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ON THE HYDROSTATIC STOKES APPROXIMATION WITH

NON HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS
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(Communicated by Š. Nečasová)

Abstract. We deal with the hydrostatic Stokes approximation with non homogeneous Dirichlet
boundary conditions. After having investigated the homogeneous case, we build a lifting op-
erator of boundary values related to the divergence operator, and solve the non homogeneous
problem in a cylindrical type domain.

1. Introduction

Let us consider Ω⊂ R3 a bounded domain defined by

Ω=
{
x = (x′, x3) ∈ R3 /x′ ∈ ω and −h(x′) < x3 < 0

}
, (1.1)

where ω ⊂ R2 is a bounded Lipschitz-continuous domain and where h is a Lipschitz-
continuous map over ω , chosen such that Ω has a Lipschitz-continuous boundary Γ .
The boundary Γ split into three parts, each one with a non negativemeasure: the surface
ΓS , the bottom ΓB , and sidewalls ΓL , defined by:

ΓS = ω×{0} , ΓB =
{
(x′,−h(x′))/x′ ∈ ω

}
,

ΓL =
{
x ∈ R3 /x′ ∈ ∂ω and −h(x′) < x3 < 0

}
.

Finally, we denote by nnnn the unit outward vector normal to Γ .

Figure 1.1: The domain Ω
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Let ffff ′ = ( f1, f2) :Ω→ R2 , Φ :Ω→ R , and gggg = (gggg′, g3) : Γ→ R3 be given func-
tions, Φ and gggg satisfying adequate compatibility conditions. In this paper, we study
the non homogeneous version of the hydrostatic Stokes approximation, also called in
some more general cases Primitive Equations for the Ocean, consisting in finding a pair
of functions (uuuu, p) defined on Ω , with uuuu = (uuuu′, u3) such that

(S H )

⎧⎨⎩−Δuuuu′ +∇′p = ffff ′,
∂ p
∂x3

= 0, ∇ ·uuuu = Φ in Ω,

uuuu = gggg on Γ.

Here ∇′ = (∂x1 ,∂x2) stands for the gradient operator with respect to the variables x1

and x2 . In order to give a nice reading of the paper, we denote by the symbol ∂xi the
operator ∂/∂xi , in the text sentences.

When Φ and g3 vanish, Problem (S H ) and its generalizations to the non linear
and time dependent cases, have been studied by many authors, from different points of
view, and it would be too long to list them all here. But, to our knowledge, M. Laydi, O.
Besson, R. Touzani have worked on the 2D linear case in [4] and on the 3D nonlinear
version in [3]. Then P. Azérad, F. Guillén have investigated the linear and nonlinear
time dependent cases in [1, 2]. Such results have been obtained by performing an
asymptotic analysis of the Stokes and Navier-Stokes equations, set in a thin domain,
with an anisotropic viscosity. This first method can be seen as the physical approach of
the problem (S H ) .
Thanks to the particular geometry of the computational domain Ω , other authors have
considered (S H ) and its generalizations as a well-posed reduced Stokes or Navier-
Stokes system. Let us illustrate these second method on Problem (S H ) . The simpli-
fications of (S H ) arise from the hydrostatic pressure hypothesis:

∂ p
∂x3

= 0 in Ω, (1.2)

ensuring that pS , the pressure at x3 = 0, is in fact the true unknown. Moreover, by
integrating with respect to x3 the incompressibility equation:

∇ ·uuuu = 0 in Ω, (1.3)

and taking into account the boundary conditions over u3 , it appears that the unknown
u3 is given by the vector field uuuu′ . Thus, the equations retained are the following one⎧⎨⎩

−Δuuuu′ +∇′pS = ffff ′ in Ω,

∇′ ·
ˆ 0

−h(x′)
uuuu′(x′, x3)dx3 = 0 in ω ,

(1.4)

coming with various types of boundary conditions over uuuu′ . Then we get back to u3 and
the global pressure p by setting

x ∈Ω, u3(x) =
ˆ 0

x3

∇′ ·uuuu′(x′, ξ )dξ , p(x) = pS(x′).
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However, studying (1.4) yields real difficulties when the mapping h vanishes on ∂ω .
This is why most of the works dedicated to its study comes with the following assump-
tion on the mapping h : there is a constant α > 0 , such that

inf
x′∈ω

h(x′) � α. (1.5)

Under this assumption, J.L. Lions, R. Temam and S. Wang have introduced System
(1.4) and studied its weak solutions, in space dimension 3, in [11, 12]. These results are
synthesized by R. Lewandowski in [10], where the author studies some close models
to (1.4). With this second approach, it is possible to go further in the analysis of the
hydrostatic Stokes and Navier-Stokes approximation. For example, M. Ziane brings in
[16], the first regularity results on the stationary linear case where he consider various
boundary conditions. Together, R. Temam and M. Ziane, extend this regularity result
to a more general problem. To our knowledge, their work [15] is the reference in terms
of regularity results for the stationary case. Concerning the study of the time dependent
case, we refer to the work of M. A. Rodriguez-Bellido, F. Guillén González, and N.
Masmoudi [7, 8].
To finish, some numerical studies have been done, and even if it is not our purpose
here, let us briefly mention R. Lewandowski, T. Chacón Rebollo, E. Chacón Vera [5],
F. Guillén-Gonzalez, M.A. Rodriguez-Bellido, N. Masmoudi [7], R. Medar [9].

Let us introduce the results obtained in this paper. In the mayor part of the paper,
assumption (1.5) is not needed. Indeed, we propose an optimal functional framework,
based on weighted spaces in order to control the behavior of the mapping h over ∂ω .
Then thanks to assumption (1.5), we prove the equivalence between an adapted reduced
problem (7.1) and (S H ) . In particular, we improve the boundary condition over u3

usually considered in the literature, which is:

u3n3 = 0 in Γ, (1.6)

by studying the Dirichlet condition

u3 = g3 on Γ, (1.7)

in a sense to be defined in Proposition 6.2, even in the incompressible case.This leads
to the main result of this paper. Before stating it, we need to introduce the space

XXXX = H1(Ω)2×H(∂x3 ,Ω),

endowed with the norm ‖uuuu‖XXXX = ‖uuuu′‖H1(Ω) + ‖u3‖H(∂x3 ,Ω) , where H(∂x3 ,Ω) and its
norm are defined in the paragraph 2.4.

THEOREM 1.1. Assume (1.5). Let ffff ′ ∈ L2(Ω)2 , Φ ∈ L2(Ω) , gggg′ ∈ H1/2(Γ)2 and
g3 ∈ L2(Γ, |n3|dσ) . Assume the following compatibility condition:

ˆ
Γ
gggg ·nnnndσ =

ˆ
Ω
Φdx. (1.8)
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Then there is a unique pair (uuuu, p) ∈ XXXX × (L2(Ω)/R) solution to Problem (S H ) and
satisfying the estimate,

‖uuuu‖XXXX +‖p‖L2(Ω)/R � C
(∥∥ ffff ′

∥∥
L2(Ω)2 +‖Φ‖L2(Ω) +

∥∥gggg′
∥∥

H1/2(Γ)2 +‖g3‖L2(Γ,|n3|dσ)

)
,

where C > 0 is a constant depending only on Ω .

We propose, for this paper, the following organization. In Section 2, we set the
functional framework. In particular, we recall some properties of the spaces related to
the divergence operator and the well-known lemma of De Rham. We will also recall
the definition and structure of the anisotropic space H(∂x3 ,Ω) , which gives the classical
regularity of the unknown u3 . To finish, we introduce weighted Lebesgue and Sobolev
spaces in order to offset, if necessary, the degeneracy of h on ∂ω .
In Section 3, we focus on the usual integration operators M and F needed, in Section
4, to study some properties of spaces related to the operator ∇′ ·M . In particular, we
give an adapted lemma of De Rham, proved by Ortegón Gallego in [13], and we build a
lifting operator in Lemma 4.8 related to the non local constraint ∇′ ·Muuuu′ = φ , necessary
to handle non homogeneous conditions for some Stokes type system.
In Section 5, we start the study of Problem (S H ) by investigating the homogeneous
case (5.1). In particular we reduce (S H ) to the problem (5.2) thanks to Lemma (5.2),
and then we solve Problem (5.2) in Lemma 5.3.
We keep on in Section 6 with the non homogeneous case. Here, Assumption (1.5)
is necessary to give a meaning of the boundary condition u3 = g3 on Γ in (1.7), see
Proposition 6.2, and to build a lifting operator of boundary values in Theorem 6.5 to
get back to the homogeneous case, studied in the previous section. As a consequence,
Section 5 and 6 constitute the proof of the main result of this paper, Theorem 1.1.
The results we have established in the previous sections allow to prove, with no adding
computations, complementary results. We propose to collect them in Section 7.
To finish, we give in Section 8 another proof of Theorem 5.1 based, this time, on the
asymptotic study of the penalized problem.

2. Functional framework

2.1. Usual settings

We define D(Ω) to be the linear space of infinitely differentiable functions, with
compact support in Ω , and D ′(Ω) the space of distributions. Then we set

D(Ω) =
{
ϕ |Ω /ϕ ∈ D(R3)

}
.

Let us recall that L2(Ω) denotes the space of the (almost everywhere classes of) mea-
surable functions u such that

´
Ω u2 dx <∞ , which is a Hilbert space for the usual norm

‖u‖L2(Ω) = (
´
Ω u2 dx)1/2 . We also mention the space

L2
0(Ω) =

{
u ∈ L2(Ω)/

ˆ
Ω

udx = 0

}
,
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which is a closed subspace of L2(Ω) , and isomorphic to the quotient space L2(Ω)/R .
We denote by H1(Ω) the Sobolev space

{
u ∈ L2(Ω)/∇u ∈ LLLL2(Ω)

}
which is also

a Hilbert space. In particular, since Ω has a Lipschitz-continuous boundary Γ , any
function u ∈ H1(Ω) bears a trace, still denoted by u , in H1/2(Γ) thus defined by

H1/2(Γ) =
{
μ ∈ L2(Γ)/∃u ∈ H1(Ω) such that u = μ on Γ

}
,

where L2(Γ) denotes the space of measurable functions μ : Γ→ R square integrable
for the surface measure dσ , equipped with

‖μ‖L2(Γ) =
(ˆ

Γ
μ2 dσ

)1/2
.

Recall that H1/2(Γ) is a Hilbert space endowed with the norm

‖μ‖H1/2(Γ) = inf
{
‖u‖H1(Ω) /u ∈ H1(Ω), u = μ on Γ

}
,

and that there is a constant C > 0 depending only on Ω such that

∀μ ∈ H1/2 (Γ) , ‖μ‖L2(Γ) � C‖μ‖H1/2(Γ) .

NOTATION 2.1. Throughout the paper, we denote by C any positive constant de-
pending at most on Ω or ω .

As usual H−1(Ω) denotes the dual space of H1
0 (Ω) where

H1
0 (Ω) =

{
u ∈ H1(Ω)/u = 0 on Γ

}
= D(Ω)H1(Ω) .

To finish, we define, for Γ0 ⊂ Γ with a positive measure, the space

H1
Γ0

(Ω) =
{
u ∈ H1(Ω)/u = 0 on Γ\Γ0

}
,

which is a Hilbert space endowed with the standard H1(Ω) norm. Then we set

H1/2
00 (Γ0) =

{
g ∈ L2(Γ0)/∃u ∈ H1

Γ0
(Ω) such that u = g on Γ0

}
,

which is a Hilbert space for the quotient norm given by

‖g‖
H1/2

00 (Γ0)
= inf

{
‖u‖H1(Ω) /u ∈ H1

Γ0
(Ω) and u = g on Γ0

}
.

As usual, we denote by H−1/2(Γ0) its dual space, and 〈·, ·〉Γ0
stands for the duality

pairing between H−1/2(Γ0) and H1/2
00 (Γ0) .
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2.2. Computations of surface integrals

For given geometry of Ω see (1.1) we would like to replace any integral over ΓS

or ΓB by one defined over ω .

NOTATION 2.2. For any function μ : Γ → R , we define the functions μS (or
(μ)S ) and μB (or (μ)B ) by setting

x′ ∈ ω , μS(x′) = μ(x′, 0), μB(x′) = μ(x′,−h(x′)).

PROPOSITION 2.3. The mapping μ �→ (μS, μB) is linear and continuous from
L2(Γ) into L2(ω)2 . Moreover, one has by definition of the measure dσ :

ˆ
ΓS

μ dσ =
ˆ
ω
μS dx′ and

ˆ
ΓB

μ dσ =
ˆ
ω
μB(1+ |∇h|2)1/2dx′. (2.1)

Proof. This result holds by a change of variables.

REMARK 2.4. Notice that the integrals in (2.1) are well defined since ω is bounded.
Next, the third component of the normal n3 checks n3 = 1 on ΓS , n3 = 0 on ΓL and
(n3)B(1 + |∇h|2)1/2 = −1 on ω . Moreover, (ni)B(1 + |∇h|2)1/2 = −∂xih on ω , for
i = 1, 2. Therefore, for all μ ∈ L2(Γ) ,

ˆ
Γ
μn3 dσ =

ˆ
ω
μS dx′ −

ˆ
ω
μB dx′ and

ˆ
ΓB

μni dσ = −
ˆ
ω
μ
∂h
∂xi

dx′. (2.2)

2.3. Properties of spaces related to the divergence operator

Any results concerning this paragraph can be found in [6] from page 22 to 25. For
any vector field vvvv = (v1, v2, v3) , we define the divergence operator by

divvvvv = ∇ · vvvv =
3

∑
i=1

∂xivi.

Let us introduce the space VVVV =
{
vvvv ∈ H1

0 (Ω)3 /∇ · vvvv = 0
}

, and state the Lemma of De
Rham.

LEMMA 2.5. If ffff ∈ H−1(Ω)3 satisfies

∀vvvv ∈VVVV, 〈 ffff , vvvv〉H−1(Ω)3,H1
0 (Ω)3 = 0,

then there is p ∈ L2(Ω) such that ∇p = ffff in Ω . Since Ω is connected, p is unique up
to an additive constant.
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Observing that for any vvvv ∈ H1
0 (Ω)3 one has

´
Ω∇ · vvvvdx = 0, the range space of the

divergence operator div is contained in L2
0(Ω) . This observation and Lemma 2.5 yield

two isomorphisms

∇ : L2(Ω)/R −→VVVV ◦ and div : VVVV⊥ −→ L2
0(Ω). (2.3)

Here, VVVV⊥ denotes the orthogonal of VVVV for the scalar product

ˆ
Ω
∇uuuu ·∇vvvvdx =

3

∑
i=1

ˆ
Ω
∇ui ·∇vi dx.

Besides, VVVV ◦ denotes the polar space of VVVV :

VVVV ◦ =
{

ffff ∈ H−1(Ω)3 /∀vvvv ∈VVVV, 〈 ffff , vvvv〉H−1(Ω)3,H1
0 (Ω)3 = 0

}
.

From the second isomorphism of (2.3), one deduces that for any Φ ∈ L2(Ω) and any
gggg ∈ H1/2(Γ)3 such that ˆ

Ω
Φdx =

ˆ
Γ
gggg ·nnnn dσ ,

there is uuuu ∈ H1(Ω)3 such that

∇ ·uuuu = Φ in Ω, uuuu = gggg on Γ. (2.4)

2.4. The anisotropic space H(∂x3 ,Ω)

Let us recall some useful results in the sequel, that can be found in [14], for exam-
ple. Let us consider the space

H(∂x3 ,Ω) =
{

u ∈ L2(Ω)/
∂u
∂x3

∈ L2(Ω)
}

,

which is a Hilbert space for the norm ‖u‖H(∂x3 ,Ω) = (‖u‖2
L2(Ω) +

∥∥∂x3u
∥∥2

L2(Ω))
1/2. Let

us recall that the space D(Ω) is dense in H(∂x3 ,Ω) . As a consequence, one has the
following result.

PROPOSITION 2.6. The mapping γ3 : u �→ un3|Γ defined on D(Ω) can be ex-
tended in a unique way to a linear and continuous mapping, still denoted γ3 , from
H(∂x3 ,Ω) into H−1/2(Γ) .

By extension, γ3u is denoted un3 . Moreover, we derive the following Green’s formula:⎧⎨⎩∀u ∈ H(∂x3 ,Ω), ∀v ∈ H1(Ω),ˆ
Ω

u
∂v
∂x3

dx = −
ˆ
Ω

v
∂u
∂x3

dx+ 〈un3, v〉H−1/2(Γ),H1/2(Γ) .
(2.5)
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Now, let us consider the space

H0(∂x3 ,Ω) =
{

u ∈ H(∂x3 ,Ω)/un3 = 0 in H−1/2(Γ)
}

.

Since D(Ω) is dense in H0(∂x3 ,Ω) (see [14] pages 376 and 377 Theorem 2.2), the
following Green’s formula holds⎧⎨⎩∀u ∈ H(∂x3 ,Ω), ∀v ∈ H0(∂x3 ,Ω),ˆ

Ω
u
∂v
∂x3

dx = −
ˆ
Ω

v
∂u
∂x3

dx,
(2.6)

as well as the inequality of Poincaré

∀u ∈ H0(∂x3 ,Ω), ‖u‖L2(Ω) � ‖h‖L∞(ω)

∥∥∥∥ ∂u
∂x3

∥∥∥∥
L2(Ω)

. (2.7)

2.5. Weighted Lebesgue and Sobolev spaces

In this Section and until Section 5, we do not need to work under assumption (1.5)
and therefore, we allow the mapping h to vanish on ω , which leads to more general
situations. In this case, we offset the degeneracy of the domain Ω by working with
weighted Lebesgue spaces.

Let α ∈ {−1/2, 1/2} , and let consider the following weighted Lebesgue space

L2
hα (ω) =

{
p : ω → R/hα p ∈ L2(ω)

}
.

The space L2
hα (ω) is a Hilbert space for the norm

‖p‖L2
hα (ω) = ‖hα p‖L2(ω) .

Note that one has the following embeddings

L2
1/

√
h
(ω) ↪→ L2(ω) ↪→ L2√

h
(ω).

One can prove that the space D(ω) is dense in L2
hα (ω) . Moreover, the dual space of

L2
hα (ω) is the space L2

h−α (ω) .

REMARK 2.7. We shall identify a function p on ω with one defined on Ω . This
is why, for convenience, we set

x ∈Ω, p̃(x) = p(x′).

Therefore, note that p belongs to L2√
h
(ω) if and only if p̃ belongs to L2(Ω) , with

‖p‖L2√
h
(ω) = ‖ p̃‖L2(Ω) .
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3. Definition and properties of the operators M and F

NOTATION 3.1. Let u be a function defined in Ω . We introduce the following
operators

x′ ∈ ω , Mu(x′) =
ˆ 0

−h(x′)
u(x′, x3)dx3,

x ∈Ω, Fu(x) =
ˆ 0

x3

u(x′, ξ )dξ ,

x ∈Ω, Gu(x) =
ˆ x3

−h(x′)
u(x′, ξ )dξ .

PROPOSITION 3.2. The operator M is linear and continuous from L2(Ω) into
L2

1/
√

h
(ω) , and from H1(Ω) into H1(ω) . Then one has for i = 1, 2 :

∀u ∈ H1(Ω),
∂
∂xi

(Mu) = M(
∂u
∂xi

)+
∂h
∂xi

(u|Γ)B in ω , (3.1)

∀u ∈ H1
0 (Ω),

∂
∂xi

(Mu) = M(
∂u
∂xi

) in ω . (3.2)

Moreover,

∀u ∈ H0(∂x3 ,Ω), M(
∂u
∂x3

) = 0 in ω , (3.3)

holds.

Proof. Let u ∈ D(Ω) . The inequality of Cauchy-Schwarz gives for all x′ in ω

|Mu(x′)|2
h(x′)

�
ˆ 0

−h(x′)

∣∣u(x′, x3)
∣∣2 dx3 < ∞. (3.4)

As a consequence, the operator M is linear and continuous on D(Ω) for the L2(Ω)
norm. By density, we can extend in a unique way the operator M to a linear and
continuous one, still denoted by M , from L2(Ω) into L2

1/
√

h
(ω) .

Next, let u in H1(Ω) and i = 1, 2. One has for any ψ ∈ D(ω) :
ˆ
ω

Mu
∂ψ
∂xi

dx′ =
ˆ
Ω

u
∂ψ̃
∂xi

dx = −
ˆ
Ω

∂u
∂xi

ψ̃ dx+
ˆ
Γ
uniψ̃ dσ ,

as ∂̃xiψ = ∂xiψ̃ in Ω . Then relation (2.2) gives
ˆ
Γ
uniψ̃ dσ = −

ˆ
ω
(u|Γ)B

∂h
∂xi

ψ dx′,

as ψ̃ does not depend on x3 and since ψ̃ = 0 on ΓL . Consequently
ˆ
ω

Mu
∂ψ
∂xi

dx′ = −
ˆ
ω

[
M(

∂u
∂xi

)+ (u|Γ)B
∂h
∂xi

]
ψ dx′.
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Thus (3.1) holds in D ′(ω) and in L2(ω) , since h is Lipschitz-continuous. The same
arguments give the continuity of M from H1(Ω) into H1(ω) . When u belongs to
H1

0 (Ω) , the function (u|Γ)B vanishes on ω . Therefore, we deduce (3.2) from relation
(3.1).

To finish, relation (3.3) is straightforward with a computation in the sense of dis-
tributions on ω and using relation (2.6).

REMARK 3.3. The assumption u ∈ H1(Ω) is not sufficient to get (u|Γ)B(∂xih) ∈
L2

1/
√

h
(ω) and conclude that ∂xi(Mu) ∈ L2

1/
√

h
(ω) .

PROPOSITION 3.4. The operator F is linear and continuous from L2(Ω) into
L2(Ω) and the operator G is the adjoint operator to F . Next, the operator F is con-
tinuous from L2(Ω) into H(∂x3 ,Ω) , with in particular:

∀u ∈ L2(Ω),
∂
∂x3

(Fu) = −u in Ω. (3.5)

Moreover,

∀u ∈ H0(∂x3 ,Ω), F(
∂u
∂x3

) = −u in Ω, (3.6)

holds.

Proof. Let u ∈ L2(Ω) . Thanks to the theorem of Fubini and since for almost all
x ∈Ω

|Fu(x)|2 � |x3|
ˆ 0

x3

∣∣u(x′, x3)
∣∣2 dx3

� h(x′)
ˆ 0

−h(x′)

∣∣u(x′, x3)
∣∣2 dx3,

we deduce that Fu ∈ L2(Ω) and ‖Fu‖L2(Ω) � ‖h‖∞ ‖u‖L2(Ω) . Hence F is linear and

continuous from L2(Ω) into L2(Ω) .
Then G is the adjoint to F for the scalar product of L2(Ω) since, thanks to Fu-

bini’s theorem for any u and v in L2(Ω)

ˆ
Ω

vFudx =
ˆ
ω

[ˆ 0

−h(x′)

ˆ 0

x3

u(x′, ξ )v(x′, x3)dξ dx3

]
dx′

=
ˆ
ω

ˆ 0

−h(x′)
u(x′, ξ )

[ˆ ξ

−h(x′)
v(x′, x3)dx3

]
dξ dx′

=
ˆ
Ω

uGvdx.
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Next, one has for any ϕ ∈ D(Ω)
ˆ
Ω

∂ϕ
∂x3

Fudx =
ˆ
Ω

uG(
∂ϕ
∂x3

)dx =
ˆ
Ω

uϕ dx.

Hence (3.5) holds in D ′(Ω) and ∂x3(Fu) ∈ L2(Ω) . Moreover, we deduce from the
previous claim that the operator F is continuous from L2(Ω) into H(∂x3 ,Ω) . To finish,
we use the same arguments as above and relation (2.6) to prove (3.6).

LEMMA 3.5. Let u in H1(Ω) , and set G = u|Γ . Then:

M(
∂u
∂x3

) = GS −GB in ω , and F(
∂u
∂x3

) = G̃S −u, G(
∂u
∂x3

) = u− G̃B in Ω.

Proof. Proposition 2.3 implies that GS and GB belong to L2(ω) . Then one gets
from relation (2.2), that for any ψ ∈ D(ω) :

ˆ
ω

M(
∂u
∂x3

)ψ dx′ =
ˆ
Ω
ψ̃

∂u
∂x3

dx =
ˆ
Γ
ψ̃ G n3 dσ

=
ˆ
ω
ψ GS dx′ −

ˆ
ω
ψ GB dx′ =

ˆ
ω
(GS−GB)ψ dx′,

and the first relation is proved. Let us deal with the second one. By Remark 2.7, the
function G̃S −u belongs to L2(Ω) . Next, Proposition 3.4 and (2.2), prove that for any
ϕ ∈ D(Ω) :

ˆ
Ω

F(
∂u
∂x3

)ϕ dx =
ˆ
Ω

∂u
∂x3

Gϕ dx

= −
ˆ
Ω

uϕ dx+
ˆ
ω

GS(Gϕ)S dx′ −
ˆ
ω

GB(Gϕ)B dx.

Since (Gϕ)S = Mϕ and (Gϕ)B = 0 in ω , we deduce that
ˆ
Ω

F(
∂u
∂x3

)ϕ dx = −
ˆ
Ω

uϕ dx+
ˆ
Ω

G̃Sϕ dx,

from which one deduces the second relation. To prove the last one, note that

Gu = M̃u−Fu in Ω.

PROPOSITION 3.6. Let u ∈ L2(Ω) . Then one has

(Fu)n3 = 0 in H−1/2(ΓS ∪ΓL), (Fu)n3 = M̃un3 in H−1/2(ΓB).

Proof. Let u ∈ L2(Ω) . By Proposition 3.4, one has Fu ∈ H(∂x3 ,Ω) , and Proposi-
tion 2.6 ensures (Fu)n3 ∈ H−1/2(Γ). Then Lemma 3.5 gives for any v ∈ H1(Ω) :

〈(Fu)n3,v〉H−1/2(Γ),H1/2(Γ) =
ˆ
Ω

∂v
∂x3

Fudx−
ˆ
Ω

uvdx
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=
ˆ
Ω

uG(
∂v
∂x3

)dx−
ˆ
Ω

uvdx =
ˆ
Ω

u(v− (̃v|Γ)B)dx−
ˆ
Ω

uvdx

= −
ˆ
ω
(v|Γ)B Mudx′.

Therefore we get

∀v ∈ H1(Ω), 〈(Fu)n3,v〉H−1/2(Γ),H1/2(Γ) = −
ˆ
ω
(v|Γ)B Mudx′. (3.7)

As a consequence, one deduces that

∀v ∈ H1
ΓS∪ΓL

(Ω), 〈(Fu)n3,v〉ΓS∪ΓL
= 0,

and the first equality is proved. Let us focus on the second one. Since ∂x3M̃u = 0 in Ω ,
the function M̃u belongs to H(∂x3 ,Ω) . Hence, one has M̃un3 ∈ H−1/2(Γ) . Moreover,
from Green’s formula (2.5), one gets for any v ∈ H1(Ω)〈

M̃un3,v
〉

H−1/2(Γ),H1/2(Γ)
=
ˆ
Ω

M̃u
∂v
∂x3

dx =
ˆ
ω

MuM(
∂v
∂x3

)dx.

Then one uses Lemma 3.5 to deduce〈
M̃un3,v

〉
H−1/2(Γ),H1/2(Γ)

= −
ˆ
ω

Mu(v|Γ)B dx′ +
ˆ
ω

Mu(v|Γ)S dx′

= 〈(Fu)n3,v〉H−1/2(Γ),H1/2(Γ) +
ˆ
ω

Mu(v|Γ)S dx′.

Therefore, one has for any v ∈ H1
ΓB

(Ω) ,

〈(Fu)n3,v〉ΓB
=

〈
M̃un3,v

〉
ΓB

,

which proves the last equality.
As a consequence of Proposition 3.6, Proposition 3.2 and relation (3.7), the fol-

lowing result holds.

COROLLARY 3.7. Let u ∈ L2(Ω) . Then the following assertions are equivalent:
i) Mu = 0 in L2

1/
√

h
(ω).

ii) (Fu)n3 = 0 in H−1/2(Γ).

4. Some properties related to the mean divergence operator

For vvvv′ = (v1, v2) , we define the mean divergence operator by

∇′ ·Mvvvv′ = ∑
i=1,2

∂xi(Mvi).
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Let us introduce the space

VVVVM =
{
vvvv′ ∈ H1

0 (Ω)2 /∇′ ·Mvvvv′ = 0 in ω
}

.

Since VVVVM is a closed subspace of H1
0 (Ω)2 , we have the decomposition

H1
0 (Ω)2 = VVVVM ⊕VVVV⊥

M, (4.1)

where VVVV⊥
M denotes the orthogonal of VVVVM for the scalar product

´
Ω∇uuuu′ ·∇vvvv′ dx.

Next, let us mention here the work of Ortegón Gallego [13], to establish a kind of
Lemma of De Rham, useful in the study of problem related to the non local constraint
∇′ ·Muuuu′ = 0 in ω (see Problem (5.2)). We start by giving the definition of distributions
independent on x3 (see [13] Theorem 1 page 337).

PROPOSITION 4.1. Let T ∈D ′(Ω) . Then the following assertions are equivalent.
1. The distribution T does not depend on x3 in the sense ∂x3T = 0 in Ω .
2. There is a unique distribution S ∈ D ′(ω) such that

∀ϕ ∈ D(Ω), 〈T, ϕ〉D ′(Ω),D(Ω) = 〈S, Mϕ〉D ′(ω),D(ω) . (4.2)

Besides, the regularity of the distribution S depends on the one of T .

PROPOSITION 4.2. We keep the notations of Proposition 4.1. Let T ∈D ′(Ω) and
S ∈ D ′(ω) satisfying (4.2). If T ∈ H−1(Ω) , then

S ∈ H−1(
◦
K), for any compact set K ⊂ ω .

If moreover, ess infω h > 0 , then S ∈ H−1(ω) .

REMARK 4.3. By adapting Proposition 4.2, one can prove that if T ∈ L2(Ω) then
S is locally in L2(ω) . Then from relation (4.2) one deduces that T = S̃ in L2(Ω) , and
consequently S ∈ L2√

h
(ω) by Remark 2.7.

By now, let us state and prove of the expected De Rham-like lemma, useful in the
sequel.

LEMMA 4.4. If ffff ′ ∈ H−1(Ω)2 satisfies

∀vvvv′ ∈VVVVM,
〈
ffff ′, vvvv′

〉
H−1(Ω)2,H1

0 (Ω)2 = 0,

then there is q ∈ L2√
h
(ω) , unique up to an additive constant, such that ∇′q̃ = ffff ′ in Ω .

Proof. Let us set ffff = ( ffff ′, 0) . Thanks to (3.2) and (3.3), any vvvv ∈ VVVV is such that
vvvv′ ∈ VVVVM . As a consequence, the distribution ffff is exactly in the statement of Lemma
2.5. Therefore, there is a unique function p in L2(Ω)/R such that

∇′p = ffff ′ and
∂ p
∂x3

= 0 in Ω.
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Then since ∂x3 p = 0 in Ω , we deduce from Proposition 4.1 and Remark 4.3, that there
is q ∈ L2√

h
(ω) , unique up to an additive constant, such that p = q̃ . Hence q satisfies

∇′q̃ = ffff ′ in Ω .
As a consequence of Lemma 4.4, we give a characterization of the space VVVV⊥

M .
Previously, we require a definition.

DEFINITION 4.5. Let (−Δ)−1 : H−1(Ω)2 → H1
0 (Ω)2 denotes the linear and con-

tinuous Green’s operator related to Dirichlet’s homogeneous problem for −Δ in Ω , i.
e. uuuu′ = (−Δ)−1 ffff ′ if and only if uuuu′ is the solution to:

−Δuuuu′ = ffff ′ in Ω, uuuu′ = 0 on Γ.

COROLLARY 4.6. We have

VVVV⊥
M =

{
(−Δ)−1∇′q̃/q ∈ L2√

h
(ω)

}
. (4.3)

Proof. First, let us check that for q ∈ L2√
h
(ω) , uuuu′ = (−Δ)−1∇′q̃ belongs to VVVV⊥

M .

One has for any vvvv′ ∈VVVVM :
ˆ
Ω
∇uuuu′ ·∇vvvv′ dx =

〈−Δuuuu′, vvvv′
〉

= −
ˆ
Ω

q̃∇′ · vvvv′ dx = −
ˆ
ω

qM(∇′ · vvvv′)dx′ = 0,

thanks to (3.2) and the fact that ∇′ ·Mvvvv′ = 0. Conversely, let uuuu′ ∈ VVVV⊥
M and consider

mapping llll′ in H−1(Ω)2 by〈
llll′, vvvv′

〉
H−1(Ω)2,H1

0 (Ω)2 =
ˆ
Ω
∇uuuu′ ·∇vvvv′ dx.

Then llll′ vanishes on VVVVM , and thanks to Lemma 4.4 there is q ∈ L2√
h
(ω) such that

∀vvvv′ ∈ H1
0 (Ω)2,

ˆ
Ω
∇uuuu′ ·∇vvvv′ dx =

〈
∇′q̃, vvvv′

〉
H−1(Ω)2,H1

0 (Ω)2 .

Hence uuuu′ = (−Δ)−1∇′q̃ .
Next, we want to characterize the range space of the operator ∇′ ·M . Observe that

Green’s formula and (3.2) yield:

∀vvvv′ ∈ H1
0 (Ω)2,

ˆ
ω
∇′ ·Mvvvv′dx′ = 0.

Thus the range space of ∇′ ·M is contained in a proper, closed subspace of L2
1/

√
h
(ω) ,

that is
L2

1/
√

h,0
(ω) := L2

1/
√

h
(ω)∩L2

0(ω).

COROLLARY 4.7. The following operators are isomorphisms

∇′ : L2√
h
(ω)/R −→VVVV ◦

M and ∇′ ·M : VVVV⊥
M −→ L2

1/
√

h,0
(ω). (4.4)
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Proof. We already know that ∇′ is linear and continuous. Moreover, it is a bijec-
tion thanks to Lemma 4.4. As L2√

h
(ω)/R and VVVV ◦

M are both Banach spaces, it follows

that ∇′ is an isomorphism.
Therefore, ∇′ ·M is an isomorphism from (VVVV ◦

M)′ onto (L2√
h
(ω)/R)′ . On the one hand,

one can prove that the space (VVVV ◦
M)′ can be identified to VVVV⊥

M , by using similar arguments
as in the proof of Corollary 2.4 in [6]. On the other hand, note that (L2√

h
(ω)/R)′ can be

identified with L2
1/

√
h
(ω) ⊥ R , where the orthogonality is taken in the following sense

∀p ∈ L2
1/

√
h
(ω), 〈p, 1〉L2

1/
√

h
(ω),L2√

h
(ω) =

ˆ
ω

pdx′ = 0.

It follows that L2
1/

√
h
(ω) ⊥ R can be identified to L2

1/
√

h,0
(ω) .

We finish this section by giving an adaptation of the lifting operator defined in
relation (2.4), by building a lifting operator of boundary values related to the operator
∇′ ·M . Previously, we need to give the Stokes formula related to the operator ∇′ ·M ,
that is a consequence of relations (3.1) and (2.2):

∀uuuu′ ∈ H1(Ω)2,

ˆ
ω
∇′ ·Muuuu′dx′ =

ˆ
ΓL

uuuu′ ·nnnn′ dσ . (4.5)

In order to state the last result of this section, let us consider the following subspace
of H1/2(Γ) ,

H1/2
h (Γ) =

{
g ∈ H1/2(Γ)/

g√
h
∈ L2(Γ)

}
, (4.6)

that we equip with the graph norm

‖g‖
H1/2

h (Γ)
= (‖g‖2

H1/2(Γ) +
∥∥∥∥ g√

h

∥∥∥∥2

L2(Γ)
)1/2.

LEMMA 4.8. Let gggg′ ∈H1/2
h (Γ)2 and φ ∈ L2

1/
√

h
(ω) , satisfying the following com-

patibility condition: ˆ
ω
φ dx′ =

ˆ
ΓL

gggg′ ·nnnn′ dσ .

Then there is uuuu′ ∈ H1(Ω)2 such that

∇′ ·Muuuu′ = φ in ω , uuuu′ = gggg′ on Γ. (4.7)

Moreover, there is a constant C > 0 depending only on Ω such that

∥∥uuuu′
∥∥

H1(Ω)2 � C

(∥∥gggg′
∥∥

H
1/2
h (Γ)2

+‖φ‖L2
1/

√
h
(ω)

)
. (4.8)
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Proof. Let gggg′ ∈ H1/2
h (Γ)2 . Then there is vvvv′ in H1(Ω)2 such that vvvv′ = gggg′ on Γ ,

and
vvvv′√
h
∈ L2(Γ). (4.9)

Firstly, note that (4.9) and (2.2) ensures that (vvvv′|Γ)B ·∇h belongs to L2
1/

√
h
(ω) , with the

estimates ∥∥(vvvv′|Γ)B ·∇h
∥∥

L2
1/

√
h
(ω) � C

∥∥vvvv′
∥∥

H1/2(Γh)2
. (4.10)

Secondly, according to Stokes formula (4.5), one observes that
ˆ
ω
∇′ ·Mvvvv′ dx′ =

ˆ
ΓL

gggg′ ·nnnn′ dσ =
ˆ
ω
φ dx′.

From what precedes, the function ∇′ ·Mvvvv′ −φ is in L2
1/

√
h,0

(ω) , and the isomorphism

given in (4.4) provides a unique zzzz′ in VVVV⊥
M satisfying

∇′ ·Mzzzz′ = ∇′ ·Mvvvv′ −φ in ω .

Moreover, there is a constant C > 0 depending only on Ω such that∥∥zzzz′
∥∥

H1(Ω)2 � C
∥∥∇′ ·Mvvvv′ −φ

∥∥
L2

1/
√

h
(ω) .

One has by (3.1), (4.10) and since vvvv′ = gggg′ in H1/2
h (Γ) :

∥∥zzzz′
∥∥

H1(Ω)2 � C

(∥∥M(∇′ · vvvv′)∥∥L2
1/

√
h
(ω) +

∥∥(vvvv′|Γ)B ·∇h
∥∥

L2
1/

√
h
(ω) +‖φ‖L2

1/
√

h
(ω)

)
� C

(∥∥vvvv′
∥∥

H1(Ω)2 +
∥∥gggg′

∥∥
H

1/2
h (Γ)2

+‖φ‖L2
1/

√
h
(ω)

)
.

By taking the infimum on the functions vvvv′ ∈H1(Ω)2 such that vvvv′ = gggg′ on Γ , we deduce
that ∥∥zzzz′

∥∥
H1(Ω)2 � C

(∥∥gggg′
∥∥

H
1/2
h (Γ)2

+‖φ‖L2
1/

√
h
(ω)

)
. (4.11)

Consequently, uuuu′ = vvvv′ − zzzz′ satisfies (4.7) and (4.8).

5. Resolution of Problem (S H ) with homogeneous Dirichlet conditions

Given ffff ′ : Ω → R2 , one wishes to solve the homogeneous hydrostatic Stokes
problem, that consists in seeking uuuu : Ω→ R3 and p :Ω→ R formally solution to⎧⎨⎩−Δuuuu′ +∇′p = ffff ′,

∂ p
∂x3

= 0, ∇ ·uuuu = 0 in Ω,

uuuu′ = 0, u3n3 = 0 on Γ.
(5.1)
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Before giving the main result of this section, let us denote by XXXX0 the space

XXXX0 = H1
0 (Ω)2×H0(∂x3 ,Ω).

Then let ffff ′ ∈ H−1(Ω)2 and consider the following auxiliary problem.

Find (uuuu′, pS) ∈ H1
0 (Ω)2× (L2√

h
(ω)/R) such that:⎧⎨⎩

−Δuuuu′ +∇′ p̃S = ffff ′ in Ω,
∇′ ·Muuuu′ = 0 in ω ,

uuuu′ = 0 on Γ.
(5.2)

THEOREM 5.1. Let ffff ′ ∈ H−1(Ω)2 , and let (uuuu′, pS) be the unique solution to
Problem (5.2). Moreover, let us set

x ∈Ω, p(x) = p̃S(x′), u3(x) = F(∇′ ·uuuu′)(x). (5.3)

Then the pair (uuuu, p) ∈ XXXX0 × (L2(Ω)/R) is the unique solution to Problem (5.1). Be-
sides, there is a constant C > 0 depending at most on Ω such that∥∥uuuu′

∥∥
H1(Ω)2 +‖u3‖H(∂x3 ,Ω) +‖p‖L2(Ω)/R � C

∥∥ ffff ′
∥∥

H−1(Ω)2 . (5.4)

In order to prove Theorem 5.1, we establish thanks to Lemma 5.2 that (5.1) and
(5.2), combined with (5.3), are equivalent. Finally, we prove in Lemma 5.3, that Prob-
lem (5.2) has a unique solution (uuuu′, pS) in the space H1

0 (Ω)2× (L2√
h
(ω)/R) . Note that

we give in the appendix another approach to solve Problem (5.1), that can be seen as
the physical approach of this problem.

LEMMA 5.2. Let uuuu ∈ H1
0 (Ω)2 ×H(∂x3 ,Ω) . Then the following assertions are

equivalent:
i) ∇ ·uuuu = 0 in Ω, u3n3 = 0 in H−1/2(Γ).
ii) ∇′ · (Muuuu′) = 0 in ω , u3 = F(∇′ ·uuuu′) in Ω.

Proof. Assume i . Then (3.3) and (3.6) give

M(∇′ ·uuuu′) = 0 in ω , u3 = F(∇′ ·uuuu′) in Ω.

Moreover, thanks to (3.2) one has M(∇′ ·uuuu′) = ∇′ ·Muuuu′ , which proves ii) . Conversely,
one has by relation (3.5),

∂u3

∂x3
= −∇′ ·uuuu′ and ∇ ·uuuu = 0 in Ω.

Besides, and since M(∇′ ·uuuu′) = 0, Proposition 3.7 ensures that

n3F(∇′ ·uuuu′) = 0 in H−1/2(Γ),

hence u3n3 = 0 in H−1/2(Γ) .
According to Lemma 5.2 and the fact that p does not depend on x3 , see Remark

4.3, solving Problem (5.1) reduces to solve Problem (5.2). Then we get back to p and
u3 thanks to relation (5.3).
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LEMMA 5.3. Let ffff ′ in H−1(Ω)2 . There is a unique solution (uuuu′, pS) in the space
H1

0 (Ω)2× (L2√
h
(ω)/R) to Problem (5.2). Moreover, there is a constant C > 0 depend-

ing only on Ω such that∥∥uuuu′
∥∥

H1(Ω)2 +‖pS‖L2√
h
(ω)/R � C

∥∥ ffff ′
∥∥

H−1(Ω)2 . (5.5)

Proof. Let (uuuu′, pS) ∈ H1
0 (Ω)2 × (L2√

h
(ω)/R) be a solution to (5.2), and let vvvv′ ∈

VVVVM . Then one has thanks to (3.2),〈
∇′ p̃S, vvvv′

〉
H−1(Ω)2,H1

0 (Ω)2 = −
ˆ
Ω

p̃S∇′ · vvvv′ dx

= −
ˆ
ω

pS M(∇′ · vvvv′)dx′ = −
ˆ
ω

pS∇′ ·Mvvvv′ dx′ = 0,

since ∇′ ·Mvvvv′ = 0 in ω . As a consequence, uuuu′ satisfies the following variational for-
mulation. ⎧⎨⎩Find uuuu′ ∈VVVVM such that:

∀vvvv′ ∈VVVVM,

ˆ
Ω
∇uuuu′ ·∇vvvv′ dx = 〈 ffff ′, vvvv′〉H−1(Ω)2,H1

0 (Ω)2 .
(5.6)

Conversely, any solution uuuu′ ∈VVVVM to (5.6) is such that

∀vvvv′ ∈VVVVM,
〈
Δuuuu′ + ffff ′, vvvv′

〉
H−1(Ω)2,H1

0 (Ω)2 = 0,

hence Δuuuu′ + ffff ′ is exactly in the statement of Lemma 4.4. Therefore, there is a unique
pS in (L2√

h
(ω)/R) such that

∇p̃S = Δuuuu′ + ffff ′ in Ω, (5.7)

wher uuuu′ is a solution to Problem (5.2). As a consequence, we have proved that a pair
(uuuu′, p) ∈ H1

0 (Ω)2 × (L2√
h
(ω)/R) is a solution to (5.1) if and only if uuuu′ is a solution

to (5.6). To prove the existence and uniqueness of a solution to (5.1), note that Lax-
Milgram’s lemma provides a unique uuuu′ in VVVVM satisfying (5.6). Then by taking vvvv = uuuu
in (5.6), we deduce that ∥∥∇uuuu′

∥∥
L2(Ω) � C

∥∥ ffff ′
∥∥

H−1(Ω) . (5.8)

To finish, the first isomorphism of (4.4) relation (5.8) and (5.7), give the following
estimates

‖pS‖L2√
h
(ω)/R � C‖∇p̃S‖L2(Ω) � C

∥∥ ffff ′
∥∥

H−1(Ω)2 .

Here, we recall that C > 0 denotes any constant depending only on Ω .

Proof of Theorem 5.1. Thanks to Proposition 5.3 and Lemma 5.2, one has solved
(5.1). Moreover we have one part of the estimate (5.4), the one concerning uuuu′ and p .
To get the missing one on u3 = F(∇′ ·uuuu′) , we use Proposition 3.4, and to obtain the one
p = p̃S , we use Remark 2.7. �
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6. Resolution of Problem (S H ) with non homogeneous Dirichlet conditions

Throughout this section, we assume that Ω has sidewalls. More precisely, we
make the assumption (1.5) on the mapping h . Far from now, this assumption was not
needed. Note, in this case, that the spaces L2

hα (ω) of Paragraph 2.5 are algebraically
and topologically equal to L2(ω) .

Figure 6.1: The domain Ω with sidewalls

6.1. An optimal trace operator for the space H(∂x3 ,Ω)

Let us recall that n3 = 0 on ΓL , n3 = 1 on ΓS and n3 < 0 on ΓB . As a conse-
quence, since n3 has a constant sign on ΓB , n3 can be considered as a weight for the
surface measure dσ . This is why we introduce the following Lebesgue space

L2(Γ, |n3|dσ) =
{
μ : Γ→ R, |n3|dσ −measurable /μ |n3|1/2 ∈ L2(Γ)

}
,

endowed with the norm

‖μ‖L2(Γ,|n3|dσ) =
∥∥∥μ |n3|1/2

∥∥∥
L2(Γ)

.

REMARK 6.1. Let μ ∈ L2(Γ, |n3|dσ) . Then since n2
3 � |n3| on Γ , one has μn3 ∈

L2(Γ) , with
‖μn3‖L2(Γ) � ‖μ‖L2(Γ,|n3|dσ) .

Moreover, one deduces, from the above inequality and (2.2), that μS and μB both
belong to L2(ω) , with

‖μS‖L2(ω) � ‖μn3‖L2(ΓS) � C‖μ‖L2(Γ,|n3|dσ) ,

‖μB‖L2(ω) � ‖μn3‖L2(ΓB) � C‖μ‖L2(Γ,|n3|dσ) .

Next, let λ , μ ∈ L2(Γ, |n3|dσ) . One proves, by the inequality of Hölder, that λμn3

belongs to L1(Γ) . To finish this remark, note that for μ ∈ L2(Γ, |n3|dσ) one has:ˆ
Γ
μ |n3|dσ =

ˆ
ω
μS dx′ +

ˆ
ω
μB dx′, (6.1)

thanks to relation (2.2).



438 C. AMROUCHE, F. DAHOUMANE, R. LUCE AND G. VALLET

PROPOSITION 6.2. The linear mapping γ : u �→ u|Γ defined on D(Ω) can be
extended in a unique way to a linear and continuous mapping, denoted in the same
way, from H(∂x3 ,Ω) into L2(Γ, |n3|dσ) .

Proof. Let θ = θ (x3) in D(R) such that

I[−‖h‖L∞(ω),−2α/3) � θ � I[−‖h‖L∞(ω),−α/3),

where α is defined in (1.5). Then let us set

x ∈Ω, θB(x) = θ (x3), θ S(x) = 1−θ (x3).

Therefore |n3|θ S = n3θ S and |n3|θB = −n3θB over Γ . Next, let u ∈ D(Ω) . Then
ˆ
Γ
u2 |n3|dσ =

ˆ
Γ
u2(θ S +θB) |n3|dσ

=
ˆ
Γ
u2θ Sn3 dσ −

ˆ
Γ
u2θBn3 dσ

=
ˆ
Γ
u2(θ S −θB)n3 dσ .

From Green’s formula, we deduce
ˆ
Γ
u2 |n3|dσ = 2

ˆ
Ω
(θ S −θB)u

∂u
∂x3

dx+
ˆ
Ω

u2 ∂
∂x3

(θ S −θB)dx

� Cθ ‖u‖2
H(∂x3 ,Ω) ,

where Cθ > 0 is a constant depending on θ . Consequently, the mapping γ is linear
and continuous for the norm of H(∂x3 ,Ω) . The result holds by an extension argument.
From the density of D(Ω) in H(∂x3 ,Ω) and from Remark 6.1, the following Green’s
formula holds:

∀u,v ∈ H(∂x3 ,Ω),
ˆ
Ω

u
∂v
∂x3

dx = −
ˆ
Ω

v
∂u
∂x3

dx+
ˆ
Γ
uvn3 dσ . (6.2)

REMARK 6.3. Let u,v ∈ H(∂x3 ,Ω) . Thanks to Remark 6.1, we observe that the
functions (u|Γ)S, (u|Γ)B and (v|Γ)S, (v|Γ)B belong to L2(ω) . Consequently, one has
by relation (2.2):

ˆ
Γ
uvn3 dσ =

ˆ
ω
(u|Γ)S(v|Γ)S dx′ −

ˆ
ω
(u|Γ)B(v|Γ)B dx′. (6.3)

To finish, one can adapt Lemma 3.5, with Remark 6.1, Green’s formula (6.2) and
relation (6.3), to prove the following result.

LEMMA 6.4. Let u in H(∂x3 ,Ω) . and set G = u|Γ . Then:
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i) M(
∂u
∂x3

) = GS−GB in L2(ω).

ii) F(
∂u
∂x3

) = G̃S −u in L2(Ω).

iii) G(
∂u
∂x3

) = u− G̃B in L2(Ω).

6.2. Lift operator of boundary values

To solve Problem (S H ) , one wishes to bring back to the homogeneous case of
Section 5, where Φ = 0 and gggg = 0.

THEOREM 6.5. Let Φ ∈ L2(Ω) , gggg′ ∈H1/2(Γ)2 and g3 ∈ L2(Γ, |n3|dσ) . Assume
the following compatibility condition:

ˆ
Γ
gggg ·nnnndσ =

ˆ
Ω
Φdx. (6.4)

Then there is uuuu in XXXX satisfying

∇ ·uuuu = Φ in Ω, uuuu′ = gggg′ in Γ, u3 = g3 in Γ |n3|dσ −a.e. (6.5)

Moreover, there is a constant C > 0 such that

‖uuuu‖XXXX � C
(
‖Φ‖L2(Ω) +

∥∥gggg′
∥∥

H1/2(Γ)2 +‖g3‖L2(Γ,|n3|dσ)

)
. (6.6)

REMARK 6.6. The compatibility condition (6.4) comes from the following Stokes
formula:

∀uuuu ∈ XXXX ,

ˆ
Ω
∇ ·uuuudx =

ˆ
Γ
gggg ·nnnndσ ,

which is satisfied thanks to Remark 6.3.

The proof of this theorem is straightforward, after having established the following
lemma.

LEMMA 6.7. We keep the notations of Theorem 6.5, and we set

φ = MΦ+(g3)B − (g3)S +gggg′B ·∇h in ω and U = (̃g3)S −FΦ in Ω. (6.7)

1. Then φ ∈ L2(ω) and satisfies with gggg′ the compatibility condition
ˆ
ω
φ dx′ =

ˆ
ΓL

gggg′ ·nnnn′ dσ . (6.8)

2. The function uuuu ∈ XXXX satisfies (6.5) if and only if

∇′ ·Muuuu′ = φ in ω , (6.9)

with u3 = F(∇′ ·uuuu′)+U in Ω .
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Proof. 1. Thanks to Proposition 2.3, Proposition 3.2 and Remark 6.1, one deduces
that φ belongs to L2(ω) . Next, relation (6.8) is a direct application of relations (6.3)
and (2.2).

2. Assume that ∇ ·uuuu = Φ and u3 = g3 in L2(Γ, |n3|dσ) . Then Lemma 6.4 gives

M(∇′ ·uuuu′) = φ −gggg′B ·∇h in ω and u3 = F(∇′ ·uuuu′)+U in Ω. (6.10)

Moreover, thanks to relation (3.1), one has ∇′ ·Muuuu′ = M(∇′ ·uuuu′)+gggg′B ·∇h , which proves
(6.9). Conversely, Proposition 3.4 ensures that

∂u3

∂x3
= −∇′ ·uuuu′ +Φ and ∇ ·uuuu = Φ in Ω.

Finally, let us establish that u3 = g3 in L2(Γ, |n3|dσ) . Since n3 < 0 over ΓB , we
deduce from Proposition 3.6 and Proposition 6.2 that[

F(∇′ ·uuuu′ −Φ)|Γ
]
S = 0,

[
F(∇′ ·uuuu′ −Φ)|Γ

]
B = M(∇′ ·uuuu′ −Φ) on ω .

As a consequence, one obtains, thanks to relation (6.1) and by definition of u3 (6.10),
for any μ ∈ L2(Γ, |n3|dσ) :

ˆ
Γ
u3μ |n3|dσ =

ˆ
ω
(u3|Γ)SμS dx′ +

ˆ
ω
(u3|Γ)BμB dx′

=
ˆ
ω
(g3)SμS dx′ +

ˆ
ω
(g3)SμB dx′ +

ˆ
ω

M(∇′ ·uuuu′ −Φ)μB dx′.

Since M(∇′ ·uuuu′ −Φ) = (g3)B − (g3)S , one gets
ˆ
Γ
u3μ |n3|dσ =

ˆ
ω
(g3)SμS dx′ +

ˆ
ω
(g3)BμB dx′

=
ˆ
Γ
g3μ |n3|dσ .

As a consequence, u3 = g3 in L2(Γ, |n3|dσ) , which ends the proof.

PROOF OF THEOREM 6.5. Let Φ ∈ L2(Ω) , gggg′ ∈ H1/2(Γ)2 , g3 ∈ L2(Γ, |n3|dσ)
and (6.7). From what precedes and thanks to Remark 6.1, the function φ is exactly in
the statement of Lemma 4.8, with

‖φ‖L2(ω) � C
(
‖Φ‖L2(Ω) +

∥∥gggg′
∥∥

H1/2(Γ)2 +‖g3‖L2(Γ,|n3|dσ)

)
. (6.11)

Therefore, there is uuuu′ ∈ H1(Ω)2 such that

∇′ ·Muuuu′ = φ in ω , uuuu′ = gggg′ on Γ,

and satisfying the following estimate∥∥uuuu′
∥∥

H1(Ω)2 � C
(∥∥gggg′

∥∥
H1/2(Γ)2 +‖φ‖L2(ω)

)
. (6.12)
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Then we set u3 = F(∇′ ·uuuu′)+U . The vector field uuuu = (uuuu′, u3) belongs to XXXX and sat-
isfies (6.5) thanks to Lemma 6.7. Moreover, we deduce the estimates (6.6) thanks to
Proposition 3.4, (6.11) and (6.12). �

Therefore, Theorem 6.5 combined with Theorem 5.1 proves the main result stated
in Theorem 1.1, that we recall below.

THEOREM 6.8. Assume (1.5). Let ffff ′ ∈ L2(Ω)2 , Φ ∈ L2(Ω) , gggg′ ∈ H1/2(Γ)2 and
g3 ∈ L2(Γ, |n3|dσ) . Assume the following compatibility condition:

ˆ
Γ
gggg ·nnnndσ =

ˆ
Ω
Φdx.

Then there is a unique pair (uuuu, p) ∈ XXXX × (L2(Ω)/R) solution to problem (S H ) .
Moreover, there is a constant C > 0 depending only on Ω such that

‖uuuu‖XXXX +‖p‖L2(Ω)/R � C
(∥∥ ffff ′

∥∥
L2(Ω)2 +‖Φ‖L2(Ω) +

∥∥gggg′
∥∥

H1/2(Γ)2 +‖g3‖L2(Γ,|n3|dσ)

)
.

7. Auxiliary results

The results we have established in the previous sections allow to prove, with no
additional computation, the following corollaries. Firstly, thanks to Lemma 4.8 and
Theorem 5.3, we solved the linear version of the Primitive Equations with non homo-
geneous Dirichlet conditions in an arbitrary domain Ω defined as in (1.1).

COROLLARY 7.1. Let Ω as in (1.1). Let ffff ′ ∈ L2(Ω)2 , φ ∈ L2
1/

√
h
(ω) and gggg′ ∈

H1/2
h (Γ)2 (see (4.6)) such that

ˆ
ΓL

gggg′ ·nnnn′dσ =
ˆ
ω
φ dx.

Then there is a unique pair (uuuu′, p) ∈ H1(Ω)2× (L2√
h
(ω)/R) such that⎧⎨⎩

−Δuuuu′+∇′pS = ffff ′ in Ω,
∇′ ·Muuuu′ = φ in ω ,

uuuu′ = gggg′ on Γ.
(7.1)

Moreover, there is a constant C > 0 depending only on Ω such that

∥∥uuuu′
∥∥

H1(Ω)2 +‖pS‖L2√
h
(ω)/R � C

(∥∥ ffff ′
∥∥

L2(Ω)2 +‖φ‖L2
1/

√
h
(ω) +

∥∥gggg′
∥∥

H
1/2
h (Γ)2

)
.

Secondly, we have proved that we can reduce (S H ) to an equivalent problem,
when Ω is a cylindrical-type domain.
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COROLLARY 7.2. Assume (1.5). Let ffff ′ ∈ L2(Ω)2 , Φ ∈ L2(Ω) , gggg′ ∈ H1/2(Γ)2 ,
and g3 ∈ L2(Γ, |n3|dσ) . Assume the following compatibility condition:ˆ

Γ
gggg ·nnnndσ =

ˆ
Ω
Φdx.

Next, let us set

φ = MΦ+(g3)B − (g3)S +gggg′B ·∇h+gggg′B ·∇h and U = (̃g3)S −FΦ.

1. Then φ ∈ L2(ω) satisfies with gggg′ the compatibility conditionˆ
ω
φ dx′ =

ˆ
ΓL

gggg′ ·nnnn′ dσ .

2. Any pair (uuuu, p) ∈ XXXX × (L2(Ω)/R) is solution to (S H ) if and only if (uuuu′, pS) ∈
H1(Ω)2 × (L2(ω)/R) is a solution to (7.1) with

x ∈Ω, p(x) = p̃S(x′), u3(x) = F(∇′ ·uuuu′)(x)+U(x).

Finally, we can complete Proposition 6.2 about the trace of functions of H(∂x3 ,Ω) .

COROLLARY 7.3. Assume (1.5). The mapping γ : u �→ u|Γ defined on D(Ω) ,
can be extended in a unique and continuous way to a linear mapping, still denoted
γ , from H(∂x3 ,Ω) into L2(Γ, |n3|dσ) . Moreover for any g ∈ L2(Γ, |n3|dσ) , there is
u ∈ H(∂x3 ,Ω) such that u = g in L2(Γ, |n3|dσ) and

‖u‖H(∂x3 ,Ω) � C‖g‖L2(Γ,|n3|dσ) ,

where C > 0 is a depending at most on Ω .

8. Annexe

We keep the notations of Theorem 5.1. As we have explained it in the beginning
of section 5, we give another approach to prove Theorem 5.1, consisting in considering
the pair (uuuu, p) as the solution of an asymptotic problem. Let ε ∈]0, 1] and consider the
problem:

Find uuuuε ∈ H1
0 (Ω)3 and pε ∈ L2(Ω)/R such that:⎧⎨⎩−Δuuuu′ε +∇′pε = ffff ′, −ε2Δuε3 +

∂ pε
∂x3

= 0, ∇ ·uuuuε = 0 in Ω,

uuuuε = 0 on Γ.
(8.1)

THEOREM 8.1. Let ffff ′ in H−1(Ω)2 , ε ∈]0, 1] and let

(uuuuε , pε) ∈ H1
0 (Ω)3 × (L2(Ω)/R)

be the solution to Problem (8.1). Then the sequence (uuuuε , pε)ε converges to the unique
solution (uuuu, p) , in the space XXXX0× (L2(Ω)/R) , of Problem (5.1), and satisfying (5.4).
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The sequel is dedicated to the proof of Theorem 8.1. Firstly, let us prove that
Problem (5.1) has at most one solution.

LEMMA 8.2. For any ffff ′ ∈ H−1(Ω)2 , Problem (5.1) has at most one solution
(uuuu, p) in the space XXXX0× (L2(Ω)/R) .

Proof. Let us consider a possible solution (uuuu, p) related to the data ffff ′ = 0. By
multiplying the first equation of (5.1) by uuuu′ , and by using Green’s formula, one has

ˆ
Ω
∇uuuu′ ·∇uuuu′ dx =

ˆ
Ω

p∇′ ·uuuu′ dx = −
ˆ
Ω

p
∂u3

∂x3
dx,

since ∇ ·uuuu = 0 in Ω . As u3 ∈ H0(∂x3 ,Ω) and ∂x3 p = 0 in Ω , relation (2.6) gives:
ˆ
Ω
∇uuuu′ ·∇uuuu′ dx =

ˆ
Ω

u3
∂ p
∂x3

dx = 0,

and, therefore, ∇uuuu′ = 0 in Ω . Since uuuu′ = 0 on Γ and since Ω is connected, one has
uuuu′ = 0 in Ω . As ∇ ·uuuu = 0 in Ω , we deduce that ∂x3u3 = 0 in Ω , and from the inequality
(2.7) we get u3 = 0 in Ω . Then as ∇′p = Δuuuu′ = 0 in Ω , one obtains that ∇p = 0 in
Ω , hence p = 0 in L2(Ω)/R , since we recall that Ω is connected. As a conclusion,
Problem (5.1) has at most one solution when ffff ′ = 0 which is is uuuu = 0 and p = 0.
Consequently, Problem (5.1) has at most one solution in XXXX0× (L2(Ω)/R) .

Secondly, we give an asymptotic analysis of Problem (8.1). We prove in Lemma
8.3 that for any ε ∈ (0, 1] there is a unique solution (uuuuε , pε) to Problem (8.1). Then we
get interested in a priori estimates on the sequence (uuuuε , pε)ε in Lemma 8.4, enough,
in a third time, to go through the limit in the equations (8.1) as ε goes to 0.

LEMMA 8.3. Let ε ∈ (0, 1] . For every ffff ′ in H−1(Ω)2 , Problem (8.1) has a
unique solution (uεuεuεuε , pε) in the space H1

0 (Ω)3× (L2(Ω)/R) .

Proof. For any solution (uuuuε , pε) of (8.1), uuuuε satisfies the following variational
problem.

Find uuuuε ∈VVVV such that:{∀vvvv ∈VVVV´
Ω∇uuuu′ε ·∇vvvv′ dx+ ε2

´
Ω∇uε3 ·∇v3 dx = 〈 ffff ′, vvvv′〉H−1(Ω)2,H1

0 (Ω)2 . (8.2)

We refer to paragraph 2.3 for the definition of VVVV . Conversely, let us consider any
solution uuuuε ∈VVVV to (8.2). Then one has for any ϕϕϕϕ ∈VVVV :〈

Δuuuu′ε + ffff ′, ϕϕϕϕ ′〉+
〈
ε2Δuε3, ϕ3

〉
= 0,

where the duality is taken in the sense of H−1(Ω)2, H1
0 (Ω)2 . Therefore, the distribution

TTTT = (Δuuuu′ε + ffff ′, ε2Δuε3) is exactly in the statement of Lemma 2.5, hence there is a unique
function pε in L2(Ω)/R such that

∇pε = TTTT in Ω.
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As a consequence, any pair (uuuuε , pε) in the space H1
0 (Ω)3 × (L2(Ω)/R) is a solution

to (8.1) if and only if uuuuε satisfies (8.2). Therefore, we easily deduce, thanks to Lax-
Milgram’s lemma, that there is a unique uuuuε in VVVV satisfying (8.2). Hence, Problem (8.1)
has a unique solution (uuuuε , pε) in the space H1

0 (Ω)3× (L2(Ω)/R) .

LEMMA 8.4. Let ε ∈]0, 1] , ffff ′ ∈ H−1(Ω)2 , and let

(uuuuε , pε) ∈ H1
0 (Ω)3 × (L2(Ω)/R)

be the solution to Problem (8.1). Then there is a constant C > 0 , independent on ε ,
such that:∥∥uuuu′ε

∥∥
H1(Ω)2 + ε ‖uε3‖H1(Ω) +‖uε3‖H(∂x3 ,Ω) +‖pε‖L2(Ω)/R � C

∥∥ ffff ′
∥∥

H−1(Ω)2 . (8.3)

Proof. By taking vvvv = uuuuε in (8.2), we deduce that∥∥∇uuuu′ε
∥∥2

L2(Ω) + ε2‖∇uε3‖2
L2(Ω) � C

∥∥ ffff ′
∥∥

H−1(Ω)

∥∥∇uuuu′ε
∥∥

L2(Ω) ,

which leads to ∥∥∇uuuu′ε
∥∥

L2(Ω) + ε ‖∇uε3‖L2(Ω) � C
∥∥ ffff ′

∥∥
H−1(Ω)2 . (8.4)

Since ∇ ·uεuεuεuε = 0 in Ω , we deduce thanks to (8.4) that∥∥∥∥∂uε3
∂x3

∥∥∥∥
L2(Ω)

=
∥∥∇′ ·uuuu′ε

∥∥
L2(Ω) � C

∥∥ ffff ′
∥∥

H−1(Ω)2 .

As uε3 belongs to H0(∂x3 ,Ω) , Poincaré’s inequality (2.7) and the above inequality imply
that

‖uε3‖L2(Ω) � C
∥∥ ffff ′

∥∥
H−1(Ω)2 .

Then we are interested in the estimate of ‖pε‖L2(Ω)/R . The gradient operator is an iso-

morphism from L2(Ω)/R onto VVVV ◦ (see (4.4)). As a consequence, since pε ∈ L2(Ω)/R ,
there is a constant C > 0 such that

‖pε‖L2(Ω)/R � C‖∇pε‖H−1(Ω)

� C
(∥∥ ffff ′

∥∥
H−1(Ω)2 +

∥∥Δuuuu′ε
∥∥

H−1(Ω)2 + ε2 ‖Δuε3‖H−1(Ω)

)
� C

(∥∥ ffff ′
∥∥

H−1(Ω)2 +
∥∥∇uuuu′ε

∥∥
L2(Ω) + ε ‖∇uε3‖L2(Ω)

)
,

by reading equations of (8.1). As a consequence, thanks to (8.4), (pε )ε is bounded in
L2(Ω)/R , and we get (8.3).

REMARK 8.5. We keep the notations of Lemma 8.4. By writing the third equation
of (8.1) in the following way

∂ pε
∂x3

= ε2Δuε3,
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we deduce thanks to (8.4) that there is a constant C > 0 independent on ε such that∥∥∥∥∂ pε
∂x3

∥∥∥∥
H−1(Ω)

� εC. (8.5)

PROOF OF THEOREM 5.1. From Lemma 8.4, we proved that (uuuuε , pε) is bounded
in the space XXXX0 × (L2(Ω)/R) . Since it is a reflexive space, there is a pair (uuuu, p) in
the space XXXX0 × (L2(Ω)/R) and a subsequence of (uuuuε , pε) , denoted in the same way,
that converges weakly towards the couple (uuuu, p) in the space XXXX0 × (L2(Ω)/R) . In
particular, one has

−Δuuuu′ε +∇′pε ⇀ −Δu′u′u′u′ +∇′p = ffff ′ in H−1(Ω)2.

Then we deduce from relation (8.5) that

∂ pε
∂x3

⇀
∂ p
∂x3

= 0 in H−1(Ω).

To finish, one has
∇ ·uuuuε ⇀ ∇ ·uuuu = 0 in L2(Ω).

As a conclusion, the weak limit (uuuu, p) is a solution to (5.1) and satisfies (5.4) by taking
the infimum limit in (8.3). We achieve the proof by using Lemma 8.2, ensuring that
(uuuu, p) is the unique solution to (5.1). Consequently all the sequence (uuuuε , pε) converges
to (uuuu, p) in XXXX0× (L2(Ω)/R) . �
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