD acShkl 1

s1ki,J1 (0)_—((06—]( N2 p—1_ 2.2
= 1= j1)? = pla| sin?) 1)
ac-\'zJCsz acS27k27./'2
Jizl ¢y, &
+ (C;rq"_ O_J'lfqp|w0‘p_l)a”77hq~ (42)
q=0 Csy.ka. o
= Ii41) +114).

The term /(41 is zero if (s1,k1,J1) # (s2,k2, J2) - If (s1,k1,j1) = (s2,k2, j2) it follows
that

Tany = — (o~ kir— 12— plow?™! = sh?)

Also Ii4y) is zero if (s1,k1,q) # (s2,k2, j2). Suppose (s1,k1,q) = (s2,k2,j2). Since
q § j1 — 1, it follows (S],k],q) < (S17k17j1). Then (S27k27j2) < (S17k17j1). This is
a contradiction. Hence (s1,k1,q) # (s2,k2,j2). Therefore, I(4) is zero. The proof is
complete. [l

LEMMA 4.9. Let (s1,ky, /1) and cg, 4, j, be (s1,k1,j1) € Wi(Int) and cy,, j, €
S1, respectively. Then the determinant of the Jacobian matrix

(2uss) o)

d (C-Y27k27j2)

is not zero.

Proof. From Lemma 4.8, the Jacobian matrix is a lower triangular matrix. Then

(Gessfo)= T Gloo™ s ator— i)

CO s1k1,j1) WL (Int)

Hence Lemma 4.5 yields that the determinant is not zero. [

LEMMA 4.10. Consider the recursive system of equations

{Ds.j(S) =0; (s,k, j) € Wi(Int)},
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then there exist a positive constant & > 0 and functions

{0401 €CH([=8.8]): (s1,k1, 1) € Wi(Int)}
which satisfy the following properties:

lcr10] =9,

Csy ki = Dsy ki, (€1,1,0) € St for any (s1,ky, j1) € Wi (Int),
Dy j(€1,1,0,01,1,1(€1,1,0)5- -+ D5y 1,5y (€1,10),---) =0,

for any (s,k, j) € Wi(Int).

(43)

Proof. From Lemmas 4.6 and 4.9, the implicit function theorem implies the asser-
tion. [

We construct a function w(z, 0) satisfying (4). Let c,, 4, j, be constants satisfying
(43) in Lemma 4.10. Define functions {A4(¢) }s=o,...» and w(z,0) by

M [ro—kr]

=X X coxt

k=2 j=
M [ro—kr] )
hs(t) = Z 2 Cs,k,jt_kr_j
k=s j=0
and
M
w(t,0) =h_1(t)+ Y. h(t)cossn.

s=0

By combining (27)-(33), (36)-(39) and Lemma 4.10, it follows that { the left hand side
of (4)} = O(t~"¢~2). Thus, the following proposition holds.

PROPOSITION 4.2. It holds gw(t, 0) =0(t"e72) for t — oo.

5. Super- and sub-solutions

In this section we show the existence of the super- and sub-solution of (1). Let D
be a large positive number and ¢ be also sufficiently large. Denote u4 (¢,60) by

up(t,0) =1*((wo+w(t,0))+ Dt~ "e).
Then,

g) LU (1,0) = L(w(t,0)+Dt %)
= .Zw(t,0)
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+Dr 2 (28\ / plog|P~1 — e2>
N

+ < O',-t_i>t_2

i=0
X ((a)0+w(t76) + Dt — (wo+w(t,0))? —p\w0|p_1Dt_’5)

N
+ <Z oip\wo\p_lt‘i>Dt_’€_2
i=1

=Vi+WVa+V3+V4

If € > 0 is sufficiently small, then it follows

Vy 2 €4/ p‘wo‘p_lDl_rE_z. (44)

Proposition 4.2 implies that there exist large numbers 75 ; and M; such that
Vi —M1l7r572

forany r 2 T5 ;. Let D be a large number satisfying

€1/ plwo|P~1D > 4M;.
e/ plap|P!
\Vl\§7p| 0" pyre-2, (45)

4
On the other hand the Taylor expansion yields

V3| < C(Jw|+De~"e)Dr "2

Then it follows that

for some constant C > 0. From |w(z,0)| < Cy (¢t~ +17"+1¢7"¢), it follows that
lw+Dt™e| S Cy(t7 +17") forany t > Thy,

where C; is a constant independent of 7. Then there exists 7> 3 = T, satisfying

p—1
|V3| g €y p‘w0| D[7r372 (46)

4
for t = T> 3. Also there exists 7> 4 such that

e+/plog|P!
\wg%o‘m—’f—z forany t > T 4. (47)

Let T, = max(7T3,1,123,T».4) . The inequalities (44), (45), (46) and (47) yield

€/ plwo|P~!
Vi+Vo+Va4+Vy2 %Dt”r2
Then it follows Zuy(¢,0) =0 for any ¢ > T». Thus, u,(z,60) is the super-solution
of (1). Let u_(,0) be u_(¢,0) = t*(wo +w(t,0) — Dt~ 7). If the similar method of
the proof of the existence of the super-solution is used, it is shown that the function
u_(t,0) is the sub-solution of (1) forany t > 7,. O

forany t > T;.
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6. Proof of the main theorem

In this section we complete the proof of the theorem by applying the similar
method of section 4 in [4]. If we construct super- and sub-solution of (1), the exis-
tence of the non-radially symmetric solution of (1) is proved by using the following
proposition due to E. S. Noussair and C. A. Swanson [7].

PROPOSITION 6.1. Let uy, u_ be super- and sub-solution of (1) such that
Ui (t,0) 2 u_(t,0) and iy € C>(R?\By,) NC(R*\By,).
Then there exists a solution u(t,0) € C>(R?\Bz,) NC(R*\By,) of (1) satisfying
up(t,0) 2 u(t,0) 2u_(z,0). (48)

We construct the super- and sub-solutions #4 (t,0) € C2(R*\By,) NC(R?\By,) satis-
fying w4 (Tp,0) = u_(Tp,0). By the thory of viscosity solutions (see [1], [2]) there
exists a continuous viscosity solution in Rz\BTO. We can get the regurarity for this
solution in any compact interval of ¢ by the thoery of semilinear elliptic equations (see
[3]). As mentioned in the Remark 2.3, the proof of the Theorem 2.1 is completed by
these construction. Let w4 (¢,0) be the super- and sub-solution, respectively, which are
constructed in section 5. Then,

o U (1,0) — 1% + hoa (1))

100 V/ploglP~T+n2

_ lim u_(1,0) —t*(wo+h_1(1))
- /ol

y=(?)

tOC

=cy,1,0co8n0. 49)

Let y1 be solutions of (1) satisfying tlim
Z[i (t7 9) by

= w4, respectively (See [6]). Define

Le(,0) = o (t)us(t,0) +c1()y (1) iAlog%O.

Here c;, ¢; € C?([Ty,)) are functions satisfying

c(t) =

1 forTy<t<T,
{ Cz(l‘):

0 forTp<t<Th,
0 forTi+1<1,

1 forTh+1<1t,

and A is a positive number.

By applying the similar method in section 4 in [4], u4(f,0) become the super-
and sub-solutions, respectively. By noting (48) and (49), we obtain the existence of the
solution u(z,0) satisfying

lim u(t,0) —t*(wo+h_i(1))
s e

= 017170(:08719.
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Remark that by the same method in section 5, y1(z) =t*{(wp+ h;(¢)) =Dt "¢} be-
come super- and sub-solution, respectively. Hence there exists a radially symmetric
solution y(z) of (1) satisfying y(r) —t*(wo +hi(t)) = O(r7"¢). Let yi(¢) and y»(r)
be solutions of the equation (1) satisfying y;(z) > y»(z) . Define w;(¢) by y;(¢) =
t%(wo +w;(t)) for i = 1,2. Then it follows that there exists a sufficiently large num-
ber #; such that 2max(|w;(¢)|,|w2(¢)|) < € for any ¢ > t;, where € is a small positive
number. Since it holds

t€ p—1 p—1
%P\wo—krwl(t)Jr(l—T)Wz(l)\ < (plool”" + &),
for some 0 < 7 < 1 which depends on the Taylor expansion of y;(¢#)? — y,(¢)?, it fol-
lows

710 =32(6) 1(00) =)+ T2 ) 10g £

ol ) [ 1 [ 200 —m(@e.

Let Z(¢) be a solution satisfying:

d*z 1dz plwolP~ 1+
_ _— = 72
dz d(yi —y2)

dt () dt (),

Z(t1) = (y1 —y2) (1)

Then (y; —y2)(t) < Z(¢) for any ¢ > t;. Therefore,
(1 = y2) (1) S CrvPienl e,

Hence,

limM:O

Y
where y(¢) is any radially symmetric solution of (1). By putting u,(¢,0) = u(t,0), the
proof of the theorem is complete. [J

REMARK 6.1. We proceed the proof of the theorem without (H-3). Assume that
there exist k, j = 0 satisfying kr, +j =rg.
Define h_;(t), ho(¢) and hs(z) in (6), (12) by

N—-1
h_y(t) = 2 c_t™’ —|—c_17Nt_N10gt
=
ho(t) = 2 C()waikrij + 2 C()7k7jtikr7j logt,

25kEM, 0= j<[ro—kr], (k.j)&Jo (k.j)€do
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e e
hy(t) = > ot I Y eop it logt,
1SKEM, 5= j<ro—kr], (k.j)2Jo (k)

where Jo = {(k,j); | £k, j=ro—kr}. Then we can construct w(#,0) by using these
functions. It follows that

02 20419 a?—plaglP~! 92
—( ha =+ Pyl )t’f’logt

a2 T w T
= —(2(ct—ro) + o — pla |~ )02,
Note that the coefficient of the right hand side is not 0. Next, by using the estimate

t~0logt(¢t~"+¢~ 1 +1770) = O(t7"¢), we can take in all terms that contain ¢ ~"0log¢ in
the expression

1y _
(o) { (@0 +w)” —of = pln|”}
i=0

into the order term O(z~"¢). Therefore
ZLw(t,0) = 1(27) +I(2g) +-- +I(33) +0(17'¢)

without the assumption (H-3). This completes the proof.

REMARK 6.2. We can replace the assumption (H-2) by the following:

F(1) =17 (14 0((~“log1)?),
g(t) =1 (14 0((log1)?)).

In this case, we assume assumption (H-1). By combining the result of [4], theorem 2.1
and remark 6.1, we obtain that there exist 2m kinds of sets of non-radially symmetric
solutions of (1).

7. Appendix

We continue the proof of Lemma 4.1.

Suppose that our assertion is true in case of g = 2. By using the similar method
of the proof of g =2 we show our assertion for g+ 1. Let G(q) be G(q) = (ho(t) +
SM | hy(t)cossnB)?. By applying the assumption of the induction to G(g) and noting
G(1) = ho(t) + M | hs(t) cossnB it holds

G(qg+1)=G(1)G(q)

[ro—kar]

M .
=@ Y T EoknaSi)

ky=q j»=0
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M [ro—kar]

+ho(1) (2 2 2 Es, ky.j2.4(S kz’_hcossznG)

so=1ky=soVq j»=0

M M [ro—kr] )
+( 2 ha@cossind) (XX Eopog(S) 2 2)
sp=1 ky=q j»=0
M M [ro k2l’
+ ( Y, hy, cossm@)( Z Y Y Egkpal
s1=1 so=1lky=soVq Jj»=0

x ker=p cosszn6> +0@17")

=l + 1o +13+1a+00").

By replacing cqy, j, in (13) by Egy, j,4(S) in I, and using the similar change of
variables of (14) for I, 1, it follows

M [ro—kr] _ i '
= X 2 (2 2 €0.k—tz.j—ir oz, /z,q(s)>f’k7"+0(f“)
k=2+q j= ko=q j»=0
M [ro—kr] '
= > Y Egpjgn S0 (50)
k=q+1 j=0

Here Ej; ; .1 (S) are denoted by

-2
| D Y C0kkoj-jnE0knjrg(S) ifkZg+2
Eo,k,j,q+1(s) =\ kr=¢ j»=0 nie n

0 ifk=q+]1.
Thus Eij g+1(S) belong to Fyy1(S) from co s, j—j,Fq(S) C Fy11(S).

By regardlng 2¢4 ky,j, in (15) as Eg, 1, j, 4(S) in I, 2, by the similar method for I,
there exists E2 tjg+1(S) € Fgy1(8) satisfying

Ig2
r() kl"] M r() kzr]

= 2 2 2 2 2 COk1,41 S2’kzJzq(s)t_(kl+k2)r_(jl+j2)COSS2”6

=2 j1=0 sp=lky=s2Vq jr=0

+0@17")
M M kil J i
2 2 2 ( 2 2 COk—ka,j—jrEs o, lzq(s)>t7 "/ cossnb
s=1k=2+sVq j= ky=sVq j=0

+0@17").

Note that 2+sVg=(g+2)V(s+2)> (g+1)Vs. By setting
T3
COk—ky,j—jo Esjr,jng(S)  ifkZ=sVaqg+2,
Es k.7, q+1(s) = ky=q j»=0 B B

0 ifsV(g+1l)Sk<sVg+2,



SEMILINEAR DEGENERATE ELLIPTIC EQUATIONS 405

E2

kg1 satisfies

[ro—ki7]

M
Igp = Z 2 2 Es2,k,j,q+1(s)t_kr_j cossnf +O0(t "), (5D
s=lk=sV(q+1) Jj=0

where E7, ;1 € Fypa(S).
By using the similar method for > to I, 3, it holds

1%3

M M [ro—kir] M [ro—kar]

2 2 2 2 Z 051J<1’jlEo’kz-,jz’q(S)Z_(kl+k2)r_(jl+j2)Cosslne
si=lki=s; j1=0 ky=q j>=0

+0(7")

M M [ro—kir] | k—

) 2 (2 Zcfk ky,j— JzEOkz,qu(S)> —+=J cos snb

s=lk=s+q j= ky=q j»=0
+0@17").

Since s+¢q = sV (g+1) from s = 1, we can find E? tjg+1(S) € Fgr1(S) satisfying

[ro—kr] )
2 2 2 k,; 41(8 17K cossn + ot '), (52)
s=lk=(g+1)vs Jj=
where EJ, ;. (S) =0 if sV (q+1) Sk < s+q. Moreover, it holds E;, ; . (S) €
q+l(S)

By replacing cy, k,,j, in (16) by Ej, 1, , 4 in Iy 4, it follows

M M
Ia= Y, Y (Ig41)cossinb cossond,

s1=1sp=1
where

M [ro—kirl M [ro—kor]

— . . (ki) —=(j1+i2)
Iy = 2 2 2 2 Csy ki1 Esaa,joal :
ki=s1 j1=0 ky=s0Vq jo=0

By the change of variables of (14) we can find E;‘l Vsyk,jg+1 Satisfying

Iga
[ro—kr] k—s; j

= 2 2 < 2 2 Cs kit Ess ko qu(S)>t_’(k1+k2) (j1+j2) +0(t77%)

k=s1+s2Vq j= ky=q j2=0
[ro—kr]

= 2 2 2ES1 982, k N8 q+1 (S)t_rk_j + O(I_rﬁ)
k=s1+s2Vq j=
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Then it follows that Ef . ., (S) belong to Fy11(S).

Let Vo={(s1,8);1<s1EM, 1<s, <Mands;+s, SM.}
From (s1,s7) € Vy it follows s1 45,V g

2 (Sl +S2)\/(q+ 1) Set ESI 3825 kj q+l(S) =
0 for (s;+s2)V

(g+ 1)<k <s1+s2Vq. Then I 4 is rewritten as:

M [ro—kr] )
La =), D D E_fl 7_Y27k7j7q+1(S)frk*J cos(sy + s2)n6 (53)
Vo k=(s1+s2)V(g+1) j=0

[ro—kr]

+3 i Yy E}

s1,82,k,j,q+1 (S)r™"* I cos(s1 —52)n0+ O(t ')
Vo k:(.¥1+s2)\/(q+l) Jj=0

=lgap+1ga3+0@1").

By using the same change of variables as (17) we can find Es g+l (S) satisfying

M M o=k s—1 . .y
L= Y 3 (X E ke (®) ) cossn+06)
s=2 k:s\/(q-‘,—l) Jj=0 sp=1
M
sV

[ro—kr]

Y X Eljgn (S)f_rk_’) cossn@+0(17"e),

(54)
s=1 “k=sV(g+1) j=0

where EsquH(S) =0 if s = 1. Here, we see that E*,

S, k Jg+1
since Esl sk jg+1(S) € Fgen(8).
In order to study I, 43, redefine

(S) belong to F,41(S)

4

Ej kg1 (8) =0if [s1 —5|V(g+1)Sk<(si+s)V(g+1)

and divide the set V as follows:

Vo={(s1,5);51—52>0,5021, s1+s0 <M}
U{(s1,52);51—52=0,5021, s1+s0 S M}
U{(s1,82); 51 —52<0, 51 21, s1+s0 S M}

=V1UV,UVs.

Then 1, 43 is rewritten as

lpas (55)
3 M [ro—kr] .
= 2 2 2 sl,sz,k Ja+1 S)t_rk_j> cos(s1 —s2)nf
i=1 Vi “k=[s;—sp|V(g+1) j=0
+0(™")

=1lga31t1gas2+1a33+0(7").
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By the change of variables of (17) there exists E- (S) € Fy11(S) satisfying

\k/q+l

M—2 M; [ro—kr]

5174 31— 2 2 2 2 E\+282 $2,k,7,q+1 (S)t_rk_j) cossn6

s=1 so=1 “k=sV(g+1) j=0
[ro—kl’] My

/N

2 M
4 —rk—j
2 2 < 2 ES+2s2,52,k,j,q+l(S)>t "I cossn6
s=1 k=sV(g+1) j=0 “s=1
& L 431 i
=X X ES3L ((8) " cossno, (56)
s=lk=sV(g+1) j=0
where
43,1 M, 4 .
Es.,7k,7j,q+1(s) = 2 Es+2s2,52,k,j,q+l(s) if 1 é s § M-2
$2=q
43,1 .
EvquJrl(S):O ifs>M—2.
For Iy43., let Ej skjgrl =0 if g+ 1=k <25V (q+1). Then there exists
432
Eq74+1(S) € Fgy1(S) satisfying

M [ro—kr]

lyasn2= 2 ( 2 2 E252,s2,qu+1(s) 7rk7j>

so=1 “k=g+1 j=
M [ro—kr]

0 .
=2 X (2E§Sz’S2,k,j,q+1(S))frkﬁ

k=g+1 j=0 sp=1

[ro—kr] 432
7rk7j
2 2 0k jgr1(S 5 (57)
k=q+1 j=

where My = [M/2].
Next consider I, 43 3. By the change of variables of (17) from (sy,s2) to (s2,51),
it follows

M-2 My

[ro—kr] '
5174 33 = 2 2 < 2 2 Exz s+2s2,k,j,q+1 (S)t_rk_j> cossnb.

s=1 so=1 "k=sV(g+1) J

By using the similar method as (54) it follows that there exists ES % j 441 (S) satisfying
[ro—kr] 43 3 i
lyazs= 2 2 2 squJrl "™ cossnO. (58)

s=lk=sVig+1) j=0

Define Esk, 4+1(S) by

4 3, 433
ESyjqr1(S) =Egy 01+ EL 1 (S) +E L7 441(S)
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4,32
Eg,k,j,q+1 (S) EO k,j,q+1 (S)

Then by combining (53)—(58) it holds

M M [ro—kr]

La=Y Y 3 Elj,(8) T cossnd (59)
s=lk=sVv(g+1) j=0

M [ro—kr] . .
+ XY B S0,
k=g+1 j=0

Define Egy j4+1(S) = 2?=1E§,k,j,q+1 for s=0,1,...,M. From (50)-(52) and (59), it
follows

M q+1 M [ro—kr] .
(ho(t)+2hs(t)c0ssn9> =3 Y Eojgn ()
s=1 k=q+1 j=0

M [ro—Fkr]

+) 2 ( D E&k’j?qH(S)t*’ki") cossnb + O(¢t7'¢).

sflk*s\/ q+l) j=0

This is nothing but the case g+ 1. Therefore the proof is complete. [l
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